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Abstract. A key advantage of BDI-based agent programming is that
agents can deliberate about which course of action to adopt to achieve a
goal or respond to an event. However, while state-of-the-art BDI-based
agent programming languages provide flexible support for expressing
plans, they are typically limited to a single, hard-coded, deliberation
strategy (perhaps with some parameterisation) for all task environments.
In this paper, we present an alternative approach. We show how both
agent programs and the agent’s deliberation strategy can be encoded
in the agent programming language meta-APL. Key steps in the execu-
tion cycle of meta-APL are reflected in the state of the agent and can
be queried and updated by meta-APL rules, allowing BDI deliberation
strategies to be programmed with ease. To illustrate the flexibility of
meta-APL, we show how three typical BDI deliberation strategies can
be programmed using meta-APL rules. We then show how meta-APL
can used to program a novel adaptive deliberation strategy that avoids
interference between intentions.

1 Introduction

The BDI approach to agent programming has been very successful, and is per-
haps now the dominant paradigm in agent language design [8]. In the BDI ap-
proach, agents select plans in response to changes in their environment, or to
achieve goals. In most BDI-based agent programming languages, plan selection
follows four steps. First the set of relevant plans is determined. A plan is rele-
vant if its triggering condition matches a goal to be achieved or a change in the
agent’s beliefs the agent should respond to. Second, the set of applicable plans
are determined. A plan is applicable if its belief context evaluates to true, given
the agent’s current beliefs. Third, the agent commits to (intends) one or more
of its relevant, applicable plans. Finally, from this updated set of intentions, the
agent then selects one or more intentions, and executes one (or more) steps of
the plan for that intention. This deliberation process then repeats at the next
cycle of agent execution.

Current APLs provide considerable syntactic support for steps one and two
(determining relevant applicable plans). However, with the exception of some
flags, the third and fourth steps can not be programmed in the APL itself. No



single deliberation strategy is clearly ‘best’ for all agent task environments. It
is therefore important that the agent developer has the freedom to adopt the
strategy which is most appropriate to a particular problem.

Some languages allow the programmer to over-ride the default deliberation
cycle behaviour by redefining ‘selection functions’ in the host language (the
language in which the APL is itself implemented), e.g., [2], or by specifying the
deliberation strategy in a different language, e.g., [10]. Clearly, this is less than
ideal. If often requires considerable knowledge of how the deliberation cycle
is implemented in the host language, for example. Moreover, without reading
additional code (usually written in a different language), an agent developer
cannot tell how a program will be executed.

An alternative approach is to use procedural reflection. A reflective program-
ming language [11] incorporates a model of (aspects of) the language’s imple-
mentation and state of program execution in the language itself, and provides
facilities to manipulate this representation. Critically, changes in the underlying
implementation are reflected in the model, and manipulation of the represen-
tation by a program results in changes in the underlying implementation and
execution of the program. Perhaps the best known reflective programming lan-
guage is 3-Lisp [12]. However, many agent programming languages also provide
some degree of support for procedural reflection. For example, the Procedural
Reasoning System (PRS) [9] incorporated a meta-level, including reflection of
some aspects of the state of the execution of the agent such as the set of applica-
ble plans, allowing a developer to program deliberation about the choice of plans
in the language itself. Similarly, languages such as Jason [2] provide facilities to
manipulate the set of intentions. However the support for procedural reflection
in current state-of-the-art agent programming languages is often partial, in the
sense that it is difficult to express the deliberation strategy of the agent directly
in the agent programming language.

In this paper, we show how procedural reflection in the agent programming
language meta-APL [7] can be used to allow a straightforward implementation
of steps three and four in the deliberation cycle of a BDI agent, by allowing both
agent programs and the agent’s deliberation strategy to be encoded in the same
programming language. By exploiting procedural reflection an agent programmer
can customise the deliberation cycle to control which relevant applicable plan(s)
to intend, and which intention(s) to execute. To illustrate the flexibility of meta-
APL, we show how three typical BDI deliberation strategies can be programmed
using meta-APL rules. We then show how meta-APL can used to program a novel
adaptive deliberation strategy that avoids interference between intentions.

