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Abstract

In this paper we present a detailed analysis of the perfor-
mance of the Decision Theoretic Read Delay (DTRD) opti-
mistic synchronisation algorithm for simulations of Multi-
Agent Systems. We develop an abstract characterisation of
the access patterns found in MAS simulations based on the
simulation’s degree of coupling and skew. Using this char-
acterisation, we generated stereotypical test cases which we
used to compare the performance of the DTRD algorithm
with that of Time Warp and time windows. To determine if
the test cases reliably predict performance in a real agent
simulation, we compared the predictions made by the test
cases with performance results from the Boids agent sim-
ulation benchmark for a range of simulation parameters.
The results indicate that DTRD adapts to the mixtures of
coupling cases found in real agent simulations and is capa-
ble of tracking changes in coupling during the simulation.

1. Introduction

The simulation of agent systems has traditionally played
an important role in agent research and development. Sim-
ulation allows a degree of control over experimental condi-
tions and facilitates the replication of results in a way that
is difficult or impossible with a prototype or fielded system,
freeing the agent developer or researcher to focus on the key
aspects of a system. Simulation has been applied to a wide
range of MAS research and design problems from models of
complex individual agents employing sophisticated internal

mechanisms to models of large scale societies of relatively
simple agents which focus more on the interactions between
agents, e.g., [1, 13, 4, 12].

However, despite its wide application, the most appro-
priate simulation technique for different kinds of MAS sim-
ulation problems is often unclear. There are many different
degrees of variation in MAS, and an algorithm or simulator
which works well in one case may not work well in oth-
ers. The work reported in the MAS simulation literature
has employed a wide range of benchmark problems, e.g.,
Tileworld in [13], a distributed workflow framework in [4]
and a simple ‘bouncing ball’ benchmark in [12], making
it difficult to compare performance across approaches. In
addition, the particular properties of simulations of situated
MAS means that the performance of algorithms on standard
PDES benchmarks may not be a good indicator of their per-
formance on MAS simulations.

In this paper we take a first step towards characterising
the performance of optimistic synchronisation algorithms in
simulations of situated MAS. We present a detailed analysis
of the performance of the Decision Theoretic Read Delay
(DTRD) algorithm presented in [6]. To better understand
the performance of the algorithm, we developed an abstract
characterisation of the access patterns found in MAS sim-
ulations based on the simulation’s degree of coupling and
skew. Using this characterisation, we generated stereotyp-
ical test cases which we used to compare the performance
of the DTRD algorithm with that of Time Warp and time
windows. To determine if the test cases reliably predict
performance in a real agent simulation, we compared the
predictions made by the test cases with performance results
from the Boids [11] agent simulation benchmark for a range



of simulation parameters. The results indicate that DTRD is
capable of adapting to the mixtures of coupling cases found
in real agent simulations and tracking changes in coupling
during the simulation.

The remainder of this paper is organised as follows. In
section 2 we outline our model of MAS simulation and
briefly describe the DTRD optimistic synchronisation algo-
rithm. In section 3 we present a characterisation of access
patterns in situated MAS simulations in terms of their cou-
pling and skew. We show how an arbitrary MAS simulation
can be decomposed into instances of three coupling cases
and argue that performance on these three cases is indica-
tive of performance on a real agent simulation. In section
4 we present a comparative evaluation of three optimistic
synchronisation algorithms on two test cases generated us-
ing our characterisation of access patterns. In section 5 we
extend our analysis to include comparisons on data from the
Boids agent benchmark, before concluding in section 6

2. Distributed simulations of MAS

The simulation of situated agents (e.g., robots situated
in a physical environment, or characters in a computer
game situated in a virtual environment) presents particu-
lar challenges for standard parallel discrete event simula-
tion (PDES) models and techniques as described in, e.g.,
[3, 2]. In a conventional decentralised event-driven dis-
tributed simulation the simulation model is divided into a
network of Logical Process (LPs). Each LP maintains its
own portion of the simulation state and LPs interact with
each other in a small number of well defined ways. The
topology of the simulation is determined by the topology of
the simulated system and is largely static. In many cases we
know the lower bound on the timestamp of an event gener-
ated by an LP in response to an input event.

