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ABSTRACT In this paper we describe an adaptive, optimistic synchronisation mechanism for the parallel discrete event
simulation of agent-based systems. The mechanism uses the Sphere of Influence (SoI) of an event (the region of the shared
simulation state read or written to by the event) to define an adaptive metric which can be used with a throttling mechanism
such as moving time windows. We show how such a metric can be calculated by monitoring the common reads and writes
made by the agents to the shared simulation state modelling the agent’s environment, and present the results of our preliminary
investigations into the relationships between agent read and write patterns and rollback frequency.

Keywords : Distributed Simulation, Agent-based Systems,
Synchronisation.

1. INTRODUCTION
An agent can be viewed as a self-contained, concurrently
executing thread of control that encapsulates some state and
communicates with its environment (in which the agent is
embedded) and possibly other agents via some sort of mes-
sage passing. The environment of an agent is that part of
the world or computational system ‘inhabited’ by the agent.
The environment may contain other agents whose environ-
ments are disjoint with or only partially overlap with the
environment of a given agent. Agent-based systems of-
fer advantages when independently developed components
must inter-operate in a heterogeneous environment and are
increasingly being applied in a wide range of areas including
telecommunications, business process modelling, computer
games, control of mobile robots and military simulations.

While agent-based systems offer great promise, their adop-
tion has been hampered by the limitations of current develop-
ment tools and methodologies. Multi-agent systems are often
extremely complex and it can be difficult to formally verify
their properties. As a result, design and implementation
remains largely experimental, and experimental approaches
are likely to remain important for the foreseeable future. In
this context, simulation has a key role to play in the devel-
opment of agent-based systems, allowing the agent designer
to learn more about the behaviour of a system or to investi-
gate the implications of alternative agent architectures, and
the agent researcher to probe the relationships between agent
architectures, environments and behaviour.

In [Logan and Theodoropoulos, 2001] a parallel discrete
event simulation framework for multi-agent systems is pre-
sented. Identifying the efficient distribution of the agents’
environment (namely, the shared state) as a key problem in
the simulation of agent-based systems, the framework mod-
els agents as Logical Processes and the environment as a
tree-shaped network of processes (referred to as Commu-
nication Logical Processes or CLPs) which is dynamically

reconfigured to reflect the changing interaction patterns be-
tween the agents and their environment in the simulation.

The central concept of the framework is the notion of the
Sphere of Influence (SoI). The SoI of an event is defined as
the set of state variables read or written as a consequence
of the event and depends on the type of event (e.g., sensor
events or motion events), the state of the agent or environ-
ment logical process which generated the event and the state
of the environment. The SoI of an event is limited to the
immediate consequences of the event rather than its ultimate
effects, which depend both on the current configuration of the
environment and the (autonomous) actions of other agents in
response to the event. The SoI of an agent process pi over the
time interval [t1, t2], s(pi), is then defined as the union of the
spheres of influence of the events generated by the process
over the interval. In [Logan and Theodoropoulos, 2001], the
SoI of the LPs are used to derive an idealised decomposition
of the shared state into CLPs to facilitate dynamic load bal-
ancing and interest management. In this paper, we discuss
how the SoI can be exploited in the design of an adaptive
synchronisation mechanism.

The rest of the paper is organised as follows: In sections 2
and 3 we give a brief introduction to simulation and synchro-
nisation and discuss the role of the shared state in an agent
simulation. In section 4 we describe our adaptive synchroni-
sation mechanism and present a metric based on Spheres of
Influence. Although the metric could be used with any opti-
mism limiting mechanism, for clarity and ease of explanation
we assume a window based scheme where a smaller window
implies lower optimism (e.g., moving time windows [Sokol
and Stucky, 1990]). In section 5 we present our experimental
results. The paper concludes with section 6 where we touch
on possible future work.

