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Abstract. In this paper we give an operational semantics for the real-time agent
programming language AgentSpeak(RT). AgentSpeak(RT) was introduced in [21],
and extends AgentSpeak(L) with deadlines and priorities for intentions. The ver-
sion of AgentSpeak(RT) presented in this paper differs in certain aspects from
that in [21], mainly to incorporate both hard and soft deadlines, and allow for the
concurrent execution of intentions.

1 Introduction

In this paper we give an operational semantics for the AgentSpeak(RT) real-time agent
programming language introduced in [21]. In AgentSpeak(RT), an agent’s intentions
have priorities and deadlines. In a dynamic environment, a real-time BDI agent that has
more tasks that it can feasibly accomplish by their deadlines should make a rational
choice regarding which tasks to commit to: that is, it should try to accomplish higher
priority tasks, but also try to execute tasks so that they are accomplished by their dead-
lines. An AgentSpeak(RT) agent commits to a set of intentions that are ‘maximally
feasible’: no more intentions can be added to the schedule if the scheduled intentions
are to remain feasible at the specified confidence level, and moreover, intentions which
are dropped are incompatible with some scheduled higher priority intention(s).

In the version of AgentSpeak(RT) introduced in [21], only hard deadlines were
supported: that is, intentions were dropped if was impossible to execute them by their
deadlines. This is reasonable for many tasks and environments, for example writing
conference papers, sending bids to auctions, or catching trains. However, some tasks
have soft deadlines: it may be desirable to finish a certain task by its deadline, but the
work still has to be done after the deadline is passed. For example, the agent may need
to charge its battery every 24 hours, but if it is delayed for some reason in reaching the
charging station after 24 hours and one second, it is still important to reach the charging
station. For this reason, we introduce soft deadlines in this version of AgentSpeak(RT)
we consider. Another important difference from [21] is that we assume that tasks may
be executed concurrently. For example, an agent may be simultaneously moving to a
new location and communicating with other agents. However, some intentions need to



be executed atomically to prevent undesired interactions between different actions. For
this reason, in the version of AgentSpeak(RT) we consider here, we introduce the notion
of atomic plans (which cannot be executed simultaneously with other atomic plans).

The rest of this paper is organised as follows. In section 2, we briefly describe the
AgentSpeak(RT) architecture and the modifications relative to [21]. In section 3, we
define the operational semantics of AgentSpeak(RT). We survey related work in section
4 and conclude in section 5.

2 The AgentSpeak(RT) Architecture

In this section we introduce the AgentSpeak(RT) agent programming language and its
associated interpreter. Note that the version of the language presented here differs from
the one in [21].

We assume that an AgentSpeak(RT) agent operates in a real-time task environment,
that is, top-level goals may optionally specify a deadline and/or a priority. An AgentS-
peak(RT) agent responds to events by adopting and executing intentions. A developer
can specify the required level of confidence for the successful execution of intentions
in terms of a probability ce. An AgentSpeak(RT) agent should schedule its intentions so
as to ensure that the probability that intentions complete by their deadlines is at least «.
If not all intentions can be executed with the required level of confidence due to lack of
time, the agent favours intentions responding to high priority events.

The syntax and semantics of AgentSpeak(RT) with various minor modifications
is based on AgentSpeak(L) [18]. To illustrate the syntax of AgentSpeak(RT) we use
a simple running example of an agent which removes litter from a parking lot. Each
evening, the agent is given a set of goals to achieve, each of which specifies the removal
of a particular item of litter from particular parking space. In addition, the agent may
detect additional litter while moving around the lot. There is a deadline for the removal
of litter e.g., before the barrier is opened in the morning (we assume the agent can’t
cope with parking cars), and it is more important to remove some types of litter (e.g.,
broken glass) than others (e.g., paper).

The AgentSpeak(RT) architecture consists of five main components: a belief base,
a set of events, a plan library, an intention structure, and an interpreter.

2.1 Beliefs and Goals

The agent’s beliefs represent the agent’s information about its environment, e.g., sen-
sory input, information about other agents, etc. Beliefs are represented as ground atomic
formulas. For example, the agent may believe that it is in spacel and there is some litter
in space2:

at (robot, spacel)
litter (paper, space?2)

A belief atom or its negation is called a belief literal. A ground belief atom is called a
base belief, and the agent’s belief base is a conjunction of base beliefs.



