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1 Introduction

Bacterial biofilms represent systems of considerable complexity, involving phenomena
spanning a vast range of spatial scales (from sub-cellular to population) and with scope
for generating a huge variety of emergent behaviour. Biofilms comprise communities
of diverse individuals which may interact in both mutually beneficial and competi-
tive fashions. They thus provide comparatively simple (and experimentally relatively
well characterised) systems in which variety, ‘altruism’ and antagonism all have scope
to flourish as a heterogeneous population develops. Cellular inter-relationships, even
in single-species populations, are themselves highly complex, with signalling systems,
such as quorum sensing, able to lead to coordinated changes in phenotype (see [10], for
example). These quorum-sensing systems are increasingly being understood in terms
of the subcellular interactions which govern the production of the relevant signalling
molecules. Moreover, mathematical models of these processes are increasingly be-
coming established and validated, together with those of the corresponding macroscale
behaviour (transport of signalling molecules and nutrient, biofilm growth etc.).

Such systems inextricably involve phenomena at both subcellular and macroscopic
levels of a type widely studied by mathematicians (appropriate modelling frameworks
typically comprising (possibly stochastic) differential equations and differential-delay
equations) and interactions between individuals which requires the application of agent-
based approaches (whereby signalling between neighbours belonging to distinct bac-
terial strains, say, leads to phenomena that cannot readily be captured by traditional
multi-scale mathematical procedures such as homogenisation). Accounting adequately
for the relevant subcellular behaviour in a population of millions of distinct, diverse
individuals in order to bridge the scales presents significant modelling and simulation
challenges but offers the potential for significant benefits for biology and medicine.

However, while there has been a significant amount of work on continuum and qual-
itative (process calculi) models of cell level processes on the one hand and both con-
tinuum and individual-based models of population scale effects on the other, there has
been relatively little work which attempts to span these scales. For example, individual-
based models are becoming increasingly widely used in this type of context (see, for
example, [6, 3, 5, 2, 8, 7]). Such models use agent-based simulation techniques to
investigate the interactions between (often relatively small) groups of cells and their
environment. However, existing work in this area has tended to focus on the emer-
gence of complex organisation in biofilms, with the individual cells being treated as
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’black boxes’ as far as possible, e.g., the use of cellular-automata approaches to de-
scribe biofilm growth.

In this working paper we present a hybrid model of the interactions within (multiple-
species) populations of bacteria in a developing biofilm which integrates continuum
models of population processes (e.g., diffusion of substrates and signalling molecules)
with individual-based models of cellular processes (notably growth, division, displace-
ment, and up-regulation). The cell level models in particular are novel in combining
aggregated models of continuous processes (growth, division and displacement) for
small collections of cells and individual-cell-level models of quorum sensing molecule
(QSM) sensing, production and up-regulation which encompass both stochastic and
discrete processes.

The model aims extend the state of the art in biofilm modelling (which mostly
seems to be limited to qualitative modelling) by providing support for hypothesis test-
ing, e.g., “What would happen if we starved bacteria of this strain or in this region of
nutrient?” Such predictions are still qualitative, but could be tested in the lab. While
the cell models used in the current prototype are naturally somewhat simplistic, the
approach provides a generic framework into which different types of cells and more
complex models of signalling pathways and gene networks (which are currently the
subject of a vast amount of experimental study) can be plugged.

More generally, the approach embodied in the model described below provides a
multi-scale framework for modelling populations of cells, which spans from the cel-
lular level to the population level. In contrast to previous work, e.g., [8], the use of
both aggregated and individual models of cellular processes, allows the resolution of
the model to be tailored for a particular modelling problem, while at the same time
remaining computationally tractable.