2. SYNCHRONISATION
Every simulation model specifies the physical (real) system
in terms of events and states. Executing a simulation there-
fore consists of ‘processing’ events, which correspond to real
events in the physical system. Simulations can be classified



into two groups depending on the way events are processed
and state updates occur: continuous and discrete. In a contin-
uous simulation, state changes occur continuously, whereas
in a discrete simulation events occur at fixed points in time
and execute instantaneously. In an event driven simulation
state variables are updated only when something interesting
occurs, i.e., an event. Each event occurs at a particular in-
stant in simulation time and the event has this time associated
with it, this is known as the time-stamp of the event. A single
processor (sequential) discrete event simulation consists of
the following,

• State Variables – collectively describe the state of the
system

• Event list – list of events to be processed

• Global clock – denotes the simulation time

If the discrete event simulation is split into multiple Logi-
cal Processes (LPs) and spread across multiple machines it
becomes a Parallel Discrete Event Simulation (PDES).

A sequential discrete event simulation can easily ensure that
events are processed in time stamp order as it processes the
event with the smallest time stamp in the event list. Spread-
ing the simulation over multiple processes (PDES) requires
multiple event lists, one for each LP. A consequence of this
is that ensuring the events are processed in time stamp order
is less straightforward. In asynchronous, event-driven dis-
tributed simulation, each LP maintains its own local clock
with the current value of the simulated time, Local Virtual
Time (LVT). This value represents the process’s local view
of the global simulated time and denotes how far in simulated
time the corresponding process has progressed. With each
LP processing its event list independently and advancing its
LVT at its own rate, it may be the case that events are pro-
cessed out of time stamp order. Therefore a mechanism is
required to ensure the parallel simulation faithfully imple-
ments the causal dependencies and partial ordering of events
dictated by the causality principle in the modelled system.

It has been shown [Lamport, 1978] that a distributed system
consisting of asynchronous concurrent processes will not
violate the causality principle if each process consumes and
processes event messages in non-decreasing timestamp order
(the local causality constraint (LCC)). There are two main
approaches to ensuring that the local causality constraint
is not violated: conservative and optimistic. Conservative
mechanisms strictly avoid violation of the LCC while op-
timistic mechanisms provide a means to undo computation
which causes a violation. In more recent years hybrid mech-
anisms which take aspects of both have been developed, i.e.,
optimistic schemes with constrained optimism such as mov-
ing time window [Sokol and Stucky, 1990]. Other optimistic
schemes have been developed so that the degree of opti-
mism (how constrained they are) can be decided at run time.
These are known as adaptive synchronisation mechanisms
(e.g. [Ferscha, 1995]).

3. SHARED STATE AND SPHERES OF IN-
FLUENCE

Consider an agent simulation with two agents, A1 and A2.
The shared state of the their environment can be modelled
as a table (see Table 1). The table shows the read and write

patterns for each variable. We use the term access to indicate
either a read or a write.

Variable Access patterns
x1 (A2, R, t = 1), (A2, R, t = 3), (A1, W, t = 2)
x2 (A1, R, t = 2), . . .
.
.
.

xn . . .

Table 1: A global view of the shared state

Table 1 depicts the access patterns for two variables in the
shared state. Each access is represented by a triple: An

represents the agent performing the access, R/W represents
whether the access was a read or write and t represents the
virtual time at which the access occurred. The left to right
ordering indicates when the access arrived in real time. So
the access (A2, R, t = 1) arrived before (A2, R, t = 3) for
variable x1.

The table also depicts a rollback pattern occurring on variable
x1. A rollback pair consists of a read R made by LPi with
time stamp TR and a write W made by LPj with time stamp
TW (j �= i). We say a rollback pair is a rollback pattern on
variable x if TW < TR. A rollback pattern results in an actual
rollback when the write W is realised after the read R in real
time. For variable x1 in Table 1 this occurs when A1 performs
the write at t=2. The read performed by A2 with virtual time
stamp t=3 arrived, in real time, before the write performed
by A1. This means the read performed by A2 won’t reflect
the correct value and so A2 needs to rollback to before the
read occurred. In terms of synchronisation a key observation
is that the probability of rollback is increased when many
different LPs read and write the same variables. We now
extend and clarify the definition of SoI from [Logan and
Theodoropoulos, 2001] by splitting the SoI into two distinct
sets:

1. The sphere of influence of Writes (SoIW ), which con-
tains the set of variables written to by the LP over the
time period [t1, t2].