In contrast, a defining characteristic of agents is their
autonomy [19]. In a parallel discrete event simulation of
a multi-agent system, agents may spontaneously generate
an event at any point without there being a preceding in-
put event. As a result, simulations of MAS typically have
zero lookahead [18]. In addition, an agent’s interaction with
other agents and its environment is hard to predict in ad-
vance; indeed discovering how the agents interact with each
other and their environment is often a primary goal of the
simulation. For example, what a mobile agent can sense is
a function of the actions it performed in the past which is in
turn a function of what it sensed in the past. This makes it
hard to determine an appropriate topology for a MAS sim-
ulation a priori, and simulations of MAS typically have a
large shared state which is only loosely associated with any
particular process [8].

To address these issues, we developed the PDES-MAS
framework [8]. PDES-MAS adopts an optimistic approach

to synchronisation in which agent logical processes (ALPs)
interact with one or more shared state logical processes
(SSLPs) which are responsible for maintaining the shared
state of the simulation. ALPs interact with the shared
state by reading and writing shared state variables (SSVs).
We assume that agents execute a sense–think–act cycle,
in which they obtain information from the environment
(shared state) and compute an action which changes the en-
vironment. Sensing gives rise to read events, and acting
gives rise to write events.

Within this read/write model, only certain patterns of ac-
cess can cause a rollback [7]. Reads are the only inputs to
an ALP and only the reading of incorrect values can cause a
rollback. Agents which only write and never read can never
be rolled back (though they can roll back other agents). For
example, an ALP which simulates the weather within a vir-
tual environment can never be rolled back by the actions of
other agents (assuming there is no causal link between the
agent’s actions in the environment and the weather). Con-
versely, only agents which write can cause a rollback. For
example, an agent which only reads and never writes, e.g.,
an LP which monitors the simulation, can never cause a roll-
back (though it can itself be rolled back by writes from other
agents). More precisely, a rollback occurs when a SSLP re-
ceives a late or straggler write with timestamp tw from an
ALP ai to a state variable which has previously been read
with timestamp tr by some ALP aj , such that tw < tr and
ai �= aj . We call a read premature if it is later rolled back
by a straggler write.1

In [6] we presented DTRD, a synchronisation algorithm
for PDES-MAS. DTRD attempts to avoid rollbacks by de-
laying the processing of read events which are likely to be
premature, i.e., if there is reason to believe that the read is
likely to be rolled back by a straggler write.2 The algorithm
uses a decision theoretic model to derive a optimal time to
delay a read event so as to minimise the expected overall ex-
ecution time of the simulation. The possible delay times are
chosen from a finite set of delay times {0, 1, 2, . . .}, where
“delay for 0” means “commit this event immediately”. Each
delay time has an associated cost, namely the amount of real
time the read is delayed and hence the ALP which gener-
ated the read must spend blocked waiting for the value re-
turned by the read. If we prefer delay times with lower cost,
we would therefore always choose to “delay for 0” which
has zero cost. However, for each delay time we may have
to pay an additional “rollback cost”—the real time spent
rolling back if the read subsequently turns out to have been
premature. We assume that the probability of paying this

1This scheme is similar to the query event tagging proposed in [15] and
has similar advantages in reducing the frequency and depth of rollback and
the state saving overhead.

2Write events can always be processed immediately: a write event by
an ALP, ai with a time stamp tw can only be rolled back if a read by ai

with timestamp tr < tw is rolled back.



rollback cost is lower for some delay times than others, i.e.,
the longer we delay, the lower the probability of a straggler
write and hence of paying the rollback cost.

This gives us a simple trade-off which can be formulated
in decision theoretic terms: delaying for less time costs less
(in real time) but has a higher likelihood of incurring a roll-
back cost. The probability that the next write of a particular
state variable will be a straggler, i.e., will have a virtual time
earlier than that of the read being processed and will arrive
after a given delay, is computed from the history of previ-
ous writes to the variable. The cost of rollback is computed
by adding the cost of rolling back the ALP to the estimated
cost of replaying the rolled back events by the ALP.