The remainder of the paper is organised as follows. In section 2 we delineate the
scope of the biofilm model and outline its structure. For each of the main model com-
ponents (biomass and substrate), we list the values that constitute the state of model
at each timepoint. In section 3 we describe the evolution of the state of the model in
detail, including diffusion of substrates and QSM, the growth, division, spreading and
detachment of biomass, and inter-cell signalling, up-regulation and the production of
extracellular polysaccharides. We also briefly outline ways in which the simulation
termination condition can be specified. In section 4 we briefly describe the execution
of the model and how the state of the model is computed at each timestep. A list of all
simulation constants and variables can be found in section 6

2 The model

The overall system is similar to that described in [8]. The model system is a 3D biofilm
reactor consisting of two compartments: bulk liquid and biofilm. The bulk liquid com-
partment contains a (completely mixed) solution of S different soluble substrates with
concentrations Cbulk

1 , Cbulk
2 , . . . , Cbulk

S . The biofilm grows on a planar support surface
(substratum) and is assumed to consist of B different types of biomass. In addition
to the biomass itself, the biofilm compartment contains a single type of extracellular
polysaccharide (EPS) and Q types of quorum sensing molecule. The biofilm and bulk
liquid compartments are in contact and exchange solutes only by diffusion. The bulk
liquid volume is very large compared with the biofilm volume, and thus the substrate
concentrations in the bulk liquid can be considered constant.

Figure 1 illustrates the computational model which is only a small part of the whole
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system. Within the computational domain the biofilm grows in a rectangular box of
dimensions LX , LY , LZ . The x and y dimensions of the computational domain are
periodic. Substrate and biomass which move beyond the x and y boundaries reappear
at the opposite boundary. Bacteria, substrates and other material are assumed to be
washed away once they reach the z boundary (detachment layer).
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Figure 1: Computational domain

At any given point the state of the model is specified by: the amount and distribution
of each type of biomass, the number of up and down-regulated cells of each biomass
type, the amount and distribution of extracellular polysaccharide, the concentration and
distribution of each type of substrate and quorum sensing molecule, and the pressure
distribution. In section 2.1 we consider the biomass state and in section 2.3 we consider
the substrate and QSM concentrations and the the pressure distribution.

2.1 Bacterial particles

The model contains zero or more bacterial cells of each biomass type. For efficiency
of computation, individual cells are aggregated into bacterial ‘particles’ as in [8]. Each
particle represents a variable number of cells of a single strain.1 The smallest possible
particle is equivalent to a single cell; the largest possible particle is that which will fit in
a voxel (see section 2.3). Particles allow aggregated models of of continuous processes
(growth, division and displacement) for small collections of cells, and also facilitate
visualisation of the relative proportions of different biomass types within a voxel.

1In [8] there is also a single type of inert biomass for all particles. The total mass of a particle is the sum
of its active biomass and its inert biomass. However, it’s not clear what the inert biomass represents in the
Picioreanu et. al. model, i.e., whether it is dormant or dead cells. We therefore ignore inert biomass, and
instead assume that the growth of the biomass in a particle reduces over time (as a result of reduced substrate
concentration) until it eventually becomes dormant.
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The radius of a particle j at a given timestep is denoted rj . As j consumes substrate
its radius increases until it reaches the maximum particle radius, R, at which point it
divides resulting in the creation of a new particle. R is a user-specified parameter
which specifies the maximum radius of a particle in microns. Particles of all biomass
types (including EPS) are assumed to have the same maximum radius, but their density
and the number of bacterial cells they represent depends on the biomass type. Parti-
cles of different biomass type with equal radius may therefore have different mass and
represent different numbers of cells. For strains of bacteria with larger cells the cor-
responding particles will contain fewer cells; conversely strains with smaller cells will
have particles that contain a larger number of cells.

The mass of a particle j of biomass type b at a particular timestep is denoted mj

and is given by

mj =
4
3
πr3

j ρb (2.1)

where ρb is the density of biomass of type b, and the maximum mass of a particle of
biomass type b (its mass at division) is

Mb,max =
4
3
πR3ρb (2.2)

At any given timestep mj lies between the minimum particle mass after division,
Mb,min , and Mb,max . Mb,min is equal to 0.4Mb,max (see section 3.3).

