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Abstract

Following decades of sustained improvement, metaheuristics are one of the
great success stories of optimization research. However, in order for research
in metaheuristics to avoid fragmentation and a lack of reproducibility, there is
a pressing need for stronger scientific and computational infrastructure to sup-
port the development, analysis and comparison of new approaches. To this
end, we present the vision and progress of the “Metaheuristics ‘In the Large’ ”
project. The conceptual uderpinnings of the project are: truly extensible algo-
rithm templates that support reuse without modification, white box problem
descriptions that provide generic support for the injection of domain specific
knowledge, and remotely accessible frameworks, components and problems
that will enhance reproducibility and accelerate the field’s progress. We ar-
gue that, via principled choice of infrastructure support, the field can pur-
sue a higher level of scientific enquiry. We describe our vision and report on
progress, showing how the adoption of common protocols for all metaheuris-
tics can help liberate the potential of the field, easing the exploration of the
design space of metaheuristics.

Keywords: Evolutionary Computation, Operational Research, Heuristic
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1. Introduction

Optimization problems have myriad real world applications [42] and have
motivated a wealth of research since before the advent of the digital computer
[25]. Recent decades have seen enormous progress in the discipline of meta-
heuristic optimization1. In contrast to exact approaches that guarantee opti-
mality, a metaheuristic is an iterative master process that guides and modi-
fies the operations of subordinate heuristics to efficiently produce high-quality

∗Corresponding author: jerry.swan@york.ac.uk. University of York, York YO10 5DD, UK.
1In this article (and in the spirit of Sörensen and Glover, [101]), we reserve the term “meta-

heuristic’ for the generic, cross domain framework and the term “heuristic” for a customization of
such a framework to one or more specific domains.
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solutions. At each iteration, it manipulates either a complete (or partial) sin-
gle solution or else a collection of such solutions. The subordinate heuristics
may be high or low level procedures, or a simple local search, or just a con-
struction method. The family of metaheuristics includes, but is not limited
to: adaptive memory procedures, tabu search, swarm intelligence, greedy ran-
domized adaptive search, variable neighborhood search, evolutionary meth-
ods, genetic algorithms, scatter search, neural networks, simulated annealing,
and their hybrids [101, 85]. One of the major advantages of metaheuristics is
that they are abstract search methods [96]: the underlying search logic can be
applied to any problem which can be decomposed into a few elementary as-
pects, namely solution representation, solution quality evaluation and some
notion of locality. The latter denotes the ability to generate neighboring solu-
tions via a heuristically-informed function of one or more incumbent solutions.

Very broadly speaking, one might distinguish between classical OR and
metaheuristic approaches with respect to the former’s emphasis on analytic
methods and the latter’s emphasis on empirical ones [108]. An analytic ap-
proach uses problem domain information (and typically also a priori human in-
genuity) to derive effective algorithms for search components — edge-assembly
(EAX) crossover for the Travelling Salesman Problem being one such exam-
ple [71]. Indeed, the pre-eminent successes of OR often arise directly from
a direct match between the solver (e.g. linear programming) and the analytic
characteristics of the problem. In contrast, the use of analytic problem charac-
teristics to choose solvers is not part of mainstream metaheuristics. The empir-
ical approach performs configuration tuning (by hand, using statistical design
or some Machine Learning technique) to create a metaheuristic biased either of-
fline by a target distribution of problem instances and/or online by the search
trajectory.

Despite the significant progress in metaheuristic optimization research, it is
increasingly acknowledged within the scientific community that the field suf-
fers from a duplication of effort and siloing of research between papers, groups,
and software frameworks. This lack of re-use is evident at both conceptual and
implementation levels:

• Conceptual: an over-reliance on reasoning by metaphor [100] hides com-
monalities between algorithms, leading to the repeated discovery of the
same ideas and heuristics, and widespread duplication of research effort.

• Implementation: despite past efforts in developing software frameworks,
there is a tendency to re-implement metaheuristics from scratch, hinder-
ing reproducibility and replicability [107, 76, 106].

This duplication of effort limits scientific progress; instead of building a co-
hesive body of knowledge consisting of robust scientific conclusions, accumu-
lated wisdom in the field is more akin to “folklore”: observations over individ-
ual algorithms and optimization problems, without a structured underlying
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narrative. In the words of Pamparà, there is a “throw away” research culture
[76]: it is difficult to locate and compare against prior-art, and there is a lack of
understanding as to which heuristics work best and in what context. Despite
the availability of many software libraries, it is difficult to reuse existing imple-
mentations — in particular, it is extremely difficult to combine heuristics from
different libraries or incorporate domain-specific knowledge in a general man-
ner, which has hindered the creation of easily testable and deployable meta-
heuristic pipelines.

While many authors have identified and critiqued a lack of rigor and weak
empirical method in the field (e.g. [46, 47, 21]), we are more concerned by the
lack of generality of enquiry, and consequently the generality of conclusions.
We believe that, instead of examining individual datapoints concerning a par-
ticular algorithm implementation and a problem set of an author’s choosing,
we should be investigating deeper scientific questions, such as:

Q1 Why do our methods work? In particular, how can we assign credit to
individual components and eliminate those that do not matter?

Q2 How can we analytically arrive at a solution method given a problem de-
scription? For example, consider problem reduction: is it practically useful
to map an optimisation problem of a given type into another? Is there
a ubiquitous “SAT-like” problem to which many optimisation problems
can usefully be reduced to and solved in practice?

Q3 Is it possible to more fully automate the exploration of the space of meta-
heuristics, allowing researchers to focus on improving that automation?

To these ends, this paper describes the vision and progress of ‘Metaheuris-
tics in the Large’ (MitL). MitL is a research community initiative (first intro-
duced in Swan et al [107]) that seeks to address the lack of re-use at both
conceptual and implementation level. MitL is both a synthesis and exten-
sion of existing ideas dispersed throughout the literature, and simultaneously a
project producing new software tools and exemplars to show how these prob-
lems can be overcome. We draw on many contributions previously made in
this direction: hyper-heuristics, constraint programming and the fundamen-
tal principles of substitutability of software components. We rely heavily on
functional programming constructs to express metaheuristic components in
a truly reusable way. In constructing this synthesis, we have exposed gaps
in the literature that we are now closing with new contributions: in particu-
lar the MitL initiative has introduced a) the “Automated Open Closed Prin-
ciple” [106], which shows how to express algorithm frameworks as ‘closed’
design spaces which can nonetheless be configured in an open-ended man-
ner via combinatorial assembly, and b) the removal of the domain barrier from
hyper-heuristics [108], essential in raising the level of genericity with respect to
problem domains. These address Q3, making easier automation of the space of
metaheuristics, and hence progress towards answers to questions Q1 and Q2.
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This paper provides a survey, progress report and roadmap of our attempts
to reduce the fragmentation of metaheuristics research, improve reproducibil-
ity, and accelerate progress through infrastructure improvement. We have
made several concrete steps forward and can see the road ahead, but there
are many problems left to be solved.