The DTRD algorithm is adaptive in the sense that it at-
tempts to track changes in the access patterns by the ALPs
during the simulation. Ideally it should reduce rollbacks and
hence execution time across a wide range of MAS simula-
tions (e.g., simulations in which agents interact frequently
vs. simulations in which agents interact infrequently) and
execution environments (e.g., environments in which all
ALPs advance virtual time at the same rate vs. environ-
ments in which some ALPs run much faster than others).
However assessing the performance of the algorithm in ab-
solute terms is difficult: even if we know what the optimum
performance (in terms of execution time) is for a particu-
lar simulation, the algorithm is unlikely to achieve it, given
that it has only limited information. To better understand the
performance of the algorithm we therefore developed an ab-
stract characterisation of the access patterns found in MAS
simulations and used this to investigate the performance of
DTRD relative to that of two other optimistic synchronisa-
tion algorithms.

3. Characterising access patterns in MAS sim-
ulations

We can model the agents’ interaction with the shared
state at any given point in time in terms of an access graph.
An access graph is a graph with two kinds of nodes, SSVs
and ALPs, and two kinds of edges, corresponding to read
and write events. A read edge from a variable vi to an ALP
aj denotes a read of vi by aj , and a write edge denotes that
vi was written by aj . Each edge has both a real and vir-
tual timestamp, indicating the real and virtual time of the
corresponding event. The access graph evolves in real time
as edges are added (indicating read and write operations by
agents on the shared state), and removed (as a result of roll-
back).

At any given point in the execution of a MAS simula-
tion, a set of ALPs in the access graph can be characterised
by their degree of coupling and their skew. Coupling refers
to how the ALPs interact with the SSVs and the resulting
potential for causality violations (rollback). By skew we

mean the difference in the ‘natural’ rate of local virtual time
(LVT) progression between the ALPs, in the absence of roll-
back or any throttling mechanism. Imbalances in the rate of
LVT progression may be a result of different agent archi-
tectures requiring different amounts of real (CPU) time to
advance by a single unit of simulation time, differing pro-
cessor loads, differing network latencies between parts of
a geographically distributed simulation etc. A given set of
ALPs may vary between high and low degrees of coupling
throughout the execution of the simulation. Similarly, de-
pending on the execution environment (system loads etc)
the degree of skew may vary throughout the simulation.

In an optimistic simulation of a highly coupled MAS, a
high degree of skew will tend to result in frequent causal-
ity violations and rollbacks. In contrast, in a system with
low coupling, a high degree of skew can be tolerated, at
least from a correctness point of view, since the agents can’t
roll each other back. To avoid an excessive number of roll-
backs, the skew of highly coupled ALPs should be min-
imised. This can be achieved either by balancing the load in
the system to reduce the difference in the rate of LVT pro-
gression of the ALPs, or by constraining the optimism of
the ALPs with positive skew, or both. While load balancing
is desirable in general,3 it is not always possible, for exam-
ple, where the computational requirements of the ALPs are
intrinsically very different, or where frequent process mi-
gration would result in unacceptable overhead, and in this
paper we focus on constraining the optimism of the ALPs.

We can identify three stereotypical coupling cases char-
acteristic of situated multi-agent simulations, and the degree
of optimism appropriate for each:

uncoupled a set A of ALPs is uncoupled if for any variable
vi read (resp. written) by an ALP ai ∈ A, for all aj ∈
A, i �= j, aj does not write (resp. read) vi. In an
uncoupled set of ALPs, no matter how skew varies,
there can be no causality violations.

fully-coupled a set A of ALPs is fully-coupled if for any
ALP ai ∈ A there is a variable vi written by ai and
read by an ALP aj ∈ A, i �= j, such that there is a
sequence of ALPs a1 . . . ak and variables v1 . . . vk−1,
where a1 writes v1, a2 reads v1 and writes v2 . . . ak

reads vk−1 and aj = a1 and ai = ak. With full cou-
pling, the agent with the highest negative skew (slow-
est rate of LVT advance) constrains the rest.4

half-coupled a set A of ALPs is half-coupled if the ALPs
are neither uncoupled or fully coupled. Informally, a

3We may also want to use load balancing in an uncoupled simulation,
e.g., if the skew is due to an uneven distribution of processor loads.