A goal is a state the agent wishes to bring about or a query to be evaluated. An
achievement goal, written ! g(¢y,...,t,) where ¢;, ..., t, are terms, specifies that the
agent wishes to achieve a state in which g(t1, . . ., t,,) is a true belief. A test goal, written
?9g(t1,...,t,), specifies that the agent wishes to determine if g(t1,...,%,) is a true
belief. For example, the goals

!remove (paper, space2)
?parked (X, space2)

indicate that the agent wants to remove the paper in space2, and determine if there is a
car parked in space2.3

2.2 Events

Events correspond to changes in the agent’s beliefs or the acquisition of new achieve-
ment goals. An addition event, denoted by +, indicates the addition of a base belief or
an achievement goal. A deletion event, denoted by —, indicates the retraction of a base
belief.* Events can be internal or external. External events originate outside the agent,
while internal events result from the execution of the agent’s program. As in AgentS-
peak(L), all belief change events are external (originating in the agent’s environment),
while goal change events may be external (goals originated by a user or another agent)
or internal (subgoals generated by the agent’s program in response to an external event).

To allow the specification of real-time tasks, external goal addition events may op-
tionally specify a deadline and a priority. A deadline specifies the time by which a goal
should be achieved. Deadlines are expressed as real time values in some appropriate
units, e.g, a user may specify a deadline for a goal as “4pm on Friday”. Deadlines in
AgentSpeak(RT) may be hard or soft. For a hard deadline it is assumed that there is
no value in achieving a goal after the deadline has passed. For a soft deadline, it may
still make sense to continue trying to achieve the goal after the deadline has passed,
provided that this does not interfere with higher priority goals. A priority specifies the
relative importance of achieving the goal. Priorities define a partial order over events
and are expressed as non-negative integer values, with larger values taken to indicate
higher priority. For example, the event

+!remove (paper, space2) [8am, 10]

indicates the acquisition of a goal to remove some paper from space2 with deadline 8am
and priority 10. By default the deadline is equal to infinity and the priority is equal to
Zero.

2.3 Plans

Plans specify sequences of actions and subgoals an agent can use to achieve its goals or
respond to changes in its beliefs. The head of a plan consists of a triggering event which

3 As in Prolog, constants are written in lower case and variables in upper case, and all negations
must be ground when evaluated.
* In the interests of brevity, we do not consider goal deletion events.



specifies the kind of event the plan can be used to respond to, and a belief context which
specifies the beliefs that must be true for the plan to be applicable. The body of a plan
specifies a sequence of actions which need to be executed and subgoals which need to
be achieved in response to the triggering event.

Actions are the basic operations an agent can perform to change its environment
in order to achieve its goals. Actions are denoted by action symbols and are written
a(ty,...,t,) where a is an action symbol and ¢1, . . . , ,, are the (ground) arguments to
the action. For example, the action

move (trashcan)

will cause the agent to move from a parking space to the trashcan.

Plans may also contain achievement and test (sub)goals. Achievement subgoals al-
low an agent to choose a course of action as part of a larger plan on the basis of its
current beliefs. An achievement subgoal ! g(¢1,...,t,) gives rise to a internal goal ad-
dition event 4! g(t1, ... ,t,) which may in turn trigger subplans at the next execution
cycle. Test goals are evaluated against the agent’s belief base, possibly binding variables
in the plan. For example, the plan

+litter(L,S) : at(robot,Sl) & not parked(C,S) <-
move (S); pickup(L); move (trashcan); deposit(L).

causes the agent to remove litter from the parking space the agent is in if there is no car
parked in the space.
The BNF for plans is given below:

belief-event = “+” atomic-formula | “=” atomic-formula

goal-event 2= “+ 17 atomic-formula [realtime-spec]

belief-plan 2=“@” label [ “atomic” ] belief-event [ “:” context] “<-"
(body | “!”” atomic-formula realtime-spec ) “.”

goal-plan n=“@” label [ “atomic”] goal-event [ “:” context] “<=" body

context = true | literal ( “s&” literal )*

literal ::= atomic-formula | “not” atomic-formula

atomic-formula ::=p(ty,. .. ty)

realtime-spec = “[” (( hd(time) | sd(time) ) “)” number ) |
( hd(time) | sd(time) ) | number “1”

body = true | step (“; 7 step )*

step = a(ty, ..., tn) | “17 atomic-formula | “?” atomic-formula

where label is a string uniquely identifying a plan, p and a are respectively predicate
and action symbols of arity n > 0, and ¢4, . . ., t,, are terms.