The total mass of biomass b in a voxel e at a particular timestep is denoted mb,e

and is given by
∑nb,e

j=1 mj , where nb,e is the total number of particles of type b in e at
this timestep, and the total mass of biomass type b in the model at this timestep, mb is∑e∑nb,e

j=1 mj .
The number of cells represented by a particle j of biomass type b at a particular

timestep is denoted by nj , and is given by

nj = (mj mod Mb,av ) + 1 (2.3)

where Mb,av is the average mass of a cell of biomass type b.
Cells within a particle can exist in two different states: up-regulated and down-

regulated. Particles keep track of the number of up-regulated and down-regulated cells
they currently contain and cells can change from one state to another at each timestep
(see section 3.6). The number of up-regulated cells in a particle j is denoted uj and the
number of down-regulated cells is denoted by dj cells.

2.2 EPS particles

Up-regulated cells produce extracellular polysaccharide (EPS) (see section 3.7). The
EPS produced by cells in biomass particles is aggregated into EPS particles. EPS
particles are assumed to have mass MEPS , where MEPS is the mass of a particle of
radius R and density ρEPS . The number of EPS particles at any given point is therefore
simply the quantity of EPS mod MEPS .

2.3 Voxels

The biofilm compartment is discretised into sub-compartments or ‘voxels’ containing
particles, substrate and signalling molecules. We assume that voxels are cubes and that
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all voxels are the same size. The size of the computational domain (LX , LY , LZ) is
assumed to be an integer multiple of the size of a voxel lX .

The bulk liquid compartment is represented by a single point for the purposes of
discretisation, and that this point is adjacent to all the voxels immediately below the
detachment layer. The state of the model in the bulk liquid compartment is given by S
constant substrate concentrations, Cbulk

1 , Cbulk
2 , . . . , Cbulk

S .
Substrate and QSM concentrations are specified relative to a voxel. Each voxel has

its own concentrations of the S different substrates and the Q different Quorum Sens-
ing Molecules. The concentration of substrate s in voxel e is denoted by cs,e and the
concentration of QSM q in e is denoted aq,e. Substrate and QSM concentrations are
assumed to be constant throughout the volume of the voxel, and the upper bound on
the size of a voxel is chosen such that the substrate and QSM concentration values are
‘reasonably close’ to the continuous values. The size of voxels lX is chosen appropri-
ately for the system to be modelled, with smaller values (criteria being deduced from
the corresponding continuum models) giving greater resolution at increased computa-
tional and communication cost. However the voxels will typically be fairly large in
relation to the size of a cell, e.g., each voxel may contain up to 104 cells.2

The upper bound on voxel size, lmax , is given by the equation:

lmax =

√
Dmin

K × h
(2.4)

where Dmin is the smallest diffusion coefficient of all substrates, K is the consumption
rate of that substrate and h is the number of particles per unit volume.

In addition the substrate and QSM, each voxel also contains zero or more particles
of each biomass type (including EPS). The particles in a voxel exert a ‘pressure’ on the
particles in the neighbouring voxels which is a function of the relative number of parti-
cles in the voxels, and these pressures are used to displace particles during the division
of biomass. Each voxel has six adjacent voxels, connected at each face, which are con-
sidered in determining relative pressures, and into which particles may be displaced.
The pressure in voxel e at a given timestep is denoted pe. Voxels have a pre-determined
maximum particle capacity, N , and the pressure in the voxel is considered to be infinite
when this maximum is reached. N is calculated using lX and the maximum radius of
a particle, R, assuming simple cubic packing. EPS particles behave in the same way as
biomass particles for the purposes of pressure calculation. The arguments used in de-
veloping this pressure model are again based on the continuum modelling, in this case
building on multiphase formulations for growing populations such as those described
in [1].

Each particle has a notional 3D position within its containing voxel which is used
for visualisation purposes. These notional positions are chosen such that the particles
don’t overlap. The pressure model and chosen maximum particle size (see section 3.4)
should ensure that there is enough free space in the box for this to be possible.

Note that the resolution of the model with respect to substrate and QSM concentra-
tions is determined by the size of voxels, lX . The resolution of the model with respect
to the distribution of biomass is also determined by the size of a voxel, in that the mass
of each biomass type in each voxel is known. Particles and their 3D positions simply
make it easier to visualise the distribution of different types of biomass.