2. Contemporary Research Practice in Metaheuristics

One may characterize researchers as being broadly concerned with the scien-
tific practice of obtaining concise explanations of empirical observations [86].
In constrast, for practitioners (e.g. in industry), the goal is to maximally exploit
the information obtained via research, with minimal expert knowledge. We
now present in more detail some of the challenges facing metaheuristic re-
search, drawing on previous discussions in the literature. These observations
motivate the MitL approach described in Section 3.

2.1. Replication and Reuse
Scientific progress in any discipline requires ready determination of the

nature and merits of previous contributions, and the ability to build on the
work of others to make further progress. Algorithm descriptions in many
papers on metaheuristics are far from precise enough to allow independent
re-implementation, and public access to the associated source code is rarely
mandated by editors or programme committees. As a consequence, replication
studies are very uncommon: a recent such paper, the only replication study in
metaheuristics of which the authors are aware, obtained results which were an
order of magnitude worse than those originally claimed [102]2.

As noted above, metaheuristics, and in particular Evolutionary Computa-
tion research, has developed something of a ‘throw away’ culture [76, 21], in
which a large percentage of researchers neither build upon the research im-
plementations of their peers nor create such re-usable software artifacts them-
selves. This inability to consolidate is in contrast to other research areas that
have successfully embraced re-use: for example the SBML standard 3 in sys-
tems biology, which allows the researcher to easily create test and deployment
pipelines [55]; or the Taverna framework4 used for workflow construction in a
variety of other scientific disciplines. One might wonder why metaheuristics,
which enjoy a small and ubiquitous set of abstract components such as accep-
tance or perturbation, has seen relatively little progress in large-scale re-use.
It is possible that the very simplicity of metaheuristics at the component level
is in part responsible for this culture of Babel-like proliferation. Metaheuris-
tic researchers or practitioners often choose the creation of ad hoc solutions to

2It should be emphasized that this problem is not restricted to metaheuristics: a recent
study [21] showed that in the computer science papers considered, 34.65% of them were not re-
peatable and the authors could not conclusively determine repeatability in another 20.87% of cases.

3http://sbml.org
4https://taverna.incubator.apache.org
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using pre-existing resources, perhaps because implementing baseline versions
of (say) Simulated Annealing or Genetic Algorithms from scratch is relatively
simple — provided they are not intended for reuse by others.

The last few decades have seen the development of many popular meta-
heuristic libraries, implemented in a variety of programming languages, some
of which feature components that are (in principle) reusable at the framework
level. Taking Evolutionary Algorithms as an example, Parejo et al. [82] pro-
vide an overview of commonly used libraries along with their performances on
benchmarks, including HeuristicLab 5 [114], ECJ 6 [62], FOM 7 [81], Opt4J 8 [60],
jMetal 9 [29] and JAMES 10 [26]. The majority of these libraries support compo-
nent interoperability within their frameworks. However, a component imple-
mented in a specific framework cannot readily be reused within, or hybridized
with, another framework. Recognizing this problem, an early attempt [67]
sought to achieve interoperability through the use of a common description
language based in XML, albeit restricted in focus to evolutionary algorithms.
PISA [13] was another early attempt to achieve interoperability across frame-
works11. In PISA, the problem domain component is separated from the meta-
heuristic component, and implementations of those components are reusable
and interoperable, communicating via a file-based textual description.

In practice the extensibility of these frameworks is limited (though uniquely,
to our knowledge, a progression towards mechanisms that enable wider re-
use can be seen in CIlib [84, 78, 20, 76]), and, crucially, implementation often
requires the modification of internal source code, presenting a barrier to dis-
tribution, reuse, and understanding for other practitioners. We are left with
a fragmented set of implementations that are incapable of representing an ex-
tensible design space for metaheuristics, without requiring modification to the
frameworks themselves.

2.2. Transparency
Metaphorically-inspired approaches have recently suffered strong criticism

for their lack of rigor. Where the use of metaphor obscures specific solution-
domain mechanisms [100] the novelty of the metaphorical contribution be-
comes difficult to determine. At worst, this can lead to the re-invention or
renaming of mechanisms that are already well-understood. For example, it
has been argued that the popular ‘Harmony search’ metaheuristic can be for-
mulated as a simple variant of the foundational ‘Evolution Strategies’ approach
[116], and it has recently been claimed [18] that the ‘Intelligent Water Drops’ al-
gorithm is similarly not novel. Such ‘explanation by metaphor’ unnecessarily

5https://dev.heuristiclab.com/trac.fcgi/wiki/
6https://cs.gmu.edu/˜eclab/projects/ecj/
7http://www.isa.us.es/fom/
8http://opt4j.sourceforge.net/
9http://jmetal.sourceforge.net/

10http://www.jamesframework.org/
11http://www.tik.ee.ethz.ch/pisa/
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obfuscates the field and makes it appear impenetrable to outsiders.
This problem is at least partly cultural: the ‘reward’ of publications and ci-

tations in metaheuristics is often more readily achieved by producing a method
that ‘beats the competition’ than one that makes the additional effort to be
transparent about the contribution of its mechanisms [2]. While improving
on the state of the art should always be a key driver for a research commu-
nity, the relentless pursuit of (apparent) novelty and the ‘up-the-wall game’
[100] is counter-productive. For as long as researchers continue to labor in
relative isolation, the risks of overfitting and misidentifying novelty remain
present. In contrast, we propose in the following sections a more ‘bottom up’
approach. With such an approach, new solution methods can be grounded
in the principled decomposition of existing ones [58], thereby allowing ready
identification of potential novelty.

2.3. Knowledge Discovery
Hooker [41] and Sörensen [100] argue that there needs to be more scien-

tific analysis of how metaheuristics solve problems. If a metaheuristic claims
to work in some way — say, for example, it is claimed that a particular op-
erator works by moving the search out of local minima — then experiments
should be performed that test this, or (even better) a theoretical justification
provided. This is a particular problem for complex metaheuristics, where a
number of innovations are often introduced in tandem. Compounding this
issue, the existence of ‘No Free Lunch’ theorems for optimization [117] im-
plies that metaheuristics often require domain-specific heuristics for success
[108], and current practices mean that any expert knowledge on which mech-
anisms work well on a given problem must typically be reverse engineered
from publications on a per-case basis. To move to a more generalized level of
enquiry, it is necessary to combine, exchange, and reason about metaheuris-
tics and their component parts (such as acceptance, selection or perturbation)
on a far larger scale than has been possible to date. Significantly, we believe
that this requires a shift in community culture from ‘individual competition’ to
‘collective knowledge discovery’ and the development of a large pool of shared
experimental data from which to draw general conclusions.