AgentSpeak(RT) allows a potentially unbounded number of plans to execute con-
currently (assuming actions are not executing on the same CPU as the interpreter).
However, plans may be declared as requiring exclusive access to a single ‘lock’. In-
tentions which do not contain an atomic plan may execute concurrently. If two plans
are mutually exclusive, the execution of the intentions containing the plans must be
serialised, as explained below.

[T3EE1)



The concurrent execution of intentions in AgentSpeak(RT) is similar to capabilities
provided by atomic plans in Jason [1] and 2APL [6]. An atomic plan is a plan which
should be executed ensuring that its execution is not interleaved with the execution of
the goals and actions of other plans of the same agent. The resulting agent system is
more expressive than Jason and 2APL in one sense, as Jason and 2APL cannot run non-
atomic plans in parallel with an atomic one. However, it is less expressive in another
sense, as in Jason and 2APL a non-atomic plan can have an atomic subplan.

In order to determine whether a plan can achieve a goal by a deadline with a given
level of confidence, each action and plan has an associated execution time profile which
specifies the probability that the action or plan will terminate successfully as a function
of execution time. The expected execution time for an action or plan ¢ at confidence
level « is given by et(¢, ). The execution time profile will typically be influenced by
the characteristics of the environment in which the agent will operate. For example, the
probability of a plan to move to a location terminating successfully within a given time
may be lower in environments with many obstacles than in environments with fewer
obstacles.

Execution time profiles can be derived from an analysis of the agent’s actions, plans
and environment, or using automated techniques, e.g., stochastic simulation. In the sim-
ple case of a plan consisting of a sequence of actions, the execution time profile for the
plan can computed from the execution time profiles of its constituent actions. However
for plans which contain subgoals, the execution time will depend on the relative fre-
quency with which the alternative plans for a subgoal are selected in the agent’s task
environment.

2.4 Intentions

Plans triggered by changes in beliefs or the acquisition of an external (top-level) achieve-
ment goal give rise to new intentions. Plans triggered by the processing of an achieve-
ment subgoal in an already intended plan are pushed onto the intention containing the
subgoal. Each intention consists of a stack of partially executed plans, a set of substi-
tutions for plan variables, a set of shared resources, a deadline and priority. The set
of variable substitutions for each plan in an intention results from matching the belief
context of the plan and any test goals it contains against the agent’s belief base. The
deadline and priority of an intention are determined by the triggering event of the root
plan.

Each intention can be in one of two states: executing and executable. An intention
is executing if the first action in the topmost plan in the stack of partially executed plans
which forms the intention is currently executing. If the first step in the topmost plan is a
goal or an action which is not currently executing, the intention is said to be executable.

2.5 The AgentSpeak(RT) Interpreter

The interpreter is the main component of the agent. It manipulates the agent’s belief
base, event queue and intention structure, deliberates about which plan to select in re-
sponse to belief and goal change events, and schedules and executes intentions.



Algorithm 1 AgentSpeak(RT) Interpreter Cycle

E := EUGU belief-events(B, P)
B := update-beliefs(B, P)
for all (e, 7) € E do
Oc := {m0 | 0 is an applicable unifier for e and plan 7}
70 := So(Oe)
if 70 # () and 7 ¢ I then
I:=IUnb
else if 70 #~ () and 7 € I then
I:=(I\ 1)U push(mho, ) where o is an mgu for w6 and 7
else if 70 = () and 7 € I then
I=1\71
end if
end for
I := SCHEDULE()
for - ¢ I do
if s(7) = now A executable(T) then
if completed(first(body(top(7)))) then
™ 1= pop(T)
push(head(m) «— rest(body(r)),T)
end if
if first(body(top(7))) = true then
m:= pop(T), ™ := pop(T)

push((head (") + rest(body(r )))0,7')
where 6 is an mgu such that head(7)0 =
else if first(body(top(7))) =lg(t1,...,tn then