2Current experiments use a 17 × 17 × 17 micron voxel as in [8], and a maximum cell radius of 0.756
microns, which allows 1371 cells per voxel.
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At any given point the state of the model is specified by: the amount and distribution
of each type of biomass, the number of up- and down-regulated cells of each biomass
type, the amount and distribution of extracellular polysaccharide, the concentration and
distribution of each type of substrate and quorum sensing molecule, and the pressure
distribution.

3 Model evolution

There are three main processes which determine the evolution of the model: the diffu-
sion of substrate and QSM from voxel to voxel, the displacement of particles between
voxels in response to proliferative pressures, and changes in the state of the particles
themselves in response to the substrate and QSM concentrations in their containing
voxel. The transport of substrate and QSM between voxels corresponds precisely to
a simple central-difference discretisation of the relevant continuum reaction-diffusion
equations. The pressure model underlying particle displacement builds on multiphase
formulations for growing populations as described in [1]. Particles are modelled as
agents and implement a simple model of growth and division similar to that in [6], and
up-regulation (e.g., the production of extracellular polysaccharide) in the presence of
QSM [9]. These processes interact: particles consume substrate and produce QSM,
leading to transport associated with the diffusion gradients. Consumption of substrate
results in particle growth, which in turn results in increased pressures and particle dis-
placement. Finally, the number of cells in a voxel determines QSM production and
hence QSM concentration and up-regulation.

In the remainder of this section we discuss the operation of each of these processes
in detail.

3.1 Diffusion

Diffusion is performed globally over all voxels. The diffusion algorithm iterates over
all voxels using the concentration of substrate in the neighbouring voxels to determine
the change in concentration at the current voxel. More specifically, for each substrate
s, the change in concentration at a voxel e is:

dcs,e

dt
= Ds

(
i∑

∆cs,i

)
dt

(dx)2
(3.1)

where cs,e is the concentration of substrate s is voxel e,
∑i ∆cs,i is the difference in

concentration between the voxel e and each of its neighbours (i = 1, . . . , 6) and Ds is
the diffusivity of substrate s. The bulk liquid compartment is assumed to have constant
concentration and the substratum is assumed to have zero concentration. The x and y
boundaries are treated as periodic, i.e., the concentration at (−1, y, z) is the same as
the concentration at (LX , y, z). The volume fraction of cells is ignored when doing
diffusion calculations—the uptake of substrate by cells (see section 3.2) is much more
important.

The concentration at the next timestep can then be calculated as:

c′s,e = cs,e +
dcs,e

dt
(3.2)
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The diffusion algorithm repeatedly computes the concentration in each voxel using
equation (3.2) until the maximum change in concentration for any voxel is less than a
pre-defined constant:

dcs,e

dt
< δcmax

At the voxel level, signalling molecules are treated as a substrate, i.e., the signalling
molecule concentration aq,e, is constant across a voxel and diffuses between voxels.
The signalling molecule concentration(s) in a voxel at a given timestep is therefore
given by the amount of signalling molecule produced by all particles in the voxel (see
section 3.7) and by diffusion of signalling molecule between surrounding voxels. The
diffusion coefficient for the signalling molecule q is denoted Dq .

3.2 Growth

The growth of each particle is a function of the substrate concentration(s) in the voxel
containing the particle. The model of particle growth comprises three separate pro-
cesses: uptake, anabolism (creation of new biomass) and maintenance [6].

At each time-step each particle consumes an amount of substrate proportional to
the concentration of substrate in the voxel and the mass of the particle. The uptake of
substrate for a particle of mass mj in voxel e at a given timestep is given by the Best
equation:

ks,j =
mjVmax(cs,e + Km + J)(1 −√1 − 4cs,eJ/(cs,e + Km + J)2)

2J
(3.3)

where Vmax = µmax/Ymax , Km is the half saturation constant, and J = Vmax/AP .
A is the surface area of a particle3 and P is the permeability constant, i.e., the diffusion
constant during passage through the membrane divided by the thickness of the mem-
brane. µmax is the maximum growth rate. Ymax is the (maximum) yield at µmax , i.e.,
the efficiency with which substrate is converted to biomass at the maximum growth
rate, corrected for maintenance. The efficiency with which substrate is converted to
biomass is assumed to be constant.

