
Run-Time Norm Compliance in BDI Agents

(Extended Abstract)
JeeHang Lee, Julian Padget
Department of Computer Science

University of Bath
Bath, BA2 7AY, UK

{j.lee, j.a.padget}@bath.ac.uk

Brian Logan, Daniela Dybalova, Natasha
Alechina

School of Computer Science
University of Nottingham

Nottingham, NG8 1BB, UK
{bsl, dxd, nza}@cs.nott.ac.uk

ABSTRACT
Normative systems offer a means to govern agent behaviour in dy-
namic open environments. Under the governance, individual agents
themselves must reason about compliance with state- or event-based
norms (or both) depending upon the formalism used. This paper de-
scribes how norm awareness enables a BDI agent to exhibit norm
compliant behaviour at run-time taking into account normative fac-
tors. To this end, we propose N-Jason, a run-time norm compliant
BDI agent framework which supports norm-aware deliberation as
well as a run-time norm execution mechanism, through which pre-
viously unknown norms are recognized and bring about the trigger-
ing of plans. To be able to process a norm such as an obligation, the
agent architecture must be able to deal with deadlines and priorities,
and choose between plans triggered by a particular norm. Con-
sequently, we extend the syntax and the scheduling algorithm of
AgentSpeak(RT) to operate in the context of Jason/AgentSpeak(L)
and provide ‘real-time agency’.

Categories and Subject Descriptors
I.2.5 [Artificial Intelligence]: Programming Languages and Soft-
ware

General Terms
Algorithms, Design, Language

Keywords
Norms, BDI, Agent Programming Language, Normative System

1. N-JASON: BDI AGENT FRAMEWORK
We propose N-Jason, a BDI-based agent interpreter and a pro-

gramming language for run-time norm compliance in agent be-
haviour. This extends Jason/AgentSpeak(L) [2] in accordance with
the ‘real-time agency’ of AgentSpeak(RT) [3], which supports nor-
mative concepts (i.e. obligations, permissions, prohibitions, dead-
lines, priorities and durations) enabling norm-aware deliberation.
Consequently, run-time norm compliance is achieved in a single
reasoning cycle by the interpreter through: (i) run-time norm exe-
cution, realised by event- and option- reconsideration at a percep-
tion stage (in a belief-update process more exactly), and (ii) norm-

Appears in: Proceedings of the 13th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2014),
Lomuscio, Scerri, Bazzan, Huhns (eds.), May, 5–9, 2014, Paris,
France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

aware deliberation, accomplished by intention scheduling with dead-
lines and priorities in a practical reasoning process. Scheduled in-
tentions are executed afterwards by the N-Jason agent.

1.1 N-Jason Language Extensions
N-Jason agent consists of four main components: beliefs, goals,

events and a set of plans. Beliefs and goals are identical to those in
Jason (details can be found in [2]), while event and plan syntax is
extended with deadline, priority and duration, in order to support
normative concepts. A deadline is a real time value expressed in a
some adequate unit or real world time. A priority is a positive inte-
ger value indicating a relative importance between achieving a goal
and responding to belief changes. Both can be stipulated option-
ally in the annotation of events, such as +!event[deadline(d), pri-
ority(p)]. A duration is a non-negative integer value representing a
required time to execute the plan. This also can be optionally spec-
ified in the annotation of a plan label, such as @plan[duration(te)]
+!event <- plan_body..

1.2 Run-Time Norm Execution
Our approach to run-time norm execution is to use the “pre-

existing capabilities” in an agent program when an agent encoun-
ters a previously unknown (event-based) norm. This is carried out
in two steps: (i) event reconsideration and (ii) option reconsidera-
tion. These reconsiderations are determined by the executability of
the new and unknown norms. We say that a norm such as obl(evt,
deadline, violation), is executable at run-time iff:

1. p ∈ P and type(p) = (obligation | prohibition), where
p is a percept, formed from a list of terms in a set of newly
observed percepts P at run-time;

2. tep /∈ E, where tep is a triggering event generated from
the percept p, and E is an event base, a set of intentions
{(te, τ), (te′, τ ′), . . .}, of which event is a pair of a trigger-
ing event and an intention (te, τ);

3. edp(p) 6= ∅ and {teedp(p)} ∩ E 6= φ, where edp(p) is a
function extracting the obliged event together with its dead-
line and priority from p and teedp(p) is a triggering event of
the edp(p), an event term in the norm, and

4. Rteedp(p) 6= φ, where Rteedp(p) is a relevant plans selection
function.

Event Reconsideration aims to verify that a norm perceived at
run-time is executable although no corresponding plan exists in the
agent program. If an event extracted from a detached norm has a
relevance to a certain set of plans, it thus has potential to trigger
specific ones, and it is concluded that the norm is executable. In
consequence, the interpreter adds the norm to the event base (E)
as an achievement goal addition event. The procedure for event



Algorithm 1 Event Reconsideration
Require: P :=P ∪N
Require: tep = create-tevent(p)
1: if p ∈ P and type(p) = obligation then
2: teedp(p) = create-tevent(edp(p))
3: Rteedp(p) := {πθ | θ is a mgu for teedp(p) and plan π}
4: if Rteedp(p) 6= φ then
5: E :=add-event(E, tep)
6: end if
7: else if p ∈ P and type(p) = prohibition then
8: Ξ :=add-prohibition(Ξ, edp(p))
9: end if

reconsideration is as follows (see Alg. 1): (1) to extract the terms
representing an obliged event, a deadline and its priority1 from the
obligation using the function edp (line 2), (2) to construct a new
triggering event, an achievement goal addition event in this case,
from the combination of extracted terms (line 2), (3) to query the
existence of a set of relevant plans to SR with such a constructed
triggering event (line 3) and (4) to add the triggering event to E,
if relevant plans are retrieved (line 5). (5) if norm is a prohibi-
tion, then the extracted event is added into the prohibition base (Ξ)
(line 7-8) and will be revisited at the norm deliberation stage.