E = {(+'g(t17 o 7tn)7 7—)}
else if first(body(top(7))) = ?g(t1,...,t,) then

if 7g(t1,...,t,)0 is an answer substitution then
7 := pop(7)
push((head(m) «— rest(body(m)))0, T)
else
I:=I\7
end if
else if first(body(top(7))) = a(t1,...,tn) then
execute(a(ti, ..., tn))
end if
break

end if
end for




The interpreter code is shown in Algorithm 1. B is the agent’s belief base, E is the
set of events, [ is a partially ordered set of intentions. The functions head and body
return the head and body of an intended plan, and first and rest are used to return the
first and all but the first elements of a sequence. The function fop returns the topmost
plan in an intention. The function pop removes and returns the topmost plan of an
intention and the function push takes a plan (and any substitution) and an intention and
pushes the plan onto the top of the intention. The function executable takes an intention
and returns true if the intention is executable and the function completed returns true if
the first step in an executable intention is an action that has completed execution. The
function execute initiates the execution of an action in a separate thread.

In contrast to AgentSpeak(L) which processes a single event at each interpreter
cycle, to ensure reactivity, AgentSpeak(RT) iterates through the set of events F, and,
for each event e € FE, generates a set of applicable plans O.. A plan is relevant if
its triggering event can be unified with e and a relevant plan is applicable if its belief
context is true in B’. In general, there may be many applicable plans or options for each
event. A selection function So chooses one of these plans for each event to give a set
of options O = {So(0,) | e € E}. So is a partial function, i.e., it is not defined if
O, is empty. If the event was triggered by a subgoal of an existing intention, failure
to find a applicable plan for the subgoal, i.e., if O, = (), aborts the intention which
posted the subgoal and the intention is removed from I. For each plan 7 in the set of
applicable plans, if the triggering event for 7 was internal, the plan is pushed on top of
the existing intention in [ that generated the triggering event. If the triggering event for
7 was external, a new intention 7 is created and added to 1.

The scheduling algorithm is applied to I and returns a priority-maximal set of fea-
sible intentions together with their start times. Finally, an executable intention is chosen
from I for execution. An intention is executable if the first step in the topmost plan in
the stack of partially executed plans that forms the intention is a goal or an action which
is not currently executing (i.e., it has either completed executing or has yet to begin
execution). If the first step in an executable intention is an action which has completed
execution, the completed action is removed from the plan. Execution then proceeds
from the next step of the topmost plan in the intention.

Executing an executable intention involves executing the first goal or action of the
body of the topmost plan in the stack of partially executed plans which forms the inten-
tion. Executing an achievement goal adds a corresponding internal goal addition event
to F’. Executing a test goal involves finding a unifying substitution for the goal and the
agent’s base beliefs. If a substitution is found, the test goal is removed from the body of
the plan and the substitution is applied to rest of the body of plan. If no such substitution
exists, the intention is dropped and removed from I. Executing an action results in the
invocation of the Java code that implements the action and changes the state of the in-
tention from executable to executing. We assume that action execution is performed in a
separate thread, and execution of the AgentSpeak(RT) interpreter resumes immediately
after initiating the action. Reaching the end of a plan (denoted by frue below) causes
the plan to be popped from the intention and any substitutions for variables appearing
in the head of the popped plan are applied to the topmost plan in the intention.



The AgentSpeak(RT) Scheduler A schedule is a priority-maximal set feasible inten-
tions together with their start times. A set of intentions {71, . .., 7, } is feasible if

1. each intention will complete execution before its deadline with probability at least
«, that is, for each scheduled intention 7;

s(m;) + et(mi, ) — ex(1;) < d(7;)

where s(7;) is the time at which 7; will next execute, ex(7;) is the time 7; has spent
executing up to this point, and d(7;) is the deadline for 7;; and

2. if 7; is an atomic intention, no intention 7; scheduled to execute concurrently with
7i {15 | s(m:) < s(75) + et(5, ) A s(75) < s(7;) + et(m, )} is atomic.

A set of intentions is priority-maximal if no more intentions can be added to the sched-
ule if the scheduled intentions are to remain feasible at the specified confidence level,
and intentions which are dropped are incompatible with some scheduled higher priority
intention(s).