4A fully-coupled set of ALPs is equivalent to a strongly connected com-
ponent of the ALP nodes in the access graph, where reachability is defined
in terms paths consisting write and read edges to and from SSV nodes. Full
coupling is also similar to the notion of a strong group introduced in [17]
in the context of load balancing in distributed optimistic simulations.



set of ALPs is half-coupled if there is a directed acyclic
subgraph of the access graph, in which the leaves are
linked to the subgraph by either read or write edges and
the internal nodes are linked by both read and write
edges. If the writing agents have negative skew (rel-
ative to the reading agents), then the optimism of the
reading agents must be constrained, but not vice versa.

A fully-coupled set of ALPs may contain half-coupled or
uncoupled subsets. Similarly, a half-coupled set of ALPs
may contain uncoupled subsets. An ALP is constrained by
the most constraining subgraph of which it is a member. For
example, an ALP which is in both a half-coupled and fully-
coupled subgraph of the access graph is constrained by the
subgraph containing the writing agent with the highest neg-
ative skew.

An optimistic synchronisation algorithm for a MAS sim-
ulation should be able to cope with each of these three cases,
and ideally should adapt as the degree of coupling and skew
of the ALPs changes during execution. In the next sec-
tion, we compare the performance of DTRD on the uncou-
pled and fully-coupled cases for differing degrees of skew,
with that of two established optimistic synchronisation al-
gorithms, Time Warp [5] and a windowing algorithm simi-
lar to Moving Time Windows [16].

4. Analysing the performance of optimistic
synchronisation algorithms using access
patterns

We created simple test cases consisting of instances of
the uncoupled and fully coupled subgraph types in which
we controlled the degree of skew of the ALPs.5 In the un-
coupled test case, two agents read the same state variable
(see Figure 1(a)). In the fully-coupled test case, each agent
reads a state variable which the other agent writes (see Fig-
ure 1(b)).

Agent 1Agent 2

Variable U

ReadRead

(a) Uncoupled

Variable V 

Agent 1Agent 2

Write Read

Read Write

Variable U

(b) Fully coupled

Figure 1. Two coupling test cases

5In previous work [6] we have reported results for DTRD on the half-
coupled case.

We compared the performance of the DTRD algorithm
with that of Time Warp and time windows in these two test
cases. All experiments were performed using the ASSK sim-
ulation kernel [6] developed for parallel discrete event sim-
ulation of multi-agent systems. An ASSK simulation con-
sists of one or more agent ALPs and a single shared state
LP (SSLP) which maintains the shared state of the simu-
lation. Each ALP processes an event trace from an agent
in the original agent simulation and asynchronously sends
read and write events from the trace to the SSLP. The ALPs
execute asynchronously and inject real and virtual time de-
lays into the event sequences to model the real and virtual
time spent by an agent in the ‘think’ part of its cycle. An
ALP blocks while waiting for the response to a read event
from the SSLP containing the requested value.6 Upon re-
ceiving an event the SSLP applies the appropriate access
to the relevant state variable and generates any necessary
responses. If the SSLP receives a straggler event from an
ALP, it triggers rollbacks on all the ALPs which accessed
the variable at times after the timestamp of the straggler.
Rollbacks cause the ALPs to delay for a time (representing
the time required to rollback the ALP and here assumed to
be 5 msecs) and then rewind and replay their event traces
from the time of the rollback. ASSK uses a form of incre-
mental state saving, and in the experiments reported here no
fossil-collection mechanism was used. Although determin-
istic in that the events generated by the ALPs are entirely
determined by the input traces, ASSK provides a flexible
framework for synchronisation experiments.