2 Specifying Deliberation Strategies

Many deliberation strategies are possible and it is impossible to consider them all
in detail. Instead we focus on three deliberation strategies that are representative
of deliberation strategies found in the literature and in current implementations
of BDI-based agent programming languages. The strategies are based on those



presented in [1], however the terminology has been changed to be more consistent
with usage in the BDI literature (e.g., ‘selecting a planning goal rule’ becomes
‘selecting a plan’ etc.), and the restriction in [1] that plans don’t have subgoals
has been removed.

The simplest deliberation strategy is a non-interleaved (ni) deliberation
strategy that executes a single intention to completion before adopting another
intention. Alternatively, the agent may pursue multiple goals in parallel, choosing
and executing plans for several (sub)goals at the same time. In [1] two parallel
strategies are described: the alternating (single action) (as) strategy, and the
alternating (multi action) (am) strategy. The (as) strategy first selects a plan
for an event (e.g., a belief update or (sub)goal) and then executes a single basic
action of one of the agent’s current intentitons. One common instantiation of
the (as) strategy is round robin scheduling (RR), in which the agent executes
one step of each intention at successive deliberation cycles. (RR) is the default
deliberation strategy used by Jason [2]. The (am) strategy first selects a plan
for an event and then executes a single basic action from each of the agent’s cur-
rent current intentions (i.e., it executes multiple actions per deliberation cycle).
(am) is the deliberation strategy used by 3APL [4].

However none of these strategies (or any other single strategy) is clearly
“best” for all agent task environments. For example, the (ni) strategy has the
advantage that it minimises conflicts between intentions. If the preconditions of
plans for each top-level goal are disjoint, and the preconditions for all subplans
(and actions) are established by preceding steps in the intention, then, if a set of
intentions can be executed at all in a given environment, they can be executed
by a (ni) strategy. However it has the disadvantage that the agent is unable
to respond to new goals until (at least) the intention for the current goal has
been executed. In many situations it is desirable that the agent progresses all
its intentions at approximately the same rate (i.e., achieves its top-level goals in
parallel). For example, if goals correspond to requests from users, we may wish
that no user’s request is significantly delayed compared to those of other users.
Conversely, the (as) and (am) strategies allow an agent to pursue multiple goals
at the same time, e.g., allowing an agent to respond to an urgent, short-duration
task while engaged in a long-term task. For example, round robin scheduling
attempts to ensure ‘fairness’ between intentions by executing a one step of each
intention in turn at each deliberation cycle. However these strategies can increase
the risk that actions in plans in different intentions will interfere with each other.
Such conflicts between intentions can sometimes be avoided by using atomic
constructs that prevent the interleaving of actions in a plan in one intention with
actions from plans in other intentions. However, it is difficult for the programmer
to ensure that all potential interactions between plan steps are encapsulated
within atomic constructs, and excessive use of atomic constructs may reduce the
responsiveness of the agent to an unacceptable degree.1 It is therefore important
that the agent developer has the freedom to choose the strategy that is most
appropriate to a particular problem.

1 We return to the problem of interference in Section 5.



3 Meta-APL

Meta-APL is a BDI-based agent programming language in which a programmer,
in addition to being able to write normal agent programs, can also specify the
deliberation cycle. This is achieved by adding to the language the ability to query
the agent’s plan state and actions which manipulate the plan state.

There are two key goals underlying the design of meta-APL:

– it should be possible to specify a wide range of deliberation cycles, e.g., the
deliberation cycles of current, state-of-the art agent programming languages

– it should be simple and easy to use, e.g., it should be easy to specify alter-
native deliberation strategies

The ability to express deliberation strategies (and other language features) in
a clear, transparent and modular way is a flexible tool for agent design. By ex-
pressing a deliberation strategy in meta-APL, we provide a precise, declarative
operational semantics for the strategy which does not rely on user-specified func-
tions. Even low level implementation details of a strategy, such as the order in
which rules are fired or intentions are executed, can be expressed if necessary.

In this section, we briefly introduce meta-APL [7].2 A meta-APL agent con-
sists of an agent program and the agent state which is queried and manipulated
by the program. The agent program consists of an ordered sequence of sets of
rules. The agent’s state consists of two main components: the mental state, which
is a collection of atom instances, and the plan state which consists of a collection
of plan instances and their properties. Atom instances are used to represent be-
liefs, goals, events etc. Plan instances play a role similar to relevant, applicable
plans in conventional BDI agent programming languages.