One approach to deriving such general conclusions from a large pool of
data is the application of data mining and machine learning (ML) techniques
successfully used by other communities (e.g. meta-learning [79]). Individual
publications have applied ML methods to selecting or constructing heuris-
tics, and provide some evidence for their efficacy: Xu et al. [119] proposed
a portfolio solver that won several SAT competitions by automatically select-
ing between various state-of-the-art SAT solvers based on a learned model of
their relative performance conditioned on problem properties; Thabtah and
Cowling [111] show associative classification can indicate which heuristic to
use in each iteration of a personnel scheduling problem; Miranda et al. [69]
used fitness landscape information to decide whether to build or select a new
particle swarm optimization algorithm; Nallaperuma et al. [72, 73] generated
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predictive models of the best parameters from ant colony optimization meth-
ods based on features of previously evolved instances; Malan and Engelbrecht
[63] used landscape characteristics to predict the success of a collection of PSO
algorithms on unseen continuous optimization problems; Consoli et al. [22]
used online learning and features extracted from the fitness landscape of the
problem to choose the most appropriate genetic operator and Asta et al. [7, 8]
integrated knowledge discovery directly into the search algorithm.

More generally, Smith-Miles et al. [97] proposed a methodology where in-
stances of a problem are represented by a set of features in an instance space,
and machine learning algorithms used to classify the regions of the space where
algorithms are expected to perform well or poorly, given many insights on al-
gorithms strengths and weaknesses. Such feature-based approaches provide
a baseline for generating and mining knowledge of relevance to metaheuristic
research and practice.

The re-use of such knowledge will first require a knowledge-base and the
associated effort to constantly update it. Initial efforts towards a schema for
such a database was presented by Scheibenpflug et al [95]: their Optimiza-
tion Knowledge Database (OKD), contained data about algorithms, the prob-
lems they were used to solve and their parameters. The authors emphasize
that populating the database is time-consuming and requires the effort of the
whole community. Other works in the literature have created specific instances
of such datasets [69, 97]. Such a community effort to effectively create and pop-
ulate a knowledge base is paramount for the success of metaheuristics mining.
Given a sufficiently rich representation for components, such analysis could be
carried out in a semi-automated way.

2.4. Automated Design
Contemporary scientific and engineering disciplines rely heavily on stan-

dardization and automated tools. The design of these tools and their underly-
ing algorithms tends to be an ad hoc process, often regarded as an art rather
than a science [44]. As a consequence, the design of an algorithm is time-
consuming and costly. Furthermore, the process itself is rarely documented,
making it untraceable, i.e. it is often unclear what motivated certain design de-
cisions (e.g. expert knowledge, experimentation, intuition) and which alterna-
tives were considered. Not only do we lose potentially interesting information
and insights which can be used to design algorithms in the future, it also makes
the process susceptible to accidental human bias.

The automated design of algorithms has significant potential to address
these issues. Unsurprisingly, attempts to (partially) automate algorithm de-
sign, in one form or the other, are ubiquitous and can be traced back to the
origins of computational intelligence (e.g. program synthesis [64], genetic pro-
gramming [56], swarm algorithms [51], algorithm selection [91], algorithm con-
figuration [12]). However, the application of these techniques has thus far been
largely a privilege of experts, restricted to isolated case studies, and is far from
a standard practice in algorithmics.
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The metaheuristics community is no exception. While metaheuristics
are most commonly designed manually, the idea of automating this process
is hardly new, and has been actively pursued for almost two decades in the
hyper-heuristics [15] and the algorithm configuration [104] communities. An
important aspect of our vision (see Section 5) is to facilitate the integration and
further development of these design automation techniques.

2.5. Scalability
Historically, computing systems have tended to get faster at an exponen-

tial rate. Software performance automatically scaled along, without requiring
any additional efforts from the developer. The situation is no longer so sim-
ple: contemporary systems, rather than getting faster and faster, are able to do
more and more work in parallel [105]. To take advantage of increasing parallel
processing capabilities, computations must be subdivided into a set of interde-
pendent tasks to be executed efficiently in parallel across multiple cores and/or
across networked machines. In computer science in general, much human ef-
fort has been invested in algorithm-specific parallelization strategies.

Scalability is also an issue when solving ever larger problem instances: de-
spite the increase in computing power, it is hard to solve large instances of
many practical optimization problems. This will of course always be the case
— contrary to other computational domains, the field of combinatorial opti-
mization will never have “enough” computing power. Fortunately, many pop-
ular metaheuristics are ‘embarrassingly parallel’: for example, determining the
fitness of each population member in evolutionary approaches can be readily
parallelized; strictly from the performance point of view and depending on la-
tency and throughput, this simplistic approach might not be the most efficient;
however, the fact that it can be done at all shows that there are parallel ap-
proaches which are functionally equivalent to sequential ones and that have a
straightforward implementation.

Currently many metaheuristic methods rely on parallelism at a specific
level of abstraction, typically by parallelizing either fitness evaluation or part
of a population of solutions using an island model. Both these approaches are
limiting in the assumptions they make about the complexity of metaheuris-
tics: to achieve sophistication beyond previous applications may require much
more complex and involved search operators, for example, and we may wish to
parallelize a metaheuristic not just at these fixed and algorithm-specific levels,
but to the greatest extent possible, i.e. at the level of individual components; in
this sense, it might also be convenient to simply use underlying concurrent or
parallel models, such as communicating sequential processes [37].

3. The ‘Metaheuristics in the Large’ Approach

The challenges of the previous section motivate the creation of infrastruc-
ture support for community-wide sharing of problems, metaheuristic frame-
works and heuristic components. In general, there are many good tools and
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libraries already in existence. We do not propose to reinvent or replace them;
we are not proposing “just another library” but rather a different way of struc-
turing and implementing metaheuristics research.

Our proposed approach has three conceptual underpinnings:

• Extensible and re-usable framework templates
To support open-ended innovation and provide true reusability, these
templates (or any other suitable problem description language) must be
configurable via a palette of components that is extensible without requir-
ing the modification of existing code. To support such extensibility and the
automated configuration of these templates, we require a stronger no-
tion of interoperability than existing software: there must be infrastruc-
ture support for state-threading, i.e. passing framework or component-
specific state (such as the temperature in simulated annealing) via a ded-
icated mechanism. This strong notion of extensibility is described in Sec-
tion 3.1. Our approach facilitates reuse through this extensibility, and
transparency and automated design by explicitly encapsulating compo-
nent behavior (rather than relying on metaphorical description) and al-
lowing machine-inspection of behaviors.

• White box problem descriptions
Having embraced the necessity of state threading, it follows that we can
thread more than merely empirically-obtained data relating to the search
trajectory. In particular, threaded state can include analytic information,
such as declarative/whitebox problem descriptions. This analytic infor-
mation can be used to guide algorithm selection or construction in a more
informed manner than has traditionally been embraced by the hyper-
heuristics community [108]. We discuss this further in Section 3.2.

• Remotely accessible frameworks, components and problems
By building upon the two concepts above, it is possible to configure pre-
existing, remotely-hosted, algorithm frameworks with some (potentially
newly-devised) collection of heuristic components. The practical obsta-
cle to further progress is then the relatively procedural one of community
agreement on definitions for component interfaces and communication
protocols. For inspiration, we look to work on ‘Service Oriented Archi-
tecture’, which we discuss in Section 3.3. This enables widespread reuse,
replicability, and shared knowledge discovery.

