Co-evolving add and delete heuristics

Jerry Swan · Ender Özcan · Graham Kendall

Received: date / Accepted: date

AbstractHyper-heuristics are (meta-)heuristics that operate at a high level to choose or generate a set of low-level (meta-)heuristics to solve difficult search and optimisation problems. Evolutionary algorithms are well-known nature-inspired meta-heuristics that simulate Darwinian evolution. In this article, we introduce an evolutionary-based hyper-heuristic in which a set of low-level heuristics compete to solve timetabling problems.

Keywords Hyper-heuristics · Coevolution · Ruin-and-recreate

1 Introduction

Hyper-heuristics are (meta-)heuristics that operate at a high level to choose or generate a set of low-level (meta-)heuristics to solve difficult search and optimisation problems [?],[?]. Heuristics can be used to search the solution space directly or construct a solution based on a sequence of moves. In most of the previous studies, the type of the low-level heuristics used is uniform, i.e., they are either constructive or perturbative (improvement) heuristics. Hyper-heuristics aim to replace bespoke approaches by general methodologies for solving different problems. They provide a “good enough - soon enough - cheap enough” framework for problem solving.

Timetabling problems are NP hard [?], real-world constraint optimisation problems. A timetabling problem requires scheduling of given events using limited resources, subject to a set of constraints. Evolutionary algorithms are well-known nature-inspired meta-heuristics that simulate Darwinian evolution. In this paper, we introduce an evolutionary based hyper-heuristic in which a set of low level heuristics compete to solve timetabling problems.
(∗ Generate feasible binary strings. ‘+’ denotes concatenation.
Initialize with: generateAddDeleteLists(n , “01”); ∗)

function generateAddDeleteLists(var n : Int , var bits : BinaryString) : ListOfBinaryString
begin
var result : ListOfBinaryString;
if(n = 1)
begin
 result := result + bits;
end;
else
begin
 result := result + generateAddDeleteLists(n−1, bits+ “01”);
 result := result + generateAddDeleteLists(n−1, “0”+bits+“1”);
 if(bits doesn’t have prefix “01”)
 begin
 result := result + generateAddDeleteLists(n−1, “01”+bits);
 end;
end;
return result;
end.

Listing 1 Generate feasible binary strings

1.1 Low-level heuristics

A solution to a timetabling problem can be reconstructed from a previous solution by successively deleting and adding (re-scheduling) events. In our hyper-heuristic framework, we propose a sequence of delete-add (0-1) operations with a fixed length. Add and delete operations can be handled in many different ways. The simplest approach for the delete operation is choosing an event randomly and putting it into an unscheduled events list. On the other hand, the add operation requires two consecutive actions to be taken. Firstly, an event should be selected from the list of unscheduled events and then a suitable period should be selected for scheduling.

A fixed-length binary string can be used to represent a series of add (1) and delete (0) operations for reconstructing a new solution from an existing one. A feasible string of length 2^n can be formed by respecting the following rules:

1. The number of ones must be equal to the number of zeros, that is n. Hence, the string length is an even number.
2. The first entry in the string is always the delete operation, since there is no unscheduled event at the start.
3. For any prefix of the string, the number of ones must be less than or equal to the number of zeros.

For example, given a solution S and a feasible string “0011”, two randomly selected events are deleted from S, and S' is formed by rescheduling them, successively. On the other hand, “0110” is not a feasible string, since after

procedure coevolve(**var** pop : Population)

begin

for (p in pop) begin

 var previousTimetable = p.getTimetable();
 var newTimetable := applyADL(p.getADL());
 if (newTimetable is better than previousTimetable)
 p.setTimetable(newTimetable);
end

sortByFitness(pop);

(*Divide the population into 4 parts.*)

copy (pop , 0 , \(\frac{\text{popSize}}{4} \) , \(\frac{3\times\text{popSize}}{4} \));

copy (pop , 0 , \(\frac{\text{popSize}}{4} \) , \(\frac{2\times\text{popSize}}{4} \));

(*1st quarter: mutate timetables, randomize ADLs*)

mutableTimetableAndRandomizeADL (pop , \(\frac{\text{popSize}}{4} \));

(*2nd quarter: mutate timetables*)

mutateTimetable (\(\frac{2\times\text{popSize}}{4} \) , \(\frac{3\times\text{popSize}}{4} \) , addDeleteLists);

(*3rd quarter: randomize ADLs*)

mutateADL (\(\frac{\text{popSize}}{4} \) , \(\frac{3\times\text{popSize}}{4} \) , addDeleteLists);

(*4th quarter: re-initialize everything*)

randomizeTimetableAndADL (pop , \(\frac{3\times\text{popSize}}{4} \) , popSize);

end

Listing 2 Co-evolve timetables and add-delete lists

deleting and rescheduling an event, the unscheduled event list becomes empty
and the add operation at the third location is not possible. Listing ?? shows
a divide-and-conquer approach that generates such strings for a given \(n \). For
\(n = 1 \), the only such string is “01″, for \(n = 2 \), we have “0101″, “0011″ and for
\(n = 3 \), “010101″, “011101″, “001111″, “010011″. The running time
of the algorithm is \(O(3^n) \). Hence, we will use practical values for \(n \) and after
generating the feasible strings, they compete for survival while constructing
timetables within an evolutionary framework, as described in listings ?? and ??.