3.1 Meta-APL Syntax

The syntax of Meta-APL is built from atoms, plans, clauses, macros, object
rules, and meta-rules, and a small number of primitive operations for querying
and updating the mental state and plan state of an agent.

Atoms Atoms are built of terms. Terms are defined using the following disjoint
sets of symbols: IDs which is a non-empty totally ordered set of ids, Pred which is
a non-empty set of predicate symbols, Func which is a non-empty set of function
symbols, and Vars which is a non-empty set of variables.

2 A preliminary version of meta-APL was presented in [6]. The main differences be-
tween the verson of meta-APL presented in [6] and that presented here, are that the
belief and goal bases have been merged into a single ‘mental state’, plan instances
are automatically deleted if any of the atoms forming the justification for the plan
(see below) are deleted, and plan instances must be explicitly scheduled for execution
(in [6] a single step of the root plan in each intention was executed at each cycle).



The syntax of terms t and atoms a is given by:

t =def x | f(t1, . . . , tm)
a =def p(t1, . . . , tn)

where f ∈ Func,3 p ∈ Pred, x ∈ V ars ∪ IDs, n ≥ 0, and m ≥ 0. For example,
a domestic robot (cf. [2]) may represent a belief that its supply of beer has been
depleted as:

belief(stock(beer, 0))

To distinguish between different instances of syntactically identical atoms (e.g.,
two instances of the same event), each atom instance is associated with a unique
id ∈ IDs.

The atom instances comprising the agent’s mental state can be queried and
updated using the following primitive operations:

– atom(i, a): an instance of the atom a has id i
– add-atom(i, a): create a new instance of the atom a and bind its id to i
– delete-atom(i): delete the atom instance with id i

For brevity, queries may be expressed in terms of atoms rather than atom in-
stances where the id is not important, i.e., the query a is true if the query
atom( , a) is true.

Plans A plan is a textual representation of a sequence of actions the agent can
execute in order to change its environment or its mental state. Plans are built
of external actions, mental state tests, reified mental state actions and subgoals
composed with the sequence operator ‘;’. A plan π is defined as:

π =def ε | (ea | mt | ma | sg) ;π

where ε denotes the empty plan, ea is an external action of the form e(t1, . . . , tn),
e ∈ ActionNames and t1, . . . tn, n ≥ 0 are ground terms, mt is a mental state
test of the form ? q where q is a (primitive or defined) mental state query, ma
is a (primitive or defined) mental state action, and sg is a subgoal of the form
! g(u1, . . . , um) where g(u1, . . . , um) is an atom and u1, . . . um, m ≥ 0 are (pos-
sibly non-ground) terms. For example, the domestic robot may employ the fol-
lowing plan to scold its owner:

!at(robot, owner);
say(“You should drink no more than 3 units of alcohol per day!”)

Meta-APL distinguishes between generic plans, which are a static part of the
agent program, and plan instances — specific substitutions of generic plans gen-
erated during the execution of the program. The plan state of a meta-APL agent
may contain multiple instances of the same plan (e.g., if a plan is used to achieve

3 In addition to standard functors, we assume Prolog-style list syntax.



different subgoals). Each plan instance has a unique id , a current suffix (the part
of the instance still to be executed), one or more justifications, a substitution
and (at most) one active subgoal. A justification is an atom instance id . Infor-
mally a justification is a ‘reason’ for executing (this instance of) the plan, e.g., an
atom representing a belief or goal. In general, a plan instance may have multiple
justifications, and a justification may be the reason for adopting multiple plan
instances. The substitution θ = {x1/t1, . . . , xk/tk} specifies the current binding
of variables in the plan instance to terms. A subgoal is created by the execution
of a subgoal step ! g(u1, . . . , um), and is an instance of the atom g(u1, . . . , um)
which shares variables with the subgoal in the plan instance. Each plan instance
also has a set of execution state flags σ. σ is subset of a set of flags Flags which
includes at least intended, scheduled, stepped and failed, and may contain
additional user-defined flags, e.g., some deliberation strategies may require a
suspended execution state. The scheduled flag indicates that the plan instance
is selected to be executed at the current deliberation cycle. The stepped flag in-
dicates that the plan instance was executed at the last cycle. Finally, the failed
flag indicates that attempting to execute the plan instance failed, e.g., a mental
state test returned false, or attempting to execute an external action failed.