All three simulations used the same ASSK

infrastructure—only the implementation of the syn-
chronisation algorithm was varied. The Time Warp
implementation is essentially the ASSK kernel without
the read/write optimisation (i.e., all straggler events cause
rollback). Our implementation of time windows used
a single window size, w, for the simulation. ALPs can
only send events which have a timestamp te, such that
te < GV T + w. When an ALP reaches the end of its
window, it repeatedly issues requests for GVT computation
until GVT advances, allowing it to process its next event.
While this adds an extra computational overhead for the
blocked ALP, it ensures that the ALP’s LVT advances as
fast as possible.7 ASSK uses Mattern’s GVT algorithm [10],
which may require each ALP to process two GVT messages
per GVT calculation.

We generated a synthetic access trace for each test case
consisting of 100 simulation cycles. The pattern of vari-

6While read events from ALPs are serialised at the SSLP, only the ALPs
are delayed by the DTRD algorithm, and the loss of potential concurrency
is bounded by the time required to process the events in the SSLP’s receive
queue.

7This is essentially the same as the moving time windows implemen-
tation [15] with the polling parameter set such that LPs do not wait for
inactivity before initiating GVT calculation.



able access was constant for all 100 cycles in both traces.
For the first set of runs, the difference in virtual timestamps
between successive agent cycles was taken from a normal
distribution with mean 15 and standard deviation 4, and the
mean real cycle times were 50 msec for one agent and 200
msec for the other. The standard deviation of real times-
tamps was 0.05 of the mean. The mean real cycle times are
typical of many real agent systems (e.g., 5–20 fps video)
and are similar to those used in other agent simulations; for
example, the results reported in [12] are for agents with cy-
cle times in the range 95–105 milliseconds. In the fully
coupled trace, all read and write events at the same cycle
are assumed to occur at the same virtual time. For the time
windows implementation we used a window size, w, of 30;
this allows on average 2 events to execute optimistically.

Uncoupled Fully Coupled
Algorithm Comp. Replayed Comp. Replayed
Time Warp 27.78 0 42.51 224.90
Time Windows 42.13 0 43.14 192.90
DTRD 27.78 0 30.50 25.80

(a) Mean cycle times of 50, 200 msecs (skew 4)

Uncoupled Fully Coupled
Algorithm Comp. Replayed Comp. Replayed
Time Warp 12.63 0 14.54 27.90
Time Windows 12.64 0 14.53 27.70
DTRD 12.63 0 13.54 12.80

(b) Mean cycle times of 50, 50 msecs (no skew)

Uncoupled Fully Coupled
Algorithm Comp. Replayed Comp. Replayed
Time Warp 47.98 0 82.40 528.20
Time Windows 81.66 0 83.15 203.90
DTRD 47.98 0 52.46 42.40

(c) Mean cycle times of 50, 400 msecs (skew 8)

Table 1. Performance on uncoupled and fully-
coupled access traces

Table 1(a) shows the raw performance data for the three
algorithms. For each algorithm, we report the computation
time and number of replayed cycles averaged over 10 runs
of both the uncoupled and fully coupled trace files. The
computation time is defined as the total amount of CPU time
required for all ALPs. The number of replayed cycles is the
total number of cycles repeated by all agents as a result of
rollback. This value indicates the frequency and depth of
rollbacks within the system.

The first two columns of table 1(a) show the computa-
tion time and replayed cycles for each algorithm for the un-
coupled test case. As can be seen, the computation time
required by Time Warp and DTRD is significantly less than
that required for time windows. The number of replayed
cycles is 0 for all three algorithms as there are no rollbacks

in the uncoupled case. The uncoupled case tests the ability
of the algorithms to exploit parallelism within the simula-
tion. As might be expected, the unconstrained optimism of
Time Warp outperforms time windows in such a case. With
time windows the faster agent is constrained to run at the
speed of the slower agent, and must perform frequent GVT
computations to advance its window. The results show how
the adaptive nature of the DTRD algorithm exploits the par-
allelism inherent in the uncoupled case—by executing op-
timistically, DTRD achieves the same computation time as
Time Warp.