Algorithm 2 Scheduling Algorithm
function SCHEDULE(])
I,:=0,T, p = 1]
for all 7 € I in descending order of priority do
if ~atomic(7) then
s(1) := now
if I, U {7} is feasible then
Iy =TI, J{r}
end if
else
t := now
Il.=0
forall 7' € I'; do
if d(7") < d(7) then
ri=r;u{r'}
t:=s(1") +et(r,a) — ex(r)

else
s(t") = s(7') + et(r,a) — ex(T)
ri=riui{r'}
end if
end for
s(r) =t
if I'; U {7} is feasible then
rs=r;u{r}
end if
end if

end for
return [}, U I,
end function




Scheduling in AgentSpeak(RT) is pre-emptive in that the adoption of a new high-
priority intention 7 may prevent previously scheduled intentions with priority lower
than 7 (including currently executing intentions) being added to the new schedule. In-
tentions which exceed their expected execution time and/or their deadline may or may
not be dropped, depending on whether the deadline is hard or soft and the amount of
uncommitted or ‘slack’ time in the schedule. If an intention has a hard deadline that has
been exceeded, the intention is dropped. If an intention has a soft deadline that has been
exceeded, its deadline is reset to oo and its priority to 0. The agent will continue to purse
the intention if it can be executed concurrently with other, higher priority intentions.
However if the intention is atomic, it will be scheduled after all other atomic intentions.
An intention 7 which has exceeded its expected execution time but not its deadline has
its priority reduced to 0 and its expected execution time reset to ex(7) + d,, where J,
is the expected time required to execute the next step in the intention. 7 will only be
scheduled if, after scheduling all higher priority intentions, there is sufficient slack in
the schedule to execute at least one step in 7 before its deadline. Given sufficient slack
in the schedule, 7 can therefore still complete successfully. It will be however dropped
if it exceeds its deadline

The scheduling algorithm is shown in Algorithm 2. We assume that the deadlines,
priorities and expected execution times of the input intentions [ are adjusted as de-
scribed above. The set of candidate intentions is processed in descending order of pri-
ority. For each intention 7, if the intention is atomic it is added to the schedule if it can
be inserted into the schedule in deadline order while meeting its own and all currently
scheduled deadlines. If the intention is not atomic an attempt is made to schedule it at
s(7) := now. Intentions which are not feasible in the context of the current schedule are
dropped. The resulting schedule can be computed in polynomial time (in fact, quadratic
time) in the size of the set I, and is priority-maximal (see [21]).

3 Operational Semantics

This section gives semantics to AgentSpeak(RT) based on the operational semantics for
AgentSpeak, by showing which rules have to be changed to new ones that are specific
to AgentSpeak(RT). An earlier version of the operational semantics for AgentSpeak
appeared in [4]. The semantics rules for communication appeared in [14] and were later
improved and extended in [19]. The latter version (but without communication rules)
forms the basis for this section.’

The operational semantics is given by a set of rules that define a transition relation
between configurations (ag, C, T, s) where:

— An agent program ag is formed by a set of beliefs bs and a set of plans ps (as
defined by the BNF in section 2.3 above).
— An agent’s circumstance C'is a tuple (I, F/, A) where:
e [isasetof intentions {7,7’,...}; each intention i is a stack of partially instan-
tiated plans.

3 Note that in the rules below, the notation for events, plans and intentions has been modified to
be consistent with that in [21].



e Fisasetofevents {(e,7),(e/,7’),...}. Each event is a pair (e, 7), where e is
a triggering event and 7 is an intention (a stack of plans in case of an internal
event, or the empty intention T in case of an external event).

e Ais a set of actions to be performed in the environment.

— T is a tuple (R, Ap,t, e, p) which keeps track of temporary information that is
required in subsequent stages within a single reasoning cycle. Note that structure of
each of these components have been changed from the original semantics because
AgentSpeak(RT) handles all outstanding events in a single reasoning cycle, which
is a significant change from original AgentSpeak. The components of T are:

e R for the mapping from each of the events to the set of its relevant plans.

o Ap for the sets of applicable plans (the relevant plans whose contexts are true),
again a set for each of the events currently in the set of events.

e 1, ¢, and p record, in the original semantics, a particular intention, event, and
applicable plan (respectively) being considered along the execution of one rea-
soning cycle; ¢ is not used here, and € and p have been changed to be respec-
tively a set rather than a single event and a mapping from each of the outstand-
ing events to the selected applicable plan (i.e., intended means) to handle it.