The plan instances comprising the plan state of an agent can be queried and
updated using the following primitive operations:

– plan(i, π): i is the id of an instance of the plan π

– plan-remainder(i, π): π is the textual representation of the (unexecuted) suffix
of the plan instance with id i

– justification(i, j): the plan instance with id i has the atom instance with id
j as a justification

– substitution(i, θ): the plan instance with id i has substitution θ

– subgoal(i, j): j is the id of the subgoal of the plan instance with id i, i.e.,
plan-remainder(i, ! g;π) and atom(j, g) such that j is the id of the instance
of g created by executing ! g in i

– state(i, σ): the plan instance with id i has execution state flags σ

– set-remainder(i, π) set the (unexecuted) suffix of the plan instance with id i
to π

– set-substitution(i, θ): set the substitution of the plan instance with id i to θ,
where θ may be an implicit substitution resulting from the unification of two
terms t(x) = t(a)

– set-state(i, σ) set the execution state flags of the plan instance with id i to σ

– delete-plan(i): delete the plan instance with id i, together with its suffix,
substitution and subgoal (if any)

– cycle(n): the current deliberation cycle is n

Clauses & Macros Additional mental state and plan state queries can be
defined using Prolog-style Horn clauses of the form:

q ← q1, . . . , qn



where q1, . . . , qn are mental or plan state queries or their negation. Negation is
interpreted as negation as failure, and we assume that the set of clauses is always
stratified, i.e., there are no cycles in predicate definitions involving negations.
Clauses are evaluated as a sequence of queries, with backtracking on failure.

Additional mental state and plan state actions can be defined using macros.
A macro is a sequence of mental state and/or plan state queries/tests and ac-
tions. Macros are evaluated left to right, and evaluation aborts if an action
or query/test fails. For example, the mental state action add-atom(a) which
does not return an instance id can be defined by the macro: add-atom(b) =
add-atom( , b). Macros can also be used to define type specific mental state ac-
tions, e.g., to add an instance of the atom b as a belief and signal a belief addition
event as in Jason [2], we can use the macro

add-belief(b) = add-atom(belief(b)), add-atom(+belief(b))

Object Rules To select appropriate plans given its mental state, an agent uses
object rules. Object rules correspond to plan selection constructs in conventional
BDI agent programming languages, e.g., plans in Jason [2], or PG rules in 3APL
[4]. The syntax of an object rule is given by:

reasons [ : context ]→ π

where reasons is a conjunction of non-negated primitive mental state queries,
context is boolean expression built of mental state queries and π is a plan. The
context may be null (in which case the “:” may be omitted), but each plan
instance must be justified by at least one reason. The reason and the context are
evaluated against the agent’s mental state and both must return true for π to
be selected. Firing an object rule gives rise to a new instance of the plan π that
forms the right hand side of the rule which is justified by the atom instances
matching the reasons. For example, the following object rule selects a plan to
brings beer the robot’s owner:

has(owner,beer) : available(beer, fridge), not drunk(owner)→
!at(robot, fridge); open(fridge); get(beer); close(fridge);
!at(robot, owner); give(beer); ?date(d); add-atom( , consumed(beer, d))

Meta-rules To update the agent’s state, specify which plan instances to adopt
as intentions and select which intentions to execute in a given cycle an agent
uses meta-rules. The syntax of a meta-rule is given by:

meta-context→ m1; . . . ;mn

where meta-context is a boolean expressions built of mental state and plan state
queries and m1, . . . ,mn is a sequence of mental state and/or plan state actions.
When a meta-rule is fired, the actions that form its right hand side are immedi-
ately executed.For example, the following meta-rule selects a ‘root’ plan for an
intention when the agent has no current intention

not intention( ), plan(i, )→ add-intention(i)



Meta-APL Programs A meta-APL program (D,R1, . . . ,Rk, A) consists of
a set of clause and macro definitions D, a sequence of rule sets R1, . . . ,Rk, and
a set of initial atom instances A. Each rule set Ri is a set of object rules or
a set of meta-rules that forms a component of the agent’s deliberation cycle.
For example, rule sets can be used to update the agent’s mental and plan state,
propose plans or create and execute intentions.