Table 1(a) also shows the computation time and replayed
cycles for each algorithm for the fully-coupled test case.
As can be seen, the computation time required by Time
Warp is proportionately greater in this case, and is simi-
lar to that required by time windows. However the num-
ber of replayed events is less with time windows than with
Time Warp. With Time Warp, the last event generated by
the slower agent is guaranteed to roll back the faster agent,
effectively constraining it to run at the speed of the slower
agent. With time windows, although the window reduces
the number of rollbacks and hence replayed cycles, the re-
sulting reduction in computation time is offset by the fre-
quent GVT computations necessary to advance the window
of the faster agent. The DTRD algorithm outperforms both
algorithms for replayed cycles (by 87%) and computation
time (by 30%). DTRD trades off rollback time and/or GVT
computation time for delay time, reducing the computation
time required by the ALPs.

We also investigated the effect of skew on the perfor-
mance of the algorithms. Tables 1(b) and 1(c) show the
computation time and replayed cycles for both the uncou-
pled and fully coupled cases when the difference between
the mean cycle time of the faster and slower agents is 0
(mean cycle time of 50 msecs for both agents) and 350
msecs (mean cycle times of 50 and 400 msecs). With no
skew (Table 1(b)), all three algorithms have similar compu-
tation times in both the uncoupled and fully coupled cases.
However, DTRD is more effective in reducing the number
of replayed cycles in the fully coupled case, by about 50%
compared to both Time Warp and time windows. With a
skew of 0, the window is ineffective in reducing the num-
ber of rollbacks in the fully-coupled system, as nearly all
premature events fall within the window. As a result time
windows and Time Warp have a similar number of replayed
cycles in this case. Increasing the amount of skew in the
simulation to 8 (Table 1(c)) does not affect the pattern of
results for computation time (compared to a skew of 4),
with both Time Warp and DTRD requiring significantly less
computation time than time windows in the uncoupled case
and Time Warp and time windows having the same com-
putation time with full coupling. However, the reduction in
replayed cycles achieved by time windows relative to Time



Warp is significantly greater with increased skew. With full
coupling, the increase in skew also highlights the ability
of DTRD to convert time spent in replaying computation
(Time Warp and time windows) and/or GVT computation
(time windows) into delays, resulting in a reduction in com-
putation time of 37%. DTRD also prevents rollbacks more
effectively than a static window, reducing the number of re-
played cycles by 92% compared to Time Warp and 79%
compared to time windows.

The DTRD algorithm performs well in both test cases,
and appears to adapt to varying differing degrees of cou-
pling and skew. However real simulations contain mixtures
of uncoupled and fully-coupled access patterns and the de-
gree of coupling (and skew) changes during the simulation.
To investigate whether DTRD is capable both of coping
with mixtures of coupling cases and tracking changes in
coupling during the simulation, we tested its performance
on traces from a real agent simulation.

5. Analysing the performance of optimistic
synchronisation in intermediate coupling
cases

In this section we compare the performance of the DTRD
algorithm with that of Time Warp and time windows on
traces taken from a standard agent simulation benchmark,
Boids [11]. Boids was originally developed as a model of
coordinated animal motion such as flocking birds or schools
of fish. Each boid has its own local viewpoint of the flock
and computes its own motion based on information it col-
lects about other boids within its sensor range. While the
Boids testbed is very simple, it captures key characteristics
of situated multi-agent systems.

The Boids simulation was implemented using the
SIM AGENT toolkit [14]. Each boid is represented as a
single agent and executes a sense–think–act cycle. In the
sensing phase the agent reads the x and y position of the
other boids within its sensor range (assumed to be 50 units
in these experiments). It then computes its motion for this
cycle (think phase) and finally writes its own x and y po-
sitions (act phase). The simulation is parameterised by the
number of agents and the size of the agent’s environment.8

For a given number of agents, by varying the size of the
environment we are able to control the average degree of
coupling of the simulation. Higher density environments
(measured as the number of boids per unit area) increase
the likelihood of flocking. With optimistic synchronisation,
runs where the agents manage to form a flock should have a
larger number of rollbacks on average, whereas runs where
little or no flocking occurs should have fewer rollbacks.

8The environment wraps around, e.g., a boid moving off the right edge
of the environment reappears on the left edge.