2. The sphere of influence of Reads (SoIR), which con-
tains the set of variables read by the LP over the time
period [t1, t2].

Considering the example given above we can now say:

1. Any variable which appears only in SoIW for all LPs
(agents) over [t1, t2] (i.e., no agent reads the variable)
is not important in terms of rollback;

2. Any variable which appears only in SoIR for all LPs
(agents) over [t1, t2] (i.e., no agent writes the variable)
is not important in terms of rollback either; and

3. A variable which is present in the SoIR of one LP
(agent) and in SoIW of another may cause a rollback.

A rollback will occur if the variable is in both sets and a late
write arrives from one LP after a read was made by another
LP (as described in the example above). The third point



above requires that a minimum of two LPs be involved; in-
tuitively as the number of LPs involved increases so does the
likelihood of rollback. We can therefore predict the likeli-
hood of rollback using the access patterns of any particular
variable.

Many Writes Few Writes
Many Reads High Medium
Few Reads Medium Low

Table 2: How probability of rollback due to a particular vari-
able is affected by reads and writes

1. A variable which is in both SoIR and SoIW for many
different LPs (agents) – High probability of rollback

2. A variable which is in the SoIR of a single LP (agent)
and in many LPs SoIW – Medium probability of roll-
back

3. A variable which is in the SoIW of a single LP (agent)
and in many LPs SoIR – Medium probability of roll-
back

4. A variable which only appears in the SoIR of one LP
and in the SoIW of another – Low probability of roll-
back

4. AN ADAPTIVE MECHANISM
Table 2 uses the notion of SoI to give an indication of how
likely rollback is due to different access patterns of a par-
ticular variable. This suggests a simple scheme where the
optimism of an LP should reflect the access patterns of the
variables in its SoI, the more common variables, the less op-
timistic. Figure 1 illustrates this idea. There are four agents
(LPs) represented by small squares. The circles surrounding
each of the agents are an abstraction of their spheres of in-
fluence which are defined in table 3 1. Circles overlapping
indicates that the two agents read and write some common
variables. With the assumption that each agent reads or writes
a variable within its sphere of influence with equal probabil-
ity over the time interval [t1, t2], a larger overlap indicates
that the two agents access more common variables.

Agent Sphere of Influence
A1 x1, x2, x3, x4, x8

A2 x1, x5, x6, x8

A3 x2, x3, x4, x5, x6, x7, x8

A4 x7

Table 3: Agents sphere of influence.

Agent A4 reads and writes the smallest number of com-
mon variables (smallest intersection) and under the suggested
scheme would be given the largest time window and hence
would execute with the highest degree of optimism. Agent
A3, however, reads and writes the largest number of com-
mon variables (it’s circle intersects with the other three) and
would be given the smallest time window. Hence agent A3
would execute with the least degree of optimism (most con-
servative). If we assume a balanced load (or at least not a
1For this example we make the valid simplifying assumption that
SoIR=SoIW

A3

A2

A1

A4

7x
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Figure 1: Four agents and the intersection of their spheres of
influence

highly imbalanced load) then A4 will execute a faster rate
than A3. As a result, the difference in LVT between A3 and
A4 will increase with time as shown in Figure 2 (here A3
and A4 have a time window of 5 and 20 respectively) .

t=40 t=60

A4

A3
t=15t=10t=5

t=20

time

Figure 2: Progression of LVT with time windows

A4 and A3 read and write some common variables (x7), so
the fact that they execute with different degrees of optimism
increases the chance of rollback, e.g., A4 would have to roll-
back if it reads x7 at virtual time t=40 and A3 subsequently
(in real time) writes x7 at virtual time t=15. Clearly it is not
desirable to have LPs which read and write common vari-
ables executing at extremely different rates. If the SoI of two
agents Ai and Aj overlap then we can say the probability
of Ai causing rollback on Aj is affected by the number of
critical accesses made between Ai and Aj (CAij) defined as;