3.2 Meta-APL Core Deliberation Cycle

The meta-APL core deliberation cycle consists of three main phases. In the first
phase, a user-defined sense function updates the agent’s mental state with atom
instances resulting from perception of the agent’s environment, messages from
other agents etc. In the second phase, the rule sets comprising the agent’s pro-
gram are processed in sequence. The rules in each rule set are run to quiescence
to update the agent’s mental and plan state. Each rule is fired once for each
matching set of atom and/or plan instances. Changes in the mental and plan
state resulting from rule firing directly update the internal (implementation-
level) representations maintained by the deliberation cycle, which may allow
additional rules to match in the same or subsequent rule sets. Finally, in the
third phase, the next step of all scheduled object-level plans is executed. The
deliberation cycle then repeats. Cycles are numbered starting from 0 (initial
cycle), and the cycle number is incremented at each new cycle.

In the remainder of this section, we briefly summarise how the key steps in the
execution of meta-APL are reflected in the agent state — full details are given
in [5]. The firing of an object-level rule creates a new plan instance, together
with a justification associating the atom instances matching each mental state
query in the reasons of the object-level rule with the plan instance. The initial
substitution of the plan instance is the result of evaluating the mental state
queries in the reason and context of the corresponding object-level rule with the
mental state of the agent. The execution of a plan instance updates the agent’s
mental and plan state. The execution of a mental state query may update the
substitution of the plan instance. The execution of a mental state action may add
or remove an atom instance from the agent’s state. Deleting an atom instance
with id i also deletes all atom instances that have i as argument. In addition,
if any of the justifications of a plan instance are deleted, the plan instance,
together with any subgoal of the plan instance are also deleted (recursively).
The evaluation of a subgoal creates a new instance of the goal atom (with the
substitution of the plan instance applied to any variables in the goal), together
with a subgoal relation associating the plan instance and the new instance of the
goal atom. Executing an action in a plan instance also updates the plan-remainder
of the instance. The firing of a meta-rule immediately executes the meta-actions
on the RHS of the rule. The meta actions may add or delete atom instances, set
the state or substitution of a plan instance, or delete it.



4 Encoding Deliberation Strategies

In this section, we show how to encode the deliberation strategies given in Section
2 in meta-APL. We assume that we are given a user program expressed as a set
of meta-APL object rules R2, and we show how to execute this program under
the three different strategies. The encoding of each strategy takes the form of a
meta-APL program (D,R1,R2,R3, A), where D and R1 are a set of clause and
macro definitions and a set of meta-rules common to all deliberation strategies,
R2 is the user program, and R3 is the encoding of the deliberation strategy
itself.

We first define D and R1. D contains the following clause-definable plan
state queries:

– intention(i): the plan instance with id i is intended

intention(i) ← state(i, σ), member(intended, σ)

– intended-plan(j, i): the plan instance with id i is the intended means for the
reason (e.g., belief or goal event) with id j

intended-plan(j, i) ← justification(i, j), intention(i)

– executable-intention(i): the intention with id i has no subgoal (hence no
subintention)

executable-intention(i) ← intention(i), not subgoal(i, )

– scheduled(i): a step of the plan instance with id i will be executed at the
current deliberation cycle

scheduled(i) ← state(i, σ), member(scheduled, σ)

and the macro-definable plan state actions:

– add-intention(i): add the intended flag to the plan instance with id i

add-intention(i) = state(i, σ), set-state(i, σ ∪ {intended})

– schedule(i): add the scheduled flag to the plan instance with id i

schedule(i) = state(i, σ), set-state(i, σ ∪ {scheduled})

R1 contains meta-rules to remove non-intended plan instances from the pre-
vious cycle and to remove completed intentions:

R1 = plan(i, ), not intended(i)→ delete-plan(i)

executable-intention(i), plan-remainder(i, ε), justification(i, j),

not subgoal( , j)→ delete-atom(j)

executable-intention(i), plan-remainder(i, ε), justification(i, j),

subgoal(k, j), substitution(k, s), substitution(i, s′)

→ set-substitution(k, s ∪ s′), delete-atom(j)



The first rule removes non-intended plan instances generated at the previous
cycle. The second rule removes the ‘root’ plan of a completed intention and
its associated triggering event (reason). The plan must have finished execution
(have an empty remainder), and be executable, i.e., have no pending subgoal.
(In the case that the plan body is empty but has an active child plans, the plan
instance should not be removed because any child plans would also be removed.)
The third rule removes a completed ‘leaf’ plan of an intention. The substitution
of the parent plan instance is extended with the substitution of the completed
plan instance, and the subgoal justifying the completed plan instance is deleted.