3.1. Re-usable Framework Templates
The main obstacle to the open-ended extension and automated composi-

tion of existing implementations of metaheuristic components is that they suf-
fer from an intrinsic lack of modularity. In this section, we illustrate why this
is an issue for research ‘in the large’ and describe the proposed solution. In
part, this is due to the lack of adoption of best practice from software engi-
neering [37]. In the case of metaheuristics, there is an added complexity due to
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state dependencies between different algorithms components, which we now
describe.

Framework con�guration can be de�ned in general terms by expressing
frameworks as higher-order functions that take components as parameters.
For example, a possible function signature12 for acceptance for some generic
candidate solution Sol is:

accept: incumbent : Sol � incoming : Sol ! Boolean

Listing 1 gives a simple local search framework that allows for three design
decisions, viz. the choice of perturbation, acceptance and termination condi-
tions. In order to support alternative designs, local search is a higher-order func-
tion: it takes as arguments separatefunctionsfor perturb, acceptand �nished and
returns a candidate solution of type Sol. As described above, accept takes as
argument a pair of candidate solutions (i.e. the incumbent and incoming solu-
tions) and returns the prefered one, denoted in the following listing as: accept

: (Sol,Sol) =>Sol . perturb and finished are de�ned the correspondingly obvi-
ous manner.

def localSearch(
incumbent: Sol,
perturb: Sol => Sol,
accept: (Sol,Sol) => Sol,
finished: Sol => Boolean

): Sol {

while ( not finished( incumbent ) )
incumbent = accept( incumbent, perturb( incumbent ) )

return incumbent;
}

Listing 1: Local Search framework parameterized by design choices

Each speci�c triple of components ( perturb, accept, isFinished) used to con�g-
ure the framework corresponds to a speci�c local search algorithm. This allows
us to concisely specify a combinatorial design space of alternative component
con�gurations, and also makes design space commonalities explicit. In order
for a framework to permit the substitution of different choices for each com-
ponent, components must ultimately conform to some well-de�ned interface,
e.g. the higher-order function arguments to the framework have some signa-
ture that is �xed a priori. In our example, for candidate solution type Sol(e.g. a
list of cities in the Traveling Salesperson Problem) perturbation is assumed to
have type Sol ! Sol.

However, such �xed signatures are problematic if we wish such frame-
works to be `closed to modi�cation', i.e. be able to accommodate unanticipated

12The signatureof a function is the formal description of its parameter and return types.
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component dependencies without requiring changes to framework code. The
need for such modi�cation is clearly incompatible with the MitL goal of frame-
works that can be both shared across the research community and be con�g-
ured (perhaps automatically) with new components. As a concrete example:
suppose we now wish to incorporate a further heuristic that requires informa-
tion about the search trajectory, e.g. a tabu list of solutions [35] that promotes
search diversi�cation. We are therefore required to change the implementation
of local search to keep track of the trajectory. Listing 2, gives a revised version
in which the history list of previous incumbent solutions is denoted by [Sol].

def localSearch(
current: Sol,
history: [Sol],
perturb: (Sol,[Sol]) => Sol,
accept: (Sol,Sol,[Sol]) => (Sol, [Sol]),
finished: (Sol,[Sol]) => Boolean
): (Sol,[Sol]) {

while ( not finished( current, history ) )
(current,history) = accept(current,perturb(current,history),

history);

return (current,history);
}

Listing 2: Explicit incorporation of solution history

The modi�ed implementation now supports solution-based tabu mecha-
nisms, but the issue of course persists if we wish to incorporate components
which require new state dependencies, for example Metropolis-Hastings ac-
ceptance, which requires some measure of `temperature' [52] to be statefully
maintained. In the general case, we clearly cannot anticipate in advance what
information will be required by some component yet to be devised. These are
examples of environmental state, which provides the context for decisions made
by the search process. For extensibility, it is therefore necessary for support
for environmental state to be open-ended, i.e. for frameworks to be con�g-
urable with components that access aspects of environmental state that are not
known at the time of framework implementation. Principled handling of envi-
ronment state is key to metaheuristic modularization, and is therefore essential
for both component interoperability and scalability in automated construction
of metaheuristics. The technical speci�cs of MitL support for this approach are
described in an associated publication [106] and summarized in Appendix A.
Software exemplars of the proposed infrastructure support are publicly avail-
able, as described in Appendix B.

3.2. White box Problem Representations

It is well-known that the exploitation of problem information is key in ren-
dering optimization problems tractable [117]. As such, a principal challenge
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lies in devising frameworks and solvers that support injection of problem in-
formation to drive the search process, without incurring loss of genericity (i.e.
they can be applied to many different problems).

By including white box problem descriptionsas part of the environmental
state, it is possible to de�ne frameworks in terms of rich domain informa-
tion, allowing the aforementioned challenge to be tackled using an open-ended
combination of human ingenuity and automation.

What Kind of Information Can Be Exploited?
In principle, any machine-readable knowledge could be exploited to bias

the search, to synthesize feasible operators, etc. As discussed in the introduc-
tion, this knowledge can be split into two categories:

Analytic knowledge about intrinsic features of the problem.

Empirical knowledge gained through experience, i.e. experimentation.

Many examples of successfully exploiting a combination of analytic and em-
pirical knowledge can be found in the literature:

� Reactive tabu search [10] exploits knowledge about the presence of spe-
ci�c substructures in candidate solutions to diversify the search, and uses
trajectory information to adapt the tabu tenure parameter dynamically.

� Variable neighborhood descent [40] exploits knowledge about the rela-
tive sizes of multiple domain-speci�c neighbor relations to (local) search
them more ef�ciently, and uses empirical information (a candidate solu-
tion being locally optimal/improving) to switch between neighbor rela-
tions.

� Matheuristics (e.g. [1, 75] typically combine analytical approaches such
as ILP to solve sub-problems, with higher-level searches using empiri-
cal feedback on solution quality to build the results into solutions for a
larger-scale problem.

� Solution spaces can be decomposed using techniques with their origins
in mathematical programming, to increase ef�ciency at the metaheuristic
level [90].

� Constraint relaxation (e.g. [32]) typically uses analytical knowledge of the
acceptable constraint bounds to allow a metaheuristic to search across in-
feasible regions of the space using empirical feedback on solution quality
to determine when the relaxation should be reduced. Similarly, different
heuristics can be targeted at different constraints, driven by analytical
knowledge of the constraints themselves [36].

� Portfolio solvers (e.g. SATzilla [119]), select between multiple solvers based
on analytic features of the problem instance to be solved. The mapping
from features to solvers is generated empirically, using machine learning.
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Historical Development Towards White Box Approaches
While the importance of exploiting problem structure is widely recognized,

arguably there is a historical aversion to do so at the hyper-heuristic level, leav-
ing this task up to the domain-speci�c instantiations or low-level heuristics
[28]. Maintaining generality is often cited as the motivation for this informa-
tion hiding practice. For example, Chakhlevitch and Cowling [19] argue for the
importance of limiting problem domain information in achieving cross-domain
generality in selection hyper-heuristics. They argue that a framework can be
applied to any problem that shares the “lowest common denominator” charac-
teristics. While suf�cient for generality, information hiding is not necessary. It
is easy to see that a framework can exploit arbitrary information without loss
of generality, as long as it is also capable of solving the problem without it. For
instance, a general optimizer could use gradient information when available
(e.g. when training neural networks) and default to a derivative-free approach
otherwise.