We tested the DTRD, Time Warp and time windows al-
gorithms using traces from the Boids simulation. For the
experiments we varied the size of the environment from 200
× 200 to 1000 × 1000 in 200 × 200 increments. For each
environment size, we collected trace files of accesses to the
shared state by each agent for five runs of the simulation.
The trace files record access events, each of which repre-
sents a single operation on a shared state variable. Each
trace consisted of 500 cycles for each boid. To allow com-
parison with the synthetic test cases, all environments con-
tain 2 agents and the mean difference in agent cycle times
is in the range 50–200 msecs. For the time windows imple-
mentation we used a window size of 30.

While these traces are very simple, they allow us to in-
vestigate performance in mixed coupling situations and in
situations where the degree of coupling varies during the
simulation.9 For example, even in low density environments
it is rare for the agents to remain completely uncoupled for
500 cycles. Similarly, even in a small environment, the
agents will not necessarily be fully coupled for the whole
run. However, in general, as the density and hence aver-
age degree of coupling increases, we would expect to see
the computation time and number of replayed cycles in-
crease for Time Warp. Similarly, we would expect to see
the computation time for time windows become proportion-
ally lower and the number of replayed events increase more
slowly (relative to Time Warp). Finally, we would hope to
see DTRD adapt both across simulations and within a sim-
ulation run as the degree of coupling varies.

Environment size
Algorithm 200 400 600 800 1000

Time Warp 159.00 149.27 140.98 134.08 132.37
Time Windows 158.63 156.30 156.62 155.85 155.63

DTRD 140.09 147.17 136.66 133.82 132.58

(a) Computation Time

Environment size
Algorithm 200 400 600 800 1000

Time Warp 331.46 229.52 141.48 61.48 36.62
Time Windows 229.90 52.22 76.74 15.92 0.26

DTRD 97.80 198.24 75.22 60.74 52.50

(b) No. of Replayed Cycles

Table 2. Performance on the Boids bench-
mark for varying environment sizes

Tables 2(a) and 2(b) show the computation time and
number of replayed cycles as the environment size is in-
creased in 200 × 200 steps from 200 × 200 to 1000 ×
1000. The values reported represent an average over 10 runs

9The uncoupled and fully coupled test cases represent all the access pat-
terns seen in the Boids simulation. Since the boids have omni-directional
sensors, there are no half-coupled subgraphs in the Boids access graph.



of the 5 trace files for each environment size for each algo-
rithm. As can be seen, for small environments, Time Warp
and time windows require similar amounts of computation
time. However, while the time required by time windows re-
mains essentially constant, the time required by Time Warp
drops in the larger, less coupled, environments, and in the
largest environments Time Warp outperforms time windows
by about 15%. In the 200 × 200 environment, DTRD re-
quires 12% less computation time than both Time Warp and
time windows and in the 1000 × 1000 environment its per-
formance is equivalent to that of Time Warp. The reason for
this becomes apparent when we consider the number of re-
played cycles (Table 2(b)). In the smaller, more highly cou-
pled, environments DTRD significantly reduces the number
of replayed cycles (by about 70% compared to Time Warp
and 57% compared to time windows in the 200 × 200 en-
vironment), and this reduction in replayed cycles is con-
verted into a reduction in computation time for DTRD. In
the larger environments (800 × 800 and 1000 × 1000) time
windows is more effective than Time Warp and DTRD in
reducing the number of replayed cycles. However in these
cases, the agents rarely interact, and the reduction in re-
played cycles is more than offset by the GVT computation
overhead of time windows.

Environment size
Algorithm 200 400 600 800 1000

Time Warp 777.08 177.7 263.8 54.86 0.74
Time Windows 440.56 99.44 148.00 30.46 0.40