— The current step s within an agent’s reasoning cycle is symbolically annotated by
s € {SelEv, RelPI, ApplPl, SelAppl, AddIM, Sellnt, Execlnt, ClrInt}, which stands
for: selecting a set of events, retrieving all relevant plans, checking which of those
are applicable, selecting applicable plans (the intended means), adding the new in-
tended means to the set of intentions, selecting an intention, executing the selected
intention, and clearing an intention or intended means that may have finished in the
previous step.

In the interests of readability, we adopt the following notational conventions in our
semantic rules:

— If C is an AgentSpeak agent circumstance, we write C'r to make reference to the
component E' of C'. Similarly for all the other components of a configuration.
— We write 7[r] to denote the intention that has plan 7 on top of intention 7.

New Rules for Event Selection

As AgentSpeak(RT) typically handles all outstanding events, the SelEv rules have been
changed as follows.

(ag,C,T,SelEv) — (ag,C’, T’ RelPI)

where: Clp = Cg\ SEs
T! =SEs

(SelEv)

Above, SE's is a set of events, those that have been selected by Sg; by default in
AgentSpeak(RT), Sg selects all the events in the set of events.

Rule SelEv, skips to the intention execution part of the cycle, in case there is no
event to handle. It is the same as in the original AgentSpeak semantics:



Ce={}
(ag,C,T,SelEv) — (ag, C, T, Sellnt)

(SelEv3)

New Rules for Relevant Plans

In contrast to the original AgentSpeak, we now have to keep track of the set of relevant
plans not for one chosen event but for a set of events (typically all currently outstanding
events). T therefore keeps track of this set of events. For each of the events in 7, we
find a set of relevant plans for it and keep track of that in Ts.

T. ={(e,r)}UREs  RelPlans(ag,s,e) # {}

Rel
(ag, C,T,RelPl) — (ag, C,T", RelPI) (Rel,)
where: T, = Tr U {(e, ) — RelPlans(agps, e)}
T! = REs
Events with no relevant plans are ignored, as shown in the rule below.
T. = {(e, URE RelPlans 5,€) =
L= {(e,T)} URES (agper) = 1} Rely)

(ag,C,T,RelPl) — (ag, C, T", RelPl)
where: T. = REs

Finally, we need an additional rule that is used to go to the next stage of the reason-
ing cycle when relevant plans have been found for all previously selected events.

1. = {}
(ag,C,T,RelPl) — (ag, C, T, ApplPI)

(Rels)

New Rules for Applicable Plans

Again we need a couple of rules to handle each of the mappings from events to a set
of relevant plans, filtering them to keep only the applicable ones (in 74,). Rule Apply
handles the normal case (i.e., where applicable plans are found); Appls says that events
with no applicable plans are ignored;® Appls deals with the case where we have updated
all mappings and there are events with sets of applicable plans for which intended means
need to be selected; finally, Apply handles the case where no new intended means will
result in this reasoning cycle.

Tr = {ev+— RPs} UERs AppPlans(agys, RPs) # {}
(ag, C, T, ApplPl) — (ag, C, T", AppIPI)

where: T, = Ta, U {ev — AppPlans(agys, ER)}
T, =ERs

(Apply)

® Note that we do not consider here the plan failure handling mechanism introduced in some of
the extensions of AgentSpeak.



Tr ={ER} UERs AppPlans(agss, ER) = {}

Appl
(ag, C, T, AppIPl) — (ag, C, T", AppIPl) (Applz)
where: Tj, = ERs
T = Tap #
r={} p #{} (Appls)
(ag,C, T, ApplPl) — (ag, C, T, SelAppl)
T = T =
R =4 = (Apply)

(ag, C, T, ApplPl) — (ag, C, T, Sellnt)

New Rules for Selecting an Applicable Plan

As before, we need two rules: one to handle a particular mapping from an event to
applicable plans and one for when all mappings have been processed.

Tap = {ev — APs}UEAs So(APs) = (m,0)

SelAppl
(ag, C, T, SelAppl) — (ag, C,T", SelAppl) (SelApply)
where: Tg =T,U{ev s (m,0)}
T, = EAs
T =
= U (SelApplz)

(ag, C, T, SelAppl) — {(ag, C, T, AddIM)

New Rules for Adding an Intended Means to the Set of Intentions

For each mapping of an event to the chosen intended means, we need to move it to the
set of intentions; as before this requires two rules, depeding on whether the particular
event was internal or external. Then we need rule EndIM for when all mappings have
been processed.