The progression of hyper-heuristic research demonstrates an increased ac-
knowledgment that use of white box problem descriptions is both possible
and desirable. Following the pattern set by initial work [23], most of the se-
lection hyper-heuristics studies maintain a black-box interface between the
hyper-heuristic and problem domain known as the domain barrier. The orig-
inal rationale for the domain barrier, which disallows a hyper-heuristic from
retrieving any problem-speci�c information, was thought to be necessary for
cross-domain generality. However, it has been recognized that the domain bar-
rier might be more a problem than a feature: Ross [93] argued that an explicit
domain barrier that enforces a strict separation between the hyper-heuristic
and the problem-speci�c aspects makes hyper-heuristics undesirable for use
in large real-world applications. Furthermore, Parkes et al [83] and Pappa et
al [79] suggested an increased exchange of information between the problem
domain and the higher search level which could then be analyzed via data sci-
ence techniques and machine learning. More advanced learning for heuristic
selection has progressively been introduced [16, 89, 103, 50, 4, 11, 3].

Recent work throws further doubt on the necessity of the domain barrier.
Swan et al [108] state that work in constraint-satisfaction provides abundant
evidence that problems can be described in a domain-independent manner
without loss of solver generality. The lack of necessity for the domain barrier
was further evidenced by Kheiri [49], who designed a hyper-heuristic utiliz-
ing extended domain information that nonetheless manages low-level heuris-
tics in a domain-independent manner. Martin et al [66] designed a hyper-
heuristic controlling the parameter settings of randomised heuristics based on
an agent-based cooperative search framework. An ontology is used to translate
problem-speci�c elements into problem-independent abstract objects.

White Box Descriptions and Automation
In order to communicate the required information to the solver and its

heuristics, it is necessary to move beyond the bespoke approaches above: it
must be possible to communicate arbitrary domain knowledge to an algorithm
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framework template. In a black box setting, life is simple: solvers can choose
from a closed set of interfaces and can solve any problem that implements it. In
contrast, the white box setting is completely open-ended: solvers can require
whatever information they deem �t. Clearly, this presents an array of novel
challenges. Most notably:

1. Deducing (analytically) which solvers can be applied to which problems.

2. Overcoming limited applicability due to interface mismatches.

This is clearly a rich topic for further research. However, we believe that some
foundational aspects can be identi�ed:

1. The use of a declarative, machine-readable language to express the infor-
mation problems provide, solvers require, and their relations.

2. Automated algorithm selection and problem (re)formulation, as facili-
tated by white box descriptions [108].

The practical choice for such a language is rightfully an open-ended re-
search question, but the MitL proposal [108] is that prior art in Constraint
Programming provides a suitably generic baseline. Existing standards within
Constraint Programming, such as XCSP3 [14] support whitebox descriptions
of constraints that capture a very wide range of common problems. As re-
search advances, the set of supported constraints can further expand, with-
out limiting applicability. Ultimately, interface boundaries will fade, causing a
paradigm shift, where human researchers specify components using problem
information and computers assemble them into a single framework, automat-
ically selecting the component believed to work best, based on all available
analytic and empirical information.

3.3. Service Oriented Architecture

A large-scale solution to lack of re-use lies in “Service Oriented Science”,
which applies the increasingly-widely adopted practice of service-oriented ar-
chitectures [38] to scienti�c computing. The concept is de�ned as “the pur-
suit of scienti�c research using distributed and interoperable services, the ac-
cessibility of these interfaces being the key to success” [31]. By such means,
researchers can discover and access services without developing speci�c pro-
grammatic clients for each data source, or program. Such an approach clearly
has the potential to increase scienti�c productivity via public and distributed
services, and also to increase data analysis automation. There are many ex-
amples that attempt to boost this paradigm, such as the Open Science Grid [5]
and GLOBUS [30]. These projects include scienti�c communities and globally
distributed infrastructures that support scienti�c and integrated applications
of different domains.

As we have argued above, it is highly advantageous for metaheuristic re-
searchers and practitioners to converge on a standard machine-readable lan-
guage for problem description, experimental con�guration and results. Service
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Oriented Architectures (SOAs) offer several ways to build a research work-
�ow from these elements. SOA is a computational paradigm in which agents
interact using loosely coupled, coarse-grained, and autonomous components
called services[94]. A serviceis a distributed entity, such as a node, program or
function, used to obtain a result, increasing the integration of systems that are
heterogeneous in respect of operating systems, protocols or languages.

The SOA perspective promotes the creation of services that are discoverable
and dynamically-bound, self-contained/modular, loosely-coupled, location-
transparent and composable [112]. As such, SOA is clearly therefore a good
�t for the process of “devolved community research” which we advocate here.
Lately, SOA has seen a trend towards “microservice architectures”: distributed,
cloud-based and cloud-native, these architectures follow the principle of sepa-
ration of concern to create applications that are easily scalable and deployable,
with a stable response and maximum availability. Several frameworks, such
as the one proposed by Khalloof et al. [48], exploit the capabilities of microser-
vices to create scalable systems that can be used at different levels (from the
desktop to the web) for optimization. However, at the time of writing there
are no generally accepted standards for microservice discovery, and although
they offer some advantages in term of composability and scalability, they lack
the service representation feature that would make it amenable to use within a
large-scale metaheuristics framework.

SOA for Metaheuristics
Previous work on SOA for metaheuristics has mainly been concerned with

the application of a speci�c metaheuristic, such as Genetic Algorithms, to op-
timize a service selection or composition based on the QoS (Quality of Service)
of their execution [92].

Different SOA technologies, such as web services, have been proposed for
solving optimization problems via grid computing [24, 98, 99], where services
are de�ned using WSDL (Web Services Description Language) interfaces and
other transmission mechanisms (such as Remote Procedure Call [57] or Globus
Toolkit [45]). ROS (Remote Optimization Service) [33] was one of the �rst
attempts to allow remote execution of metaheuristics, with inputs and out-
puts described via XML speci�cation. Other metaheuristic frameworks such
as HeuristicLab include plug-ins to allow parallelism and interoperability us-
ing web services [115]. GridUFO is a service oriented framework [70], but
it only allows the modi�cation of the objective function and the addition of
whole algorithms, without combining existing services.

Garć�a-Sánchez et al [34] have previously proposed a SOA for Evolution-
ary Algorithms. Several suggestions on different concerns about the design
and development of the elements of an EA using SOA were presented, such
as the operator behavior, dynamism or solution representation. A speci�c
SOA technology, OSGi, was used as an example of implementation. More re-
cently, MOSES [80] was proposed as the design of a global architecture based
on service contracts, allowing the automation of the experimentation process
in a metaheuristic optimization context. This architecture is based on different
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tools, such as specific automatic experimental description languages and sta-
tistical services, forming a contract-based chain of software components for ex-
perimental execution. These global architectures have already been proposed
for other fields, such as distributed simulation [110].