Algorithm 2 Option Reconsideration
Require: 〈tep, τ〉 ∈ E where tep is an event and τ is an intention
Ensure: πθθ′ where θ′ is a context unifier for teedp(p) and plan π
1: if type(p) = obligation then
2: teedp(p) = create-tevent(edp(p))
3: Rteedp(p) := {πθ | θ is a mgu for teedp(p) and plan π}
4: if Rteedp(p) 6= φ then
5: πθθ′ := So(teedp(p)) where θ′ is a context unifier for

teedp(p) and plan π
6: end if
7: end if

Option-Reconsideration aims to determine an applicable plan
corresponding to the new and unknown norm (whose executabil-
ity is already verified) and is thus added into E as an achievement
goal addition event. If the applicable plan is chosen, then it will
probably be used to enact a norm-compliant behaviour, unless it is
infeasible as judged by norm-aware deliberation. The procedure is
shown in Alg. 2. At the beginning (line 1-3), the interpreter carries
out exactly the same steps (1–3) as the event-reconsideration pro-
cedure. After that, the interpreter selects a single applicable plan as
an intended means to which to commit (line 5).

1.3 Norm-Aware Deliberation
Norm awareness in the deliberation process is achieved by the

scheduling of intentions with deadlines and priorities. We extend
the algorithm proposed in [3] with the consideration of prohibitions
in order to establish a conflict-free preference maximal set of inten-
tions. The code is shown in Alg. 3. A set of candidate intentions
IC = {τ, τ ′, . . . }, which is sorted in descending order of a pri-
ority, is inserted into the scheduling process. If each intention is
feasible, i.e. an intention can be executed before the deadline and
is not prohibited by a set of prohibition Ξ = {ξ, ξ′, . . . }, then the
intention is added to the preference maximal set (Γ). Intentions that
1In principle, the last term is an event arising when a violation oc-
curs. This value normally indicates the criticality of the violation.
Higher values represents a higher priority.

Algorithm 3 Scheduling of Intentions
1: Γ := ∅
2: for all τ ∈ I in descending order of priority do
3: if {τ} ∪ Γ is feasible then
4: if (τ /∈ Ξ) or (τ ∈ Ξ and τ = ξ and priority(τ) >

priority(ξ)) then
5: Γ := {τ [p]} ∪ Γ
6: end if
7: end if
8: end for
9: sort Γ in order of increasing deadline

10: return Γ

cannot meet their deadline are dropped. The criteria are defined as
follows:

1. An intention is feasible iff the execution of the intention is
completed before its deadline, that is, for τ ,

ne(τ) + et(τ)− ex(τ) ≤ dl(τ)

where τ denotes an intention, ne(τ) is the time at which τ
will next execute, et(τ) is the time required to execute τ ,
denoted in the plan label, ex(τ) is the elapsed time to execute
τ to this point, and dl(τ) is the deadline for τ specified in the
plan [1].

2. The intention should not be prohibited, that is, for τ
• τ /∈ Ξ or
• τ ∈ Ξ, then ∃ξ ∈ Ξ, τ = ξ and priority(τ) >
priority(ξ)

where τ is an intention, ξ is a prohibited event in the prohi-
bition base Ξ and priority is a priority retrieval function.

2. CONCLUSION AND FUTURE WORK
We believe that a model for run-time norm compliance is bene-

ficial for the enhancement of both norm compliance capability and
agent autonomy from the agent’s perspective, even though the be-
haviour generated by run-time norm execution may appear unex-
pected from the agent programmer’s perspective. Although we only
consider the execution of event-based norms at run-time, the exten-
sion to support state-based norms and its normative systems can
easily be incorporated into N-Jason agents and will form part of
future work. We also plan to detect violations which are generated
in the norm aware deliberation, particularly when the normative
goals are dropped during the scheduling. This offers a potentially
useful link for enforcement in the context of normative system im-
plementation.

3. REFERENCES
[1] N. Alechina, M. Dastani, and B. Logan. Programming

norm-aware agents. In Proceedings of the 11th International
Conference on Autonomous Agents and Multiagent Systems,
pages 1057–1064, Richland, SC, 2012.

[2] R. Bordini, M. Wooldridge, and J. Hübner. Programming
Multi-Agent Systems in AgentSpeak using Jason (Wiley Series
in Agent Technology). John Wiley & Sons, 2007.

[3] K. Vikhorev, N. Alechina, and B. Logan. Agent programming
with priorities and deadlines. In The 10th International
Conference on Autonomous Agents and Multiagent Systems,
pages 397–404, Richland, SC, 2011.