DTRD 92.68 32.48 33.44 9.78 1.68

(a) No. of Rollbacks

Environment size
Algorithm 200 400 600 800 1000

Time Warp 0.43 1.29 0.54 1.12 49.49
Time Windows 0.52 0.53 0.52 0.52 0.65

DTRD 1.06 6.10 2.25 6.21 31.25

(b) No. of Replayed Cycles per Rollback

Table 3. Rollback frequency and depth in the
Boids benchmark

While the DTRD algorithm requires less computation
time than both Time Warp and time windows for all en-
vironment sizes, it performs better in some cases than in
others. For example, the computation time and number of
replayed cycles for DTRD increases from the 200×200 en-
vironment to the 400× 400 environment. To probe the rea-
sons for this, we investigated the relationship between roll-
backs and replayed cycles in more detail. Table 3(a) shows
the average number of rollbacks for each environment size
for each algorithm. As can be seen, DTRD is successful in
reducing the number of rollbacks in the 400× 400 environ-
ment. However, as shown in Table 3(b), the relationship be-

tween the depth of rollbacks and environment size is com-
plex and different for each algorithm. For Time Warp and
DTRD, in smaller, more tightly coupled environments, the
average number of replayed cycles per rollback is smaller
than in larger, less coupled environments. With frequent
rollbacks the difference between the LVTs of the ALPs is
bounded, resulting in shallower rollbacks and hence fewer
replayed cycles per rollback. In medium size environments,
rollbacks become less frequent and hence deeper. For ex-
ample, the average depth of rollback for both Time Warp
and DTRD for an environment of size 400 is greater than
for an environment of size 200. As the environments be-
come even larger, with less coupling, the agents can exe-
cute farther ahead of each other and so each rollback tends
to be deeper still, resulting more replayed cycles per roll-
back. However this is more than offset by the reduced fre-
quency of rollbacks in these environments. In contrast, with
time windows, which constrains the depth of rollback by the
window size, the average depth of rollback remains more or
less constant for all environment sizes. These results are
similar to the theoretical predictions of differences in LVT
for highly coupled and uncoupled groups of LPs in [17].
Indeed, the relationship between frequency and depth of
rollback has been exploited by some optimistic algorithms
which force rollbacks to prevent over optimistic execution
and reduce the overall cost of rollback (e.g., [9]).

We hypothesised that the performance on the test cases
presented in section 4 is a good indicator of performance
in real agent simulations. We should therefore expect to
see good agreement between the relative performance of
the algorithms on the uncoupled and fully-coupled synthetic
traces and the Boids simulations with the lowest and highest
degrees of coupling. In the Boids traces, the degree of cou-
pling is lowest in those traces with large environments. As
expected, DTRD and Time Warp outperform time windows
in these traces (though to a lesser extent than in the uncou-
pled test case). In the smaller environments with higher
coupling, we would expect time windows to outperform
Time Warp, and in these cases Time Warp does result in
more replayed cycles than time windows (even though the
degree of coupling is still relatively low in these environ-
ments), though again to a lesser extent than in the fully-
coupled test case. The performance of DTRD in terms of
computation time is at least as good as Time Warp and time
windows in all cases, and often significantly better.

6. Conclusions and further work

In this paper we have presented a more detailed char-
acterisation of the DTRD optimistic synchronisation algo-
rithm for simulations of situated MAS originally presented
in [6] and compared its performance to that of Time Warp
and time windows. To better understand the performance of



the algorithm, we characterised the problem of optimistic
simulation of a situated MAS in terms of patterns of ac-
cess in an access graph describing the shared state. By
analysing the performance of the algorithms on stereotyp-
ical cases, we predicted where the algorithms should per-
form well and where they should perform badly in real agent
simulations. We then extended our analysis by comparing
the performance of the algorithms on a simple agent bench-
mark, which allowed us to investigate performance on time-
varying combinations of the stereotypical test cases.

Our analysis gives us greater confidence about the per-
formance of the decision theoretic approach to synchronisa-
tion in general and our specific algorithmic implementation
in particular. More generally, we believe our characterisa-
tion of the problem is a first step towards a deeper under-
standing of the difficult problem of optimistic synchronisa-
tion for MAS simulation, which complements existing re-
sults from benchmark problems and testbeds. We hope that
this characterisation of the problem may be useful to oth-
ers investigating different algorithms for the simulation of
situated MAS.

In future work we plan to investigate test cases for half-
coupling and quantitative measures of the degree of cou-
pling in an agent simulation based on the notion of critical
accesses [7]. We also plan to test our predictions against
results from large-scale agent simulations.
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