We can now define the deliberation strategies.

4.1 Non-interleaved (ni)

In the non-interleaved strategy (ni), the agent executes a single intention at a
time. It can be encoded as the following set of meta-rules:4

R3 = not intention( ), plan(i, )→ add-intention(i)

subgoal( , j), not intended-plan(j, ), justification(i, j)

→ add-intention(i)

executable-intention(i)→ schedule(i)

The first rule selects a ‘root’ plan for an intention when the agent has no current
intention. The plan is selected non-deterministically from the plan instances that
are generated by the execution of the program’s object-level rules. The second
rule extends an intention by adding a new ‘leaf’ plan for a subgoal for which
there is currently no intended plan. The third rule re-enables the (leaf) intention
for execution at the current cycle. Together, these rules ensure that the agent
progresses a single intention to completion, even though the meta-APL core
deliberation cycle generates all relevant applicable plan instances at each cycle.

4.2 Alternating (Single Action) (as)

In the (as) strategy, a plan instance from the set of plan instances generated
by the object-level rules is intended, and a single intention is scheduled for
execution. For the (as) strategy defined in [1], in which the intention to be
executed is chosen non-deterministically from the set of intentions, two meta-
rules suffice for implementation.

R3 = cycle(c), not(selected-plan( , c), intended-plan(j, )), justification(i, j)

→ add-intention(i), add-atom( , selected-plan(i, c))

not scheduled( ), executable-intention(i)→ schedule(i)

4 Encodings of variants of the (ni) and round robin strategies are given in [5].



The first rule selects a plan instance for a reason (e.g., (sub)goal) j for which
there is no current intention, and adds the plan instance as an intention. To
ensure that at most one plan instance is intended at each deliberation cy-
cle, we also record the fact that a plan has been selected at this cycle by
adding a selected-plan atom to the agent’s mental state. The second rule non-
deterministically selects an executable intention and schedules it.

For a round robin (RR) strategy, the implementation is slightly more in-
volved. To ensure fairness, we must keep track of which intention has been least
recently executed. There are several ways in which this could be done. We adopt
the the most straightforward approach, which is to explicitly record the cycle at
which each intention was last executed in the agent’s mental state. We extend
D with the clause and macro definitions

– least-recently-executed(i): the intention with id i is least recently executed

least-recently-executed(i) ← intention(i), intention(i′), not i = i′,

last-executed(i, c), last-executed(i′, c′), not c′ < c

– executed(i, c): record that the intention with id i was executed at cycle c

executed(i, c) = atom(j, last-executed(i, )), delete-atom(j),

add-atom( , last-executed(i, c))

The round robin strategy can then be encoded as:

R3 = cycle(c), not(selected-plan( , c), intended-plan(j, )), justification(i, j)

→ add-intention(i), add-atom(selected-plan(i, c))

not scheduled( ), least-recently-executed(i), cycle(c)

→ schedule(i), executed(i, c)

The first rule non-deterministically selects a plan for a reason for which there is
no current intention, and is the same as in the simple (as) strategy above. The
second rule schedules the least recently executed intention, and records the fact
that it was last executed at the current deliberation cycle.

4.3 Alternating (Multi-action) (am)

In the alternating multiple (am) strategy, a plan instance from the set of plan
instances generated by the object-level rules is intended, and a single step of all
current intentions are executed at each cycle. This strategy can be encoded as:

R3 = cycle(c), not(selected-plan( , c), intended-plan(j, )), justification(i, j)

→ add-intention(i), add-atom(selected-plan(i, c))

executable-intention(i), not scheduled(i)→ schedule(i)

The first rule non-deterministically selects a plan for a reason for which there
is no current intention and is the same as in the (as) strategy. The second rule
simply schedules all executable intentions.



5 An Adaptive Deliberation Strategy

It is straightforward to encode variations of the ‘standard’ deliberation strategies
considered in the previous section in meta-APL. For example, it is possible to
encode strategies that take preferences regarding plans into account as in [14].