The anabolism of substrate into new biomass is given by:4

dmj

dt
= ks,j Ymax (3.4)

Maintenance is modelled as consumption of biomass, and is proportional to the mass
of the particle:

dmj

dt
= mj g Ymax (3.5)

where g is the apparent maintenance rate at zero growth, i.e., µj = 0. The overall
growth, i.e., change in mass, of a single particle j is therefore:

µj =
dmj

dt
= (ks,j Ymax) − (mj g Ymax) (3.6)

Values of V , K and J in eqns. (3.3)–(3.6) are taken from [6], which in turn are based
on [4].

3The surface area of a particle j is taken to be that of a sphere with radius rj rather than of a cylinder
with hemispheric ends as in [6].

4In [6] eqn. 3.4 is incorrectly given as ks,j/Ymax.
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At lower concentrations, the particle grows more slowly, and at sufficiently low
concentrations the particle starts to shrink (when it is unable to consume sufficient
substrate to satisfy its maintenance requirement). At present we do not consider the
death of particles: instead particles continually shrink until the uptake and maintenance
balance and the cell becomes dormant.

As noted in section 2.1, a single particle represents a collection of cells some of
which may be up-regulated and some down-regulated (the number of cells represented
by a particle is given by equation (2.3)). When the number of cells represented by a
particle increases as a result of growth, i.e., when mj increases by Mb,av , a new down-
regulated cell is “created” by incrementing the number of down-regulated cells in a
particle, dj .

The consumption of substrate s by all particles in voxel e is given by ks,e =∑ne

j=1 ks,j , where ne is the total number of particles in voxel e at this time-step, and as-
suming that ks,j = 0 for particles in e which don’t consume substrate s. The consump-
tion of substrate is given per unit volume, so the change in concentration of substrate s
in voxel e as a result of consumption is given by:

c′s,e = cs,e − ks,e

lX
3 (3.7)

3.3 Division

Particle division occurs when the radius of a particle exceeds the user-specified maxi-
mum particle radius,

rj > R

i.e., when mj > Mb,max . At this point, the original particle is split and a new daughter
particle is created in the same voxel as the original particle.5 The mass of the daugh-
ter particle is randomly chosen between 0.4Mb,max and 0.6Mb,max , with the original
particle retaining the remainder of the mass.6

The daughter particle is also allocated (up and down regulated) cells from the orig-
inal particle in proportion to its mass. If the mass of the daughter particle is mj′ , then

n′
j = m′

j

mj
nj cells are transferred to the daughter particle.7 The cells transferred from

parent to daughter are chosen randomly using a uniform distribution.

3.4 Displacement

As we are not currently considering real positions of particles within voxels (except
for visualisation purposes), spreading does not occur within a single voxel.8 However,
spreading and displacement may still occur between voxels.

Following division, particles are transferred between voxels by determining the
relative particle pressures in adjacent voxels. The pressure pe in the voxel e at a given
timestep is given by

pe =
ne

N − ne
(3.8)

5The actual 3D position of the particle is not relevant, since it will be adjusted for the purposes of visual-
isation.

6If a 50–50 split is used this can lead to synchronised division.
7If the total number of cells to transfer is not an integer, one of the cells from the parent particle is split

at random and a new extra cell is created.
8If we do need to model real positions of particles within a voxel, we can model spreading using radii

overlap, as in [8].
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where ne is the current total number of particles of all biomass types (including EPS)
in the voxel and N is the maximum number of particles in a voxel at close packing.9

ne is given as:

ne =
B∑

b=1

nb,e (3.9)

where nb,e is the number of particles of biomass b in the voxel e. The pressure in the
substratum is assumed to be infinite10 and so particles cannot disperse down through
the bottom layer. Particle pressure in the bulk liquid is assumed to be zero, so particles
can transfer freely into the bulk liquid. Each type of biomass has a transfer coefficient,
Tb which specifies how easy it is for biomass of that type to be displaced. The number
of particles of biomass of type b to be displaced from a voxel e to the neighbouring
voxel e′ is then

∆nb,e→e′ = Tb(pe − pe′)(nb,e − nb,e′) (3.10)

