
A MULTI-AGENT BASED COOPERATIVE1

APPROACH TO SCHEDULING AND ROUTING2

Simon Martin1, Djamila Ouelhadj2, Patrick Beullens3,3

Ender Ozcan4,Angel A. Juan5,Edmund.K.Burke14

1Computational Heuristics Operational Research Decision Support (CHORDS) Group,5

University of Stirling, Department of Mathematics and Computer Science, UK6

email: spm@cs.stir.ac.uk7

2Centre of Operational Research and Logistics,8

University of Portsmouth,Department of Mathematics,UK9

email: djamila.ouelhadj@port.ac.uk10

3Mathematical Sciences and Southampton Business School and CORMSIS, University of11

Southampton, SO17 1BJ, United Kingdom12

email: P.Beullens@soton.ac.uk13

4Automated Scheduling, Optimisation and Planning Research Group,14

University of Nottingham, Department of Computer Science,UK15

email: Ender.Ozcan@nottingham.ac.uk16

5Department of Computer Science and Telecommunication,17

Open University of Catalonia, Rambla Poblenou, 156 088018 Barcelona, Spain18

email:ajuanp@uoc.edu19

Abstract20

In this study, we propose a general agent-based distributed framework where
each agent is implementing a different metaheuristic/local search combina-
tion. Moreover, an agent continuously adapts itself during the search pro-
cess using a direct cooperation protocol based on reinforcement learning and
pattern matching. Good patterns that make up improving solutions are
identified and shared by the agents. This agent-based system aims to pro-
vide a modular flexible framework to deal with a variety of different prob-
lem domains. We have evaluated the performance of this approach using
the proposed framework which embodies a set of well known metaheuristics
with different configurations as agents on two problem domains, Permuta-
tion Flow-shop Scheduling and Capacitated Vehicle Routing. The results
show the success of the approach yielding three new best known results of
the Capacitated Vehicle Routing benchmarks tested, while the results for
Permutation Flow-shop Scheduling are commensurate with the best known

Preprint submitted to Elsevier January 8, 2016

values for all the benchmarks tested.