Most of these approaches are more or less direct mappings from the orig-
inal implementation to a SOA framework; however, one key way in which
the proposed approach facilitates knowledge discovery is the ability to add
arbitrary instrumentation to components via the generic environment repre-
sentation. In particular, this allows for data mining on metaheuristic traces. In
addition, by employing our generic notion of state (which denotes one or more
solutions, together with any environmental information required to represent
the current algorithmic state of the search), the same framework can instanti-
ate metaheuristics operating at different scales. For example, a composite re-
combination operator can choose from different types of recombination strate-
gies, putting meta and hyper-heuristics under the same framework (e.g. in the
manner of [118]). Having these different types of algorithms under a common
framework greatly facilitates their extension and comparison.

More generally, we envision the emergence of a distributed, community
driven suite of tools, providing an expanded repository of interoperable frame-
works and components, bringing together researchers and practitioners across
domains, unifying the field and closing the gap between scientific research and
empirical practice.

4.

5. Use-Cases for MitL

As we have intimated, a purely technical solution to the issues of meta-
heuristics research is insufficient: community-level engagement is also required.
While we have proposed a means by which extensible algorithm templates can
integrate with other frameworks, the ultimate arbiter for success is the enthu-
siasm of the wider research community to embrace such initiatives. In this
section, we describe some of the prospective benefits of doing so.

A recent paper by Kendall et al. [47] has, importantly, emphasized the need
for good laboratory practice in optimization research. The set of practices that
they advocate include making datasets available in a standardized format, re-
porting the results from the individual components of a hybrid approach, de-
scribing in a reproducible way the evaluation function and the metaheuristic
used, clearly presenting computational times, the use of appropriate statistical
tests, etc. We disagree with none of this. However, a driving philosophy for
MitL is that it is necessary to go beyond the mere advocacy of good practice, to
making it easy — indeed, almost inevitable — that good practice can happen.
The MitL proposal is that it is possible to embed foundational support for good
practice directly into the software that is used by metaheuristics researchers,
consequently making the fruits of that research available to other practitioners
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as via their default workflow. Below, we describe some specific use cases in
metaheuristic research which are facilitated by the proposed approach.

5.1. Comparison between Metaheuristics
Many papers in the metaheuristics literature compare the performance of a

new metaheuristic against a small sample of other metaheuristics. Sometimes,
it is made clear that the comparators chosen have been specifically selected be-
cause they represent the state-of-the-art for that particular problem area: how-
ever, in many cases this is not made clear. Furthermore, many papers simply
compare the new metaheuristic against other metaheuristics of the same broad
type, for example, comparing a new variant on Particle Swarm optimization
(PSO) against other PSO variants.

Providing some evidence for the effectiveness of a new method is clearly
important. However, as the number of metaheuristics continues to expand,
comparing against a few other metaheuristics seems weak; even where an as-
sertion is made that the comparators represent the state-of-the-art, this is usu-
ally presented as an assertion to be taken on trust, and the method used to
choose the comparators is unstated. In particular, there is no guarantee that
the chosen problem instances actually exhibit different landscape characteris-
tics. We therefore propose that creators of new metaheuristics should test their
metaheuristics against all other appropriate metaheuristics.

The overall aim is therefore to ensure that comparisons are both thorough
and fair. This is clearly only realistic at a large scale if the process of compar-
isons is automated. Some initial progress in this direction was made several
years ago: Taillard et al. [109] suggest that iterative metaheuristics should be
compared not only for a single computational effort (e.g. giving the best so-
lution found after a fixed number of iterations), but also continuously at each
iteration13. Some recent work has also started to address the issue of fair com-
parison of algorithms by providing statistical testing frameworks which ensure
that the preconditions for the various tests applied are actually met [74]. This
is particularly important for metaheuristics, since common assumptions (e.g.
of normality) are not in general true. There is also a need to ground reported
results in terms of “effect magnitude” [74]: for example, an improvement of
0.1% on the state-of-the-art may have more practical relevance for the Travel-
ing Salesman Problem than for Bin-packing. In addition to statistical consid-
erations, the specifics of the termination condition are obviously also a vital
aspect of fair comparisons. We claim that the transparency afforded by the
proposed approach is vital in ensuring that comparisons are commensurate.14

13http://mistic.heig-vd.ch/taillard/qualopt/
14For a community effort that promotes best practices in benchmarking, we refer the curious

reader to [9]. It discusses eight topics: clearly stated goals, well-specified problems, suitable al-
gorithms, adequate performance measures, thoughtful analysis, effective and efficient designs,
comprehensible presentations, and guaranteed reproducibility.
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5.2. Testing Against Problem Instances
Establishing the effectiveness of a metaheuristic requires two components: other
metaheuristics against which to compare, and a range of problem instances
upon which to compare them. Again, many papers in the metaheuristics liter-
ature are considerably less than comprehensive in the range of problems which
are investigated. While certain benchmark test suites are available, the applica-
tion of a specific new method to these benchmarks is often done in a seemingly
ad hoc way, with a number of examples from the benchmark chosen without
any justification [41].

As described in previous MitL work [108], progress in this area depends
on the ability to express a wide variety of problem types in a common format.
This further facilitates the creation of systems that could apply a new meta-
heuristic systematically over a wide range of problems. Researchers would not
be limited by the amount of time it would take to set up experiments with a
large number of problem instances; an automated script can work through a
repository of problems, automatically applying the new metaheuristic to each
appropriate example.

Of course, benchmarking metaheuristics cannot be reduced to simply count-
ing the number of problems for which a particular metaheuristic is “better”
than another one [9]. Rather, the aim is to gather a rich set of data about the
performance of each metaheuristic on a wide variety of problem types and in-
stances. Such knowledge database, in combination with white box descriptions
of problems (and introspectable methods), could then be mined to gain deeper
insights into which methods work best when (and why). In particular, it al-
lows more general metaheuristics to be constructed automatically from more
specialized ones (e.g., using algorithm selection portfolios as in [119]).

5.3. Hybridization
The hybridization of solution methods has been a successful approach for

combining the complementary strengths of different optimization paradigms
and to reduce their individual weaknesses with the aim of obtaining more ef-
fective algorithms (see e.g., [113] for a review from the perspective of the CP-
AI-OR community). Hybrid approaches can be classified according to many
dimensions [88], e.g. whether the components involved in the hybridization
come from different search paradigms (usually constructive methods or exact
methods such as Constraint Programming or Integer Linear Programming) or
whether they are homogeneous (e.g., local search or evolutionary methods).
Indeed, presenting a specific hybridization of two or more metaheuristics is a
common source of novelty in metaheuristic research. Unfortunately, the way
in which these hybridizations are evaluated is often a very simplistic compar-
ison in terms of accuracy or error measures, without any attempt to attribute
specific behaviors in a run of the metaheuristic to particular components, or
indeed to perform any elimination of “accidental complexity” [2].