The total number of particles of biomass type b to be displaced out of the voxel e is
given by

∆nb,e =
e′∑

∆nb,e→e′ (3.11)

and the total number of particles of all biomass types to be displaced out of the voxel e
is

∆ne =
B∑

b=1

e′∑
∆nb,e→e′ (3.12)

The individual particle(s) of each biomass type to displace are chosen randomly.
Tb must be large enough that particles will displace faster than the maximum parti-

cle division rate when the voxel is full and small enough that no more than ne particles
are transferred at any timestep. However it can be difficult to determine appropriate
values of Tb in advance. In addition, the model outlined above is susceptible to dis-
cretisation effects when the number of particles in a voxel is small.

To prevent over sensitivity to values of Tb full voxels are handled specially. If
a voxel contains more particles than its maximum capacity, N , i.e., ne > N , the
total number of particles to transfer out of the voxel, ∆ne, is increased to be at least
ne − N . Conversely, if Tb is too large, too many particles will be transferred at each
timestep. For example, consider a situation where a voxel contains 15 particles all of
biomass type b and all of its neighbouring voxels are empty. The pressure gradient is
equal in all directions and so the same number of particles will be transferred in each
direction. However, if ∆nb,e→e′ > 3 there will be insufficient particles to transfer
in each direction. To avoid this, we require that no more than a given fraction of the
particles in a voxel, N∆, can be transferred in any given timestep, such that ∆ne,max =
min(∆ne, N∆ne).11 The number of particles of each biomass type to transfer, ∆nb,e,
are then scaled in proportion ∆nb,e = ∆nb,e

∆ne,max

∆ne
.

The appropriate number of particles of each biomass type are then selected at ran-
dom for transfer at this timestep. The direction in which to displace each of these
particles is chosen probabilistically, where the probability of transferring a particle to
a neighbouring voxel e′ is proportional to the relative pressure difference between e

9For implementation, when ne = N , ne is reduced slightly so that pe becomes a large number rather
than infinity

10In the implementation, a large number is used to approximate infinite pressure.
11N∆ is currently 25%.
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and e′ and e and its other neighbours, i.e., the probability of a particle being displaced
to voxel e′ is ∆pe,e′/

∑ei ∆pe,ei , where ei are the neighbouring voxels of e such that
∆pe,ei > 0. This approach also avoids any bias in the direction in which particles are
transferred with small values of ne.

3.5 Detachment of biomass

Detachment is used to keep the biofilm within the specified maximum thickness of the
computational domain, LZ , and is implemented by simply discarding particles which
are displaced beyond the boundary layer, i.e., LZ above the substratum.

3.6 Inter-cell signalling

Quorum sensing molecules (QSM) are generated by particles and provide a form of cell
to cell communication known as quorum sensing. The molecules, which are typically
different for each strain of bacteria, control a number of aspects of bacterial growth
and development, including bioluminescence, population expansion by swarming, and
virulence. However, only one of these, the production of extracellular polysaccharides,
is currently included in the model.

The quorum sensing mechanism involves the QSMs triggering increased expres-
sion of of certain genes in the bacterium. One of the genes codes for the QSM itself,
creating a positive feedback loop. The QSM therefore functions as an ‘autoinducer’,
and bacteria will create more of the same QSM when they are surrounded by it. A cell
that is in a QSM triggered state is referred to as ‘up-regulated’, and one that is not is
referred to as ‘down-regulated’. A QSM can combine with a down-regulated cell to
produce an up-regulated cell and an up-regulated cell can spontaneously revert to be-
ing down-regulated (by the loss of the bound QSM). The probability of a cell changing
from down- to up-regulated is given by [9]:

P (up) = αaq,edt

where aq,e is the concentration of signalling molecule q in voxel e and α is the con-
version rate of down-regulated cells to up-regulated cells due to QSM binding. A cell
reverts from up-regulated to down-regulated with constant probability:

P (down) = β dt

where β is the spontaneous down-regulation rate.
A down regulated cell produces a QSM q at a low (basal) rate Zq,d. Once the

cell becomes up-regulated it produces QSM at a much higher rate of Zq,u (Zq,u >
100Zq,d). The amount of QSM produced by a particle is determined by the relative
number of up-regulated uj and down-regulated dj cells within the particle:

zq,j = ujZq,u + djZq,ddt (3.13)

and the change in the concentration of QSM q due to production by particles in voxel
e (i.e., ignoring diffusion) at this timestep is then

daq,e =
∑j

zq,j

lX
3
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Other signalling molecules function as inhibitors, which prevent an autoinducer
combining with a cell, or prevent up-regulation when a cell combines with the autoin-
ducer. Inhibitors therefore restrict the production of QSM by the bacteria. Inhibitors
are particularly interesting from a biological point of view as they offer the ability to
control the regulation and hence development of the bacterial colony. The relative ease
with which a QSM q and the corresponding inhibitor q̄ can combine with a cell is de-
noted by γq and γq̄ . In what follows, for simplicity we assume that γq = γq̄ = γ. In
the presence of inhibitor, the probability of a cell changing from down to up-regulated
is given by:

P (up) = α
aq,e

1 + (γ(aq,e + aq̄,e))
dt

where aq,e is the concentration of signalling molecule q in voxel e, aq̄,e is the concen-
tration of inhibitor. A cell reverts from up-regulated to down-regulated with probabil-
ity:

P (down) = β
1 + (γaq̄,e)

1 + (γ(aq,e + aq̄,e))
dt

We have assumed a positive feedback loop for the production of signalling molecules.
In reality, bacteria sense and produce many different types of signalling molecule, and
the function used to determine the amount of each signalling molecule produced by
a particle at each timestep will take a variety of different signalling molecules as in-
put, and may increase or decrease the particle’s production of the molecule at the next
timestep.

3.7 Extracellular polysaccharides

Up-regulated cells produce extracellular polysaccharide (EPS) at a constant rate and
particles therefore produce EPS at a rate proportional to the number of up-regulated
cells they currently contain. All particle types produce the same type of EPS and
contribute to an overall amount of EPS within the voxel.

In the initial version of the model, EPS is not produced.

4 Model timestep

In this section we give a high level description of a single iteration of one timestep of
the model.

The state of the model at a given timestep t is determined by the state of all the
voxels and all the particles at that timestep. The state of each voxel e is given by the
number of particles of each biomass type it contains nb,e, and the concentrations of
each substrate cs,e and signalling molecule aq,e. The state of each particle j is given
by its biomass type bj , its mass mj , the number of up- uj and down-regulated dj cells
it represents, its containing voxel e and its (notional) 3D position within that voxel.

Determining the state of the model at t + 1 involves determining, for each voxel,
the change in substrate and signalling molecule concentrations due to diffusion dcs,e,
consumption ks,e (in the case of substrate) and production zq,j (in the case of sig-
nalling molecule), and for each particle, its change in mass over the timestep dmj (and
hence the change in the number of cells the particle represents dnj), and the change
in the number of up- duj and down-regulated δdj cells it contains and the particle’s
containing voxel.
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The processing of the voxels at timestep t occurs in two phases. The first involves
the execution of the voxels to calculate the consumption of substrate by particles, par-
ticle growth and particle division. Processing of phase one within each voxel itself
occurs in three steps. Firstly, the growth step increases the mass of each particle given
the concentration of substrate at this timestep. (For t = 0, the concentrations and num-
ber of particles are taken as parameters of the simulation.) This also gives the total
consumption of all substrates by all particles in the voxel at this timestep. The sec-
ond step computes the production of signalling molecule by each particle in the voxel.
The third step is particle division: each particle which reached the maximum allow-
able mass during the growth step is split into two particles, increasing the number of
particles in the voxel.

The second phase of the timestep involves computing the changes in substrate and
signalling molecule concentrations due to diffusion, as a result of substrate consump-
tion and signalling molecule production at this timestep. In parallel with the diffusion
calculation, each voxel also executes a displacement step, which uses the difference in
pressure between the voxel and each of its neighbouring voxels to determine movement
of particles between voxels at this timestep

The timestep is then incremented and the cycle repeats with the voxels using the
newly calculated concentrations and particle counts.