However, in this section we illustrate the flexibility of meta-APL by present-
ing a novel adaptive deliberation strategy that combines features of both the
(ni) and (as) (or (am)) strategies. As noted in Section 2 the (ni) strategy has
the advantage that it minimises conflicts between intentions. However it has the
disadvantage that the agent is unable to respond to new goals until (at least) the
intention for the current goal has been executed. Conversely, the (as) and (am))
strategy allows an agent to pursue multiple goals at the same time. However it
can increase the risk that actions in plans in different intentions will interfere
with each other. In this section we define an adaptive strategy that interleaves
steps in intentions where this does not result in conflicts between intentions. If
conflicts are inevitable, it defers execution of one or more intentions in an at-
tempt to avoid the conflict. As such it avoids the need for the programmer to
insert atomic constructs that prevent the interleaving of actions in a plan in one
intention with actions from plans in other intentions.5

The adaptive strategy checks for conflicts between the postconditions of the
next action in each of the agent’s current intentions. If the postconditions con-
flict, e.g., if the next action in one intention would cause the agent to move to
the left while the next action in another intention would cause it move to the
right, execution of one of the intentions is deferred. At each deliberation cycle,
the strategy:

– computes the effects of the first action in the remainder of each intention
– checks the effects to identify conflicts
– if there are conflicts, defers the execution of one or more intentions

We will now explain how to encode this strategy in meta-APL, starting with
techniques for computing the effects of each type of plan element. Mental state
tests have no effects on the mental state or environment, and therefore cannot
cause a conflict of the kind described above. Similarly subgoals can’t give rise to
conflicts. Mental state actions are considered to conflict if they add and delete the
same atom. (For simplicity, we consider only addition and deletion here. It would
be straightforward to extend the check to simple forms of logical inconsistency.)
The effects of mental state actions can be determined by inspection of the code
and so require no additional information from the programmer. External actions
are considered to conflict if they result in incompatible states of the environment,
e.g., the fridge being open and it being closed. As this information can’t be
inferred from the program text, it must be provided by the programmer.

5 As with the use of atomic constructs, the approach we present here does not guar-
antee that a set of intentions can be executed successfully, e.g., where one intention
destroys a precondition required for the execution of another intention and which
can’t be regenerated.



There are several ways in which this could be done. For simplicity, we assume
that each external action has a single postcondition, i.e., actions are determinis-
tic. (This could be extended to, for example, make the postcondition dependent
on the agent’s current beliefs.) We further assume that the programmer speci-
fies the effect of each external action as an ‘effect’ unit clause, and provides a
definition for a predicate ‘conflict’ that returns true if two postconditions de-
note incompatible states of the environment. In the example below, ‘conflict’ is
defined using a set of unit clauses, but again more complex approaches are pos-
sible. Lastly, we assume that any macros appearing in plans in the user program
are inlined at the call site recursively when the plan suffix is returned by the
plan-remainder primitive.

An adaptive deliberation strategy can be encoded as follows. We extend D
with the clause definitions

– conflicting(i, i′): the next step in intentions with id i, i′ have incompatible
effects

conflicting(i, i′) ← intention(i), intention(i′), not i = i′,

plan-remainder(i, s ; . . .), plan-remainder(i′, s′ ; . . .),

conflicts(s, s′)

– conflicts(s, s′): the plan steps s and s′ have incompatible effects

conflicts(s, s′) ← effect(s, e), effect(s, e′), conflict(e, e′)

conflicts(s, s′) ← effect(s, e), effect(s, e′), conflict(e′, e)

We assume that the definitions of the predicates ‘effect’ and ‘conflict’ for external
actions are given in the ruleset R2 containing the user program. The adaptive
deliberation strategy itself is encoded as

R3 = executable-intention(i), not (scheduled(i), conflicting(i, ))

→ schedule(i)

executable-intention(i), not scheduled(i), conflicting(i, i′), not i′ < i

→ schedule(i)

The first rule schedules all intentions that do not conflict with any other in-
tention. The second rule schedules a single intention from a set of conflicting
intentions (chosen arbitrarily to be the one with lowest id). By permitting the
execution of one conflicting intention per cycle, we avoid deadlock.