CAij = |SoIRi ∩ SoIWj | + |SoIWi ∩ SoIRj | (1)

We can then say for any agent Ai (or LPi, the terms can
be used interchangeably here) the likelihood of rollback is
affected by all critical accesses made between Ai (CAi) and
all other n − 1 agents,

CAi =
n−1X

j=1

(CAij)j �= i (2)

The size of the time window for a given agent Ai is therefore



inversely proportional to

1. the number of critical accesses in it’s sphere of influ-
ence, CAi; and

2. for each neighbouring agent Aj (i.e., CAij �= 0) whose
LVT differs from Ai by ∆LV Tij , ∆LV Tij × CAij

We can now state the form of the equation used to determine
window size (optimism) of an agent Ai,

WSi =
a

k1CAi ×
n−1X

j=1

(k2CAij × k3∆LV Tij)

(3)

Where the total number of agents in the simulation is n and
a, k1, k2, k3 are appropriate constants.

To enable each LP to calculate its time window we need
to have global information regarding the access patterns on
shared state variables and the LVTs of the LPs in the simula-
tion. We now propose a simple centralised scheme for col-
lecting the relevant information. First we allocate a counter
to each variable in the shared state. This counter indicates
how many different LP’s spheres of influence the variable
lies in and so indicates how difficult the variable is to asso-
ciate with a particular LP. A central LP is used to collect this
information, with all reads and writes passed via this central
LP2. The LP would simply keep a list of all access made for
each variable in the shared state (similar to Table 1) between
a time period [t1, t2]. From this, the centralised LP can deter-
mine CAi and CAij for all LPs in the simulation. It can also
determine the current LVT of each LP (via the time stamp of
the most recent access) and hence ∆LV Tij for all LPs i and
j.

At time t2 a GVT computation would occur and the new win-
dow size would be calculated for all LPs. This relies on the
fact that the access patterns from the time period [t1, t2] will
produce an appropriate window for the time period [t2, t3].
If the length of the time intervals are chosen appropriately,
the change in the spheres of influence from one time period
to the next should be small. It was shown in [Logan and
Theodoropoulos, 2001] for some typical agent simulations
the change in spheres of influence is limited.

Using a central controller LP in this way limits the message
traffic. Without a central controller each LP would need to
broadcast all information to the other LPs in the simulation.
A protocol which uses global information in this way incurs
extra overhead, and we envisage that the development of
CLPs will offer a solution to this problem.

5. RESULTS
Investigation of the metric is still at a preliminary stage and
our results to date relate to the spheres of influence rather
than the performance of the metric itself. These experi-
ments and results serve as feasibility study for later devel-
opment of the metric. The experiments here are performed
in the SIM TILEWORLD [Lees, 2002] testbed implemented in
the agent toolkit SIM AGENT. Tileworld is a commonly used
testbed in agent evaluation and experimentation. The Tile-
world environment consists of tiles, holes and obstacles. A
2This LP behaves much the same way as the CLPs described in
[Logan and Theodoropoulos, 2001]

Tileworld agent tries to score as many points as possible by
filling holes with tiles (the agent receives a point for each tile
placed in a hole). The Tileworld environment (see figure 3)
is dynamic in that objects (holes, tiles and obstacles) are cre-
ated at random with a predefined lifespan. The experimenter

Figure 3: The SIM TILEWORLD testbed

can control how dynamic the environment is by defining the
probability of new objects being created and the lifespan of
those objects. For example, an environment with high ob-
ject creation probability and short lifespan would be very
dynamic. Tileworld also allows the experimenter to vary the
density of objects in the environment: if the object creation
probability is high and the lifespan is high there will be a
large number of objects in the environment at any one time.

The results presented below show how access patterns vary
when the density of objects in the environment is changed. In
particular the experiments look at how access patterns relate
to the number of possible rollbacks occurring in a simulation.
The initial hypothesis being that as the number of common
accesses increases so does the number of possible rollbacks
occurring. Possible rollbacks are identified by a particular
access pattern. Firstly a ∆LVT value l is set, this defines
the largest possible difference between the time stamp of the
access and the LVT of the receiving LP3. A possible rollback
pattern occurs if a variable is written to by one agent and then
read by another agent up to l time periods (cycles) later. In
these experiments we set l to be 3.