Often, the way in which metaheuristics are combined is the strongest con-
tribution of a method. For example, ’Fair Share ILS’ [2] performs well because
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of the synergistic interaction between its acceptance and perturbation heuris-
tics. More generally, it is of relatively little use for perturbation to be operating
strongly as a “search intensifier” if the acceptance criterion only permits large
increases in solution quality. Such decisions are best informed via large-scale
studies (as supported by combinatorial assembly over a range of problems
and algorithm configurations) and component instrumentation (as supported
via the proposed environmental state threading).

5.4. Matching Metaheuristics to Problem Types
Although there has long been interest in relating problem characteristics to

solution strategies [91], we claim that this is an area that has been particularly
hindered by the lack of re-use. One problem with these studies, valuable as
they are, is that they represent a single sample point in time. As new meta-
heuristics are created, the value of that cross-cutting analysis becomes weaker,
as researchers present new, ad hoc evidence for the value of a particular meta-
heuristic on a particular problem. Given the importance of such cross-cutting
studies, we propose that it is key for the community to support a constantly-
updated repository of metaheuristics and experiments, and subsequently so
that the most effective metaheuristic for a particular problem area can be iden-
tified and kept up-to-date. Importantly, this would need more than just the
creation of such a repository. Analysis tools would also be needed, which
would mine the ever-expanding repository to find features that best predict
which kind of metaheuristic is well-suited to a novel dataset. This would ide-
ally involve the automated application of metaheuristics to problems, with the
repository constantly being updated as new problems and (meta)heuristics are
added.

6. Conclusion

Metaheuristics in the Large (MitL) is a community project that addresses
some of the cultural and technical issues we believe are impediments to progress
in metaheuristic research:

• Through the MitL component-based architecture and explicit state thread-
ing outlined in Section 3, heuristics can be described from a behavioral
standpoint, moving away from an over-reliance on metaphor and the ac-
cidental re-invention of established heuristics.

• MitL eliminates the need to modify existing framework source code when
implementing new heuristics. Whilst this is of great benefit to a practi-
tioner, it is essential for the open-ended combinatorial assembly of meta-
heuristics. Design automation can raise the abstraction level of research
from manual labor such as parameter tuning and selecting and combin-
ing heuristics, towards answering more general scientific questions.
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• Within the space of a few years, Deep Learning approaches have changed
the perspective on what is possible in Machine Learning. By following
MitL’s approach to defining heuristics, it should be easier for practition-
ers to recursively define very large-scale metaheuristic architectures (e.g.
exploiting parallelism) without undue concern for low-level implemen-
tation details, enabling exploitation of the large-scale parallelism of mod-
ern compute platforms.

The approaches described in Section 3 combine to provide a basis for ex-
tensible Software as a Service implementations of metaheuristics provided via
stateless web-services, supporting shared framework templates which allow
combinatorial assembly and comparison of metaheuristics. The language and
platform agnosticism of this approach in turn addresses issues of reproducibil-
ity and scalability.

Metaheuristics are one of the great contributions to practical computer sci-
ence of the last few decades. However, without interoperable frameworks for
analyzing, comparing and hybridizing them, advances in the science of meta-
heuristics are few and far between. Once such frameworks are in place, we will
be able to put metaheuristics on a much more experimentally rigorous footing,
to advance the science of metaheuristics, and to build a communal resource
that is of benefit to both practitioners and researchers in this important area of
computational intelligence.

In this article, we have described the key functionality that supporting in-
frastructure requires. What is now needed is community consensus on the rel-
atively procedural aspects of interoperability protocols. Editors and reviewers
can then insist on a thorough and systematic application of new metaheuristics
to a wide range of problems, with the attendant rich analysis possibilities that
are opened up.
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Appendix A. The ‘Automated Open-Closed Principle’

Existing metaheuristic implementations handle environmental state in different ways.
Many make ad hoc use of non-local variables to share information between components.
This runs counter to automated assembly requirements: in order to present them to a
configuration tool, such dependencies must be specified manually, i.e. the configuration
space cannot be derived from the implementation automatically. That being said, some
implementations treat environmental state in a more principled manner (e.g. [27, 17]).
Here, metaheuristics are typically described as compositions of generically typed, state-
ful components having a well-defined interface controlling access to the encapsulated
state. A framework then explicitly passes the shared state between subordinate com-
ponents. While it has been demonstrated in prior-art that such implementations can
be successfully coupled to configuration tools to perform bottom-up automated assem-
bly [65, 104] in the small, they do not support the open-ended extension we propose is
required in the large (as explained in Section 3.1).

In software engineering, a framework which can be configured from an open-ended
palette of components while remaining unchanged is said to conform to the “Open-
Closed principle” (‘a framework should be closed to modification, but open to extension
by new components’). We have extended this principle [106] to incorporate the behavior
required to support automated design, yielding the “Automated Open Closed Princi-
ple” (AOCP); that paper discusses the issue in greater technical detail and describes ex-
periments with a suitably equipped algorithm configurator. The adoption of the AOCP
provides open-ended reuse of components, and thus a systematic approach to the auto-
mated exploration of the metaheuristic design space. A key aspect is that components
must be “pure functional”, as a first approximation15 this can be interpreted as meaning:

• They do not rely on hidden state.

• For the same argument, they always return the same result.

Note that aforementioned metaheuristic implementations using global variables and/or
stateful components clearly violate the AOCP. An alternative to state encapsulation is the
use of state threading [53, 68], as can be seen in Listing 2 where perturb, accept, and
finished each take an additional parameter that is used to thread the environmental
state through the search algorithm. More generally, using state threading, the desired
signature for accept is of the form:

acceptSol,Env : Sol × Sol × Env → Sol × Env

However, manually threading the state through the algorithm (as in Listing 2) of Section
3 is error prone, since the framework implementer must ensure that the correct value
of the state is passed to the correct stage of the algorithm. It is instead desirable to
use a mechanism that implicitly performs state threading in a well-defined and consistent
manner.

In functional programming, the problem of state propagation is addressed via a
well-known design pattern: the State monad. For the purposes of this article, we can
simply consider a monad to be a principled means of sequencing computations whilst
abstracting over possible side-effects (in this case, state manipulation).

Functional languages such as Haskell and Scala provide syntactic sugar for mon-
ads. In particular, they allow monad operations to be chained together using syntax

15The interested reader is referred to the wealth of literature on ‘referential transparency’
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type Perturb[Env,Sol] = Sol => State[Env,Sol]
type Accept[Env,Sol] = (Sol,Sol) => State[Env,Sol]
type IsFinished[Env,Sol] = Sol => State[Env,Boolean]

class LocalSearch[Env,Sol] {

def apply[Sol](incumbent : Sol,
perturb : Perturb[Env,Sol],
accept : Accept[Env,Sol],
finished : IsFinished[Env,Sol]) : State[Env,Sol] = {

def until(s : Sol) : State[Env,Sol] = {
for {
perturbed <- perturb(s)
accepted <- accept(s, perturbed)
c <- finished(accepted)
result <- if (c) {

State.pure[Env,Sol](accepted)
} else {

until(accepted)
}

} yield result
}

for {
result <- until(incumbent)

} yield result
}

}

Listing 3: Local Search in Scala with State monad

that looks like a traditional for loop. This is illustrated in Listing 3, a re-formulation of
our local search example in Listing 1 that uses the State monad. The state, in this case
an integer representing the number of iterations, is implicitly threaded through each
stage of the computation. This can be extended to yield a re-formulation of Listing 2,
by defining that Env allows access to [Sol], the search trajectory. Although the algo-
rithm in Listing 3 looks similar to its imperative counterpart, the internal state is fully
encapsulated within the definition of LocalSearch.