It is important to note that the set C7 updated here is subsequently ordered by the
schedulling algorithm presented in section 2, as stated in rules EndIM. In future work,
we aim to formalize the scheduling of intentions within the operational semantics, by
giving further rules that describe the schedulling of the intentions based on the real-time
criteria.

T,={(e,T)+ (m,0)} UEIs
(ag, C, T, AddIM) — (ag, ", T", AddIM)

where: Cp = CrU{[n0] }
T, =FEls

(ExtEv)



T,={(e,7) — (m,0)} UEIs

IntE
(ag, O, T, AddIM) — (ag, C", T, AddIM) (Intkv)
where: C; = CruU{r[(n0)] }
T/ = Els
T =
=4 (EndIM)

(ag,C,T,AddIM) — (ag,C", T, Sellnt)

where: C'} = SCHEDULE(CY)

4 Related Work

Two strands of work on agent programming languages are related to work reported in
this paper.

One strand is work on agent programming languages designed for developing agents
with real-time capabilities. For example, the Procedural Reasoning System (PRS) [10]
and PRS-like systems, e.g., JAM [12] and SPARK [15], have features such as met-
alevel reasoning which facilitate the development of agents for real time environments.
However, to guarantee real time behaviour, these systems have to be programmed for
each particular task environment—there are no general methods or tools which allow
the agent developer to specify that a particular goal should be achieved by a speci-
fied time or that an action should be performed within a particular interval of an event
occurring. In contrast, AgentSpeak(RT) provides a high-level programmatic interface
to a standardised real-time reasoning mechanism for tasks with different priorities and
deadlines.

More closely related to real-time aspects of AgentSpeak(RT) are architectures such
as the Soft Real-Time Agent Architecture [22] and AgentSpeak(XL) [2]. These ar-
chitectures use the TAMS (Task Analysis, Environment Modelling, and Simulation)
framework [7] together with Design-To-Criteria scheduling [23] to schedule intentions.
TZAMS provides a high-level framework for specifying the expected quality, cost and
duration of of methods (actions) and relationships between tasks (plans). Like AgentS-
peak(RT), methods and tasks can have deadlines, and TAEMS assumes the availabil-
ity of probability distributions over expected execution times (and quality and costs).
DTC decides which tasks to perform, how to perform them, and the order in which they
should be performed, so as to satisfy hard constraints (e.g., deadlines) and maximise the
agent’s objective function. In comparison to AgentSpeak(RT), TAEMS allows the spec-
ification of more complex interactions between tasks, and DTC can produce schedules
which allow interleaved or parallel execution of tasks. However the view of ‘real-time’
used in these systems is different from that taken by AgentSpeak(RT), for example in
considering only soft deadlines (all tasks still have value after their deadline).

As mentioned in the Introduction, AgentSpeak(RT) was first introduced in [21]. An
earlier version of this work (extending PRS rather than AgentSpeak with priorities and
deadlines) was reported in [20].

Another strand of related work is research on the formal semantics of agent pro-
gramming languages. Many agent-oriented programming languages have been formalised



using the operational semantics approach, for example, AgentSpeak[19], GOAL [11],
2APL [6], and CAN [24], as well as the AIL effort towards unifying semantics [8].
However, to the best of our knowledge this work has not dealt with issues relating
to real-time agency, and to this extent the work presented here is novel. There are,
of course, various other approaches in the literature that have logical semantics, for
example, MINERVA [13], and others, such as CLAIM [9] that have a formal model
based on process algebra, but the operational semantics approach seems more popular
in the agent programming language community. There are also important agent pro-
gramming languages and platforms that have no formal semantics, such as JADEX [17]
and SPARK [16], for example.

5 Conclusion

In this paper we described a modified version of AgentSpeak(RT) with parallel exe-
cution of intentions and with soft as well as hard dealdines. It is intended to be more
programmer-friendly and flexible compared to the original version introduced in [21]
which was designed to provide provable probabilistic guarantees of real-time behaviour.
We provide an operational semantics for the language in order to make it precise and
facilitate analysis of program written in the language.
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