The approach above essentially implements single step lookahead. However
in many cases, an external action in a plan establishes a precondition for a later
step in the same plan (these are called p-effects in [13]). For example, the action
of going to a particular location such as the fridge may establish the precondition
for a later action which must be performed at that location such as opening the
fridge. We can extend the adaptive strategy to avoid this kind of conflict by



taking the preconditions of actions into account when evaluating conflicts. We
briefly sketch one way in which this can be done below.

The only changes required are to modify the definitions of the predicate
‘conflicting’ to consider plan suffices rather than the next steps of intentions,
and of the predicate ‘conflicts’ to consider both pre- and postconditions. (For
simplicity, we assume that each external action has a single precondition.)

conflicting(i, i′) ← intention(i), intention(i′), not i = i′,

plan-remainder(i, π), plan-remainder(i′, π′),

conflicts(π, π′)

conflicts(π, π′) ← effects(π, es), conditions(π′, cs),

member(e, es), member(c, cs), conflict(e, c)

conflicts(π, π′) ← effects(π′, es), conditions(π, cs),

member(e, es), member(c, cs), conflict(e, c)

The predicates ‘effects’ and ‘conditions’ return the set of postconditions and the
set of pre- and postconditions of a plan suffix π respectively, and are omitted
due to lack of space.

6 Related Work

The Procedural Reasoning System (PRS) [9] had a meta-level, namely the abil-
ity to program deliberation about the choice of plans in the language itself.
Since PRS, there have been several attempts to make the deliberation cycle of
agent programming languages programmable. For example, 3APL enables the
programmer to modify 3APL interpreter deliberation cycle [4]. It provides a col-
lection of Java classes for each mental attitude, where each class has a collection
of methods representing operations for manipulating this attitude. In order to
implement a particular deliberation cycle, the programmer should essentially
modify the interpreter to call the methods of those Java classes in a particular
order. This idea of extending 3APL with a set of programming constructs which
allowed the deliberation cycle to be programmed was proposed in an earlier pa-
per [3], where the authors explicitly consider the option of adding meta-actions
to 3APL as basic actions, and programming the interpreter in 3APL itself. How-
ever they argued against this approach on the grounds that it would give “too
much” expressive power to the programmer and would make the meta-level hard
to program. They opted instead for providing a simple separate language for pro-
gramming deliberation cycle which uses a small set of primitives. The language
is imperative and extends that proposed in [10], mainly by adding a primitive to
call a planner and generate a new plan. Plans can be compared on the grounds of
cost with the gain from achieving the goal, and a plan which has a cost less than
gain selected. We share the motivation for providing an ability for the program-
mer in an agent programming language to change the deliberation cycle on a
program-by-program basis, but believe that it is more natural and elegant to do
this in the same language, rather than joining together two different languages.



In [7] Doan et al show how Jason and 3APL programs (and their associ-
ated deliberation strategies) can be translated into meta-APL to give equivalent
behaviour under weak bisimulation equivalence.

There has also been a considerable amount of work on avoiding conflicts
between intentions in agent programming languages, e.g., [13,15,16]. While such
approaches can avoid more conflicts than the approach we present here, this work
focus on developing a single deliberation strategy that is ‘hardwired’ into the the
deliberation cycle of an agent programming language, and which cannot be easily
adapted by an agent developer to meet the needs of a particular application.

7 Conclusion

In this paper, we showed how procedural reflection in the agent programming
language meta-APL [7] can be used to allow a straightforward implementation
of the deliberation strategy of a BDI agent. To illustrate the flexibility of meta-
APL, we showed how three typical BDI deliberation strategies from [1] can be
programmed using meta-APL rules. We also showed how meta-APL can used to
program a novel adaptive deliberation strategy combines features of both a non-
interleaved and an alternating strategy to avoid interference between intentions.

By exploiting procedural reflection an agent programmer can customise the
deliberation cycle to control when to deliberate (as in the non-interleaved strat-
egy), which relevant applicable plan(s) to intend, and which intention(s) to exe-
cute. We argue this brings the advantages of the BDI approach to the problem
of selecting an appropriate deliberation strategy given the agent’s current state,
and moreover, facilitates a modular, incremental approach to the development
of deliberation strategies. In future work, we plan to explore more sophisticated
approaches to the selection of plan instances as in, e.g., [14], and intention re-
consideration.
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