By virtue of open-ended support for state dependencies, the proposed approach
therefore supports bottom-up automated assembly. Such an approach is less subject to
human bias than the a priori prescription of a particular metaheuristic and therefore has
relevance to foundational knowledge discovery efforts. In other areas of design (e.g.
manufacturing), standardization has allowed a shift from the design of integrated sys-
tems to the design of individual components within the system. In metaheuristics, this
reflects the natural trend for incorporating specialized problem- or solution- domain
knowledge, i.e. a researcher can specialize in a particular kind of component such as
acceptance criteria and determine their cross-domain ubiquity.

It might be thought that a monadic workflow requires metaheuristic researchers to
become expert functional programmers, so it should be emphasized that this workflow
is a consequence of our proposed formulation, rather than a mandatory aspect. In par-
ticular, the intention is that core metaheuristic templates can be written monadically
‘once and for all’, allowing non-expert users of these frameworks to obtain the benefits.
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Another minor but pleasing property is that the explicit denotation of state makes the
parameter space of a component explicit, facilitating configuration via automated tools
such as Irace [59].

This pure functional perspective also provides a number of other advantages [43], of
particular relevance to large-scale and automated design of metaheuristics: they make it
easy to reason about behavioural equivalence and coupling between components, hence
improving transparency. Determinism and lack of side-effects yields reproducibility of
behavior. Furthermore, a functional treatment of metaheuristics greatly facilitates archi-
tectures which can take advantage of abundant computing resources, e.g. thread-safe
parallelism [39] or ‘Service Oriented Architecture’ (SOA) implementation via stateless
web-services, as subsequently described in Section 3.3.

To our knowledge, the first proposed use of monads for state threading in meta-
heuristics was as part of the MitL initiative [107], whilst the first concrete implemen-
tation subsequently appeared in CILib [76] and has since been further developed [77].
Although there have been many frameworks and publications that describe ‘modular
decompositions’ of metaheuristics, to the best of our knowledge only MitL and CILib
employ this principled approach to open-ended state dependencies. The additional
contribution of the MitL initiative in this respect is the use of the monadic approach to
explicitly support automated assembly [106]: of particular value in this respect is the
fact that a strict type-system can be used to discriminate between stateless and state-
ful operations and to provide information about which aspects of component behaviour
contribute to solution quality, this being vital for the elimination of accidental complex-
ity.

Appendix B. MitL Software Libraries

Realizing the MitL vision of community-level research based on shared scientific
infrastructure requires the development of three central building blocks:

1. Support for modular, extensible metaheuristic frameworks.

2. Machine-readable descriptions of problems, heuristic components and results.

3. A two-tier architecture defining both Programmatic and a Service Oriented inter-
faces, the latter being in direct correspondence with the former.

Taken together, these building blocks provide necessary support for the construc-
tion of a community knowledge base, in which fixed ‘reference versions’ of metaheuris-
tic templates can be configured with problems and components in an open-ended man-
ner. Although the main purpose of this this paper is to describe the motivation and
vision for MitL, the project has nonetheless made concrete implementation progress.
The MitL repository (https://github.com/MitLware) contains various software
libraries providing infrastructure support, together with a number of examples of how
the proposed approach can be applied in practice. The infrastructure support libraries
are:

• MitLware-java
This library contains Java interfaces for the ‘Metaheuristics in the Large’ compo-
nents (Perturb, Evaluate etc), as motivated by the discussion in Section 3.1.

• mitl-support
This library contains general utilities, metaheuristic-specific and otherwise. The
former includes random selection and sampling.
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• mitl-problem
Example problem domains, defined in terms of the MitLware-java interfaces.
The problem domains include: various bitvector problems, such as Checker-
board, Royal Road, Trap and HIFF; blocksworld; tower of Hanoi; the Iterated
Prisoner’s Dilemma; Magic Square; the n-puzzle; the De Jong suite of real-vector
problems; SAT; the TSP; the Travelling-Thief Problem; Windfarm placement.

• mitl-solution
Representations for ubiquitous candidate solution types (e.g. permutations, bit
vectors and polynomials), as used in mitl-problem.

Although the following examples happen to be implemented in Java/Scala, adoption
at the Service Oriented Architecture level means that components written in other lan-
guages can nonetheless interoperate via standard serialization protocols (such as JSON
or XML). For example, either or both of client or server in mitl-soa-example could
be written in any language, as long as it is capable of serializing candidate solutions in
JSON. The example applications include:

• mitl-whitebox-hyper-heuristics
As an elementary example of the approach described in “A Re-characterization
of Hyper-Heuristics”, this demonstrates a whitebox analog of the hyflex hyper-
heuristic framework which takes as input any problem domain (examples used
are SAT, bin-packing, TSP, VRP) generically described via the XCSP constraint
programming format. It then uses heuristic pattern matching to determine if the
problem constraints are isomorphic to the TSP: if so, then the problem is rewritten
on the fly to TSPLib format and a dedicated TSP solver (Concorde’s ‘LINKERN’
[6]) is used, if not then the generic Choco Solver [87] is invoked instead.

• mitl-soa-example
This provides a concrete demonstration of the ‘two tier architecture’ described
above: the MitL component interfaces defined in MitLware-java are ‘lifted’ to
the service level via RPC (Remote-Procedure Call) support. There is thus a 1-1
correspondence between local and remote component interfaces. A metaheuris-
tic framework can therefore be transparently configured with components that
happen to be hosted remotely. A simple client-server example is provided, with
remote invocation of a perturbation heuristic via json-RPC. The server-side im-
plementation of perturb is actually achieved via a constraint solver, thereby giv-
ing another example of how one may freely mix between analytic ‘OR-style’ and
empirical ‘metaheuristic-style’ approaches.

• mitl-ecj-jmetal-interoperability-example
The ECJ [61] and JMetal frameworks [29] are both popular and widely used.
However, it is not an easy task to achieve interoperability between them. This
application shows how both can be represented as a MitL Perturb operator, al-
lowing either to be interoperably invoked.

• mitl-aocp
This provides an example application of the our proposed Automated Open-Closed
Principle to automated algorithm configuration of the Traveling Salesperson Prob-
lem over a fixed algorithm framework. It uses ant-programming as a generative
hyper-heuristic [54] to automatically configure a local search framework with
components which have different state dependencies. Further technical specifics
of enabling communal research via extensible algorithm templates are described
in detail in Swan et al. [106].
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• mitl-hyperion
This provides extensible algorithm templates for several of the evolutionary al-
gorithms described in ‘Essentials of Metaheuristics’ [61], as combinatorially in-
stantiated in mitl-aocp, above.
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