5 Simulation termination

There are several ways in which the simulation termination condition can be specified.
Firstly a simulation time can be specified at which the simulation should stop, e.g.,
after 72 hours of simulated time. Alternatively, termination may occur when the first
particle of generation n is created. Yet another approach is to terminate the simulation
when the biofilm reaches steady state. As the simulation progresses, biomass closer
to the substratum will typically grow more slowly as a result of reduced diffusion and
hence reduced substrate concentration until it eventually becomes quiescent (i.e., stops
growing and dividing due to lack of substrate).12 Biomass above the quiescent layer
remains active and continues to grow and divide. The quiescent layer grows thicker as
the cells at the bottom of the active layer are starved of substrate by new cells growing
at the top of the active layer. The active layer moves upwards, leaving mature, qui-
escent biomass behind. At steady state, the active layer remains the same depth but
constantly moves upwards. When this configuration is reached, the simulation run can
be considered over. We can detect this state by monitoring the contents of the voxels.
Alternatively, if the computational domain is assumed to be large enough for steady
state to be reached, the simulation can simply be run until all the voxels are filled with
biomass, and the last few cycles discarded.

12Assuming the substratum is a sufficient distance from the bulk liquid.
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6 Notation

For clarity and ease of reading, the notation used here differs from that in [8]. Table 3
below shows the corresponding notation used in [8].

Parameter Notation Value

Size of the computation domain LX , LY , LZ

Number of substrate types S
Concentration of substrate s in bulk liquid Cbulk

s

Effective diffusivity of substrate s Ds

Minimum diffusivity of all substrates Dmin

Number of signalling molecule types Q
Effective diffusivity of signalling molecule q Dq

Basal rate of production of signalling molecule q Zq,d 500 h−1

Up-regulated rate of production of signalling molecule q Zq,u 74000 h−1

Number of biomass types B
Density of biomass b ρb

Density of EPS ρEPS

Average mass of a cell of biomass b Mb,av

Permeability constant P
Maximum growth rate µmax

Maximum yield (at µmax Ymax

Maintenance rate (at µ = 0) g
Transfer coefficient of biomass b Tb

Size of a voxel lX
Upper bound on voxel size lmax

Number of particles at close packing (capacity of a voxel) N
Number of particles per unit volume at close packing h
Maximum radius of particle (cell radii) R
Minimum mass of particle of biomass b Mb,min

Maximum mass of particle of biomass b Mb,max

Mass of an EPS particle MEPS

Maximum (?) consumption of any substrate K
Diffusion termination threshold δcmax

Maximum particle displacement fraction N∆

Table 1: Simulation constants
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Parameter Notation Units

Radius of particle j rj

Mass of particle j mj

Number of cells in particle j nj

Number of up-regulated cells in particle j uj

Number of down-regulated cells in particle j dj

Growth of particle j µj

Concentration of substrate s in voxel e cs,e

Consumption of substrate s in voxel e ks,e

Concentration of QSM q in voxel e aq,e molecules fl−1

Production of QSM q by particle j zq,j molecules h−1

Number of particles of biomass b in voxel e nb,e

Number of particles of biomass b in voxels adjacent to voxel e nb,e±{x,y,z}

Total number of particles in voxel e ne

Pressure in voxel e pe

Pressure difference between voxels e and e′ pe,e′

Number of particles of biomass b displaced from e to e′ ∆nb,e→e′

Total number of particles of biomass b displaced from voxel e ∆nb,e

Total number of particles displaced from voxel e ∆ne

Maximum number of particles that can be displaced from voxel e ∆ne,max

Total mass of biomass b mb

Biofilm volume v

Table 2: Time dependent simulation values

Value Here [8]
Mass of a particle p mj m(p)X

Mass of biomass b in particle p jb m(p)X,b

Radius of particle p jr R(p)

Net reaction rate for generation of biomass b rb rX,b

Maximum mass of particle M MX

Solute concentrations cs,e CS,n

Concentration of biomass n in bulk liquid cbulk
b C

(b)
n

Table 3: Notational conventions in Picioreanu et. al.
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