To explain the results we first introduce the notion of a com-
mon read and common write. A common read occurs when
one agent reads to a variable and another agent also accesses
the same variable (i.e., read or write). A common write oc-
curs when one agent writes to a variable and another agent
also accesses the same variable (i.e., read or write). The first
graph (figure 4) shows the read patterns of two agents in a
20x20 Tileworld environment during a 20 cycle period. Each
agent has a sensor range of 5 squares. The graph shows how
3This value should reflect typical differences in LVT of two LPs



the number of reads made by each agent and the common
reads varies with the number of objects in the environment.
With an object creation probability of 0.1 both agents made
about 300 reads, a high percentage of these were common
reads (200 or 66%). At 0.1 object creation probability there
are few objects in the environment in this situation the agents
tend to aim for the same tiles and holes. As the number of
objects in the environment increases the proportion of com-
mon reads drops (to around 44%). Figure 5 shows how the
number of common reads varies with the size of the envi-
ronment. With the environment at size 80x80 the number
of common reads has almost dropped to zero. This could
be due to two things, firstly the agents are further apart and
secondly the environment is less densely populated with tiles
and holes.
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Figure 4: The reads made by two agent in a 20x20 Tileworld
environment in a 20 cycle period
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Figure 5: How the number of common reads made between two
agents varies with object creation probability and environment
size

The graphs in Figures 6-8 show the write patterns of two
agents in environments of varying size. The graphs also show
how closely related rollback patterns and common writes are.

From this we can say that rollbacks patterns will occur when
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Figure 6: Writes and rollback patterns of two agents in a 20x20
Tileworld environment over a 20 cycle period
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Figure 7: Writes and rollback patterns of two agents in a 40x40
Tileworld environment over a 20 cycle period

the activities of the agents result in a common write. For
example, a rollback pattern will occur if agent A1 is pushing
a tile which is within the sensor range agent A2 up to 3
cycles (moves4) later. This conclusion is reinforced upon
comparison of the number of rollback patterns in different
sized environments. As the environment size increases the
number of writes made by each agent drops. The number
of common writes drops even further and hence rollback
patterns become much less common in larger, less dense
environments.

6. DISCUSSION AND FUTURE WORK
In this paper we describe a novel adaptive optimistic synchro-
nisation mechanism for the parallel discrete event simulation
of agent-based systems. Our mechanism uses the Sphere of
Influence of an event to define an adaptive metric which can
be used with a throttling mechanism such as moving time
windows. We show how such a metric can be calculated
by monitoring the common reads and writes made by the

4The agents currently implemented in SIM TILEWORLD are purely
reactive and hence move one square every cycle
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Figure 8: Writes and rollback patterns of two agents in a 80x80
Tileworld environment over a 20 cycle period

agents to the shared simulation state modelling the agent’s
environment, and present the results of our preliminary in-
vestigations into the relationships between agent read and
write patterns and rollback frequency.

Our experimental results show, as expected, that the num-
ber of common accesses does affect the number of rollback
patterns occurring in an agent simulation. Surprisingly, the
results have shown that for this particular agent simulation
(SIM TILEWORLD) rollback patterns are very closely related
to common writes. This relates to the ratio of writes to reads
made by the agents. If, as in this case, the agents perform
a large number of reads compared to writes (700/35), then
almost all common writes will result in a rollback pattern.
Our plans for further work in this area will be toward inves-
tigating this relationship. We plan to repeat the experiments
with different types of agent simulation with highly different
access patterns.

Our long term goal is to implement the adaptive metric in
Georgia Time Warp (GTW). Initially a simple C/C++ pro-
gram will simulate typical access patterns of agent simulation
(mirroring the results obtained here). This allows us to test
the metric without the need for integrating an agent toolkit
with GTW beforehand. If the results are as expected the next
step is to integrate an agent toolkit (e.g., SIM AGENT) with
GTW to investigate the performance of the mechanism.
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