2 Results

The results presented here are for the 8 publicly-available datasets of the exam-
timetabling track from the ITC2007 competition [?], with Müller’s celebrated
hybrid solver [?] ranking first on each dataset\(^1\). Gogos et al. [?] are second and

\(^1\) http://www.cs.qub.ac.uk/itc2007/winner/tomasmuller.htm
procedure framework(var popSize : Int)
begin
 \{ Generate feasible Add–Delete Lists \}
 var allADLs := generateLists(n, "01");

 var population := generateRandomPopulation(popSize, allADLs)
 \;

 \{ Co-evolve population of \((timetable,ADL)\) \}
 while(termination condition not met)
 begin
 coevolve(pop);
 end
end.

Listing 3 Top-level co-evolutionary framework

<table>
<thead>
<tr>
<th>dataset 1</th>
<th>dataset2</th>
<th>dataset3</th>
<th>dataset4</th>
<th>dataset5</th>
<th>dataset6</th>
<th>dataset7</th>
<th>dataset8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6133</td>
<td>0.942</td>
<td>0.13583</td>
<td>0.27333</td>
<td>0.5922</td>
<td>0.28860</td>
<td>0.5960</td>
<td>0.9590</td>
</tr>
<tr>
<td>0.6994</td>
<td>0.893</td>
<td>0.13644</td>
<td>0.30222</td>
<td>0.5333</td>
<td>0.30590</td>
<td>0.6179</td>
<td>0.9825</td>
</tr>
<tr>
<td>0.6027</td>
<td>0.933</td>
<td>0.13352</td>
<td>0.38651</td>
<td>0.5407</td>
<td>0.27830</td>
<td>0.6988</td>
<td>0.9738</td>
</tr>
<tr>
<td>0.6153</td>
<td>0.935</td>
<td>0.13367</td>
<td>0.29630</td>
<td>0.4734</td>
<td>0.31410</td>
<td>0.6914</td>
<td>0.9709</td>
</tr>
<tr>
<td>0.6487</td>
<td>0.927</td>
<td>0.14001</td>
<td>0.37850</td>
<td>0.5285</td>
<td>0.28055</td>
<td>0.6872</td>
<td>0.9772</td>
</tr>
<tr>
<td>0.6206</td>
<td>0.913</td>
<td>0.14298</td>
<td>0.29449</td>
<td>0.5831</td>
<td>0.27510</td>
<td>0.5950</td>
<td>0.9407</td>
</tr>
<tr>
<td>0.6311</td>
<td>0.972</td>
<td>0.13738</td>
<td>0.38020</td>
<td>0.4877</td>
<td>0.27890</td>
<td>0.5891</td>
<td>0.9814</td>
</tr>
<tr>
<td>0.5875</td>
<td>0.1009</td>
<td>0.14163</td>
<td>0.24174</td>
<td>0.5847</td>
<td>0.30560</td>
<td>0.5731</td>
<td>0.9587</td>
</tr>
<tr>
<td>0.6396</td>
<td>0.929</td>
<td>0.14334</td>
<td>0.27654</td>
<td>0.5023</td>
<td>0.29250</td>
<td>0.6842</td>
<td>0.9802</td>
</tr>
<tr>
<td>0.5992</td>
<td>0.948</td>
<td>0.14348</td>
<td>0.28195</td>
<td>0.5106</td>
<td>0.31600</td>
<td>0.7032</td>
<td>0.10164</td>
</tr>
</tbody>
</table>

Table 1 Results of co-evolutionary framework for public datasets of ITC2007 exam-timetabling track

have rankings \[3, 4, 3, 2, 3, 2, 3, 2 \] over these 8 datasets\(^2\) with average rank of \(2.85\). Table ?? gives the scores obtained by our program on a Pentium 4 dual-core 3GHz PC with 2GB of RAM. The maximum runtime of our program was set to 377 seconds (as determined by the competition benchmark program\(^3\).

The respective rankings for our program were \[2, 3, 2, 4, 5, 2, 3, 2 \], yielding an average rank of 2.875, which would place us in joint second with Gogos over these 8 datasets. Table ?? shows \((\bar{x}, \sigma)\) of the results of each dataset for Müller, Gogos and our program for the cases where all 10 sample runs are feasible (i.e. are of the form \(0, x\) for some \(x\)).

3 Conclusion

We have presented a co-evolutionary variant on the ‘ruin-and-repair’ strategy that ranks joint second with the pre-existing finalists on the publicly-available datasets of the ITC2007 competition exam-timetabling track.

\(^2\) http://www.cs.qub.ac.uk/itc2007/winner/christosgogos.htm
\(^3\) Available at http://www.cs.qub.ac.uk/itc2007/index_files/benchmarking.htm
Future work involves investigating alternative entity relationships between solution and add-delete string (e.g. N:1 and 1:N as opposed to the 1:1 approach adopted here) and associating some probability (possibly adaptively determined) with this relationship.

In addition, it is interesting to note from Table that while our approach generally exhibits a higher standard deviation, it also yields a greater number of feasible solutions, failing only on dataset 4 in this respect. This is perhaps a counter-intuitive result, since one might expect the ‘repair’ aspect of our ‘ruin-and-repair’ strategy to encounter many infeasible solutions. Hence, there is further work to be done in explaining the underlying reasons for this behaviour.

References