Keywords: combinatorial optimization, multi-agent systems, scheduling,1

vehicle routing, metaheuristics, cooperative search, reinforcement learning.2

1. INTRODUCTION3

Heuristics are rules of thumb for solving specific computationally hard4

problems. Researchers and practitioners use heuristics when exact methods5

fail to produce any solutions with a “reasonable” quality in a “reasonable”6

amount of time. Heuristics often come with a set of parameters, each requir-7

ing tuning for an improved performance. Moreover, different heuristics can8

perform well on different problem instances. Hence, there is a growing num-9

ber of studies on more general methodologies which are applicable to different10

problem domains for tuning the parameters (López-Ibánez et al., 2011; Hut-11

ter et al., 2007; Ries and Beullens, 2015), generating or mixing/controlling12

heuristics (Burke et al., 2013; Ross, 2014). In this study, we take an alter-13

native approach and use cooperating agents, where each agent is enabled to14

take a different approach with different parameter settings.15

By cooperative search we mean that (meta)heuristics, executed in parallel16

as agents, have the ability to share information at various points through-17

out a search. To this end, we propose a modular agent-based framework18

where the agents cooperate using a direct peer to peer asynchronous mes-19

sage passing protocol. An island model is used where each agent has its own20

representation of the search environment. Each agent is autonomous and21

can execute different metaheuristic/local search combinations with different22

parameter settings. Cooperation is based on the general strategies of pattern23

matching and reinforcement learning where the agents share partial solutions24

to enhance their overall performance.25

The framework has the following additional characteristics. By using26

ontologies (see Section 3.2), we are aiming to provide a framework that is27

flexible enough to be used on more than one type of combinatorial optimi-28

sation problem with little or no parameter tuning. This is achieved by using29

our scheduling and routing ontology to translate target problems into an in-30

ternal format that the agents can use to solve problems. So far, this approach31

has been applied successfully to Capacitated Vehicle Routing (CVRP), Per-32

mutation Flow shop Scheduling (PFSP), reported here and Nurse Rostering33

reported in Martin et al. (2013).34

2

The aim of this study is to develop a modular framework for cooperative1

search that can be deployed, with little reconfiguration, to more than one type2

of problem. We also test whether interaction between (meta)heuristics leads3

to improved performance and if increasing the number of agents improves4

the overall solution quality.5

1.1. Cooperative search in OR: literature6

The interest in cooperative search has risen due to successes in finding7

novel ways to combine search algorithms. Cooperative search can be per-8

formed by the exchange of states, solutions, sub-problems, models, or search9

space characteristics. For a general introduction, see e.g. Clearwater et al.10

(1992); Hogg and Williams (1993); Toulouse et al. (1999); Blum and Roli11

(2003); Talbi and Bachelet (2006); Crainic and Toulouse (2008). Several12

frameworks have been proposed recently, incorporating metaheuristics, as in13

Talbi and Bachelet (2006); Milano and Roli (2004); Meignan et al. (2008,14

2010), or hyper-heuristics, as in Ouelhadj and Petrovic (2010). Also, El Ha-15

chemi et al. (2014) explore a general agent-based framework for solution16

integration where distributed systems use different heuristics to decompose17

and then solve a problem.18

In an effort to find ways to combine different metaheuristics in such a19

way that they cooperate with each other during their execution, a num-20

ber of design choices have to be made. According to Crainic and Toulouse21

(2008) an asynchronous framework in particular could result in an improved22

search methodology; communication can then either be many-to-many (di-23

rect), where each metaheuristic communicates with every other, or it can be24

memory based (indirect), where information is sent to a pool that (other)25

metaheuristics can make use of as required.26

Most cooperative search mechanisms in the OR literature deploy indi-27

rect communication through some central pool or adaptive memory. This28

can take the form of passing whole, or possibly, partial solutions, to the29

pool. See Talbi and Bachelet (2006); Milano and Roli (2004); Meignan et al.30

(2008, 2010); Malek (2010). Aydin and Fogarty (2004b) applied this ap-31

proach to job shop scheduling. Recently Barbucha (2014) has proposed an32

agent-based system for Vehicle Routing Problems where agents instantiate33

different metaheuristics which communicate through a shared pool.34

Direct communication, instead, is used only in Vallada and Ruiz (2009);35

Aydin and Fogarty (2004a), where whole solutions are passed from one pro-36

cess to another in an island model executing a genetic or an evolutionary37

3

simulated annealing algorithm respectively, and in Ouelhadj and Petrovic1

(2010), where a similar set-up is used for a hyper-heuristic. All three pa-2

pers addressed the PFSP. Also, this approach is to an extent present in the3

evolutionary system of Xie and Liu (2009), who investigated the Travelling4

Salesman Problem. Kouider and Bouzouia (2012) propose a direct com-5

munication multi agent system for job shop scheduling where each agent is6

associated with a specific machine in a production facility. Here a problem7

is decomposed into several sub-problems by a “supervisor agent”. These8

are passed to “resource agents” for execution and then passed back to the9

supervisor to build the global solution.10

Little work has been done on asynchronous direct cooperation where par-11

tial solutions are rated and their parameters are communicated between au-12

tonomous agents all working on the total problem. So far, no direct co-13

operation strategy has been applied to more than one problem domain in14

combinatorial optimisation. To this end, the agents are truly autonomous15

and not synchronised. There is a gap in the literature regarding agents co-16

operating directly and asynchronously where the communication is used for17

the adaptive selection of moves with parameters.18

The outline for the rest of the paper is as follows. Section 2 provides19

formal problem statements for the two case studies. Section 3 describes20

the proposed modular multi-agent framework for cooperative search, while21

Section 4 describes how it is implemented. In Section 5 we discuss the exper-22

imental design. In Section 6 we report the results of the tests where, to the23

best of our knowledge, for three of the capacitated vehicle routing instances24

we achieved better results than have been reported in the literature. Finally,25

Section 7 presents conclusions and suggestions for future work.26

2. TEST CASE PROBLEMS27

In this section we offer brief problem descriptions of the case studies28

applied to the agent-based framework proposed in this paper. We chose these29

instances as they are representative scheduling and routing problems. The30

algorithms instantiated by the framework are state-of-art implementations31

(Juan et al., 2014, 2013, 2010a,b). These are all examples of Simheuristics32

(Juan et al., 2015). This makes them a good fit with the partial solutions33

identified by the system.34

4

2.1. Permutation flow-shop Scheduling Problem1

Given is a set of n jobs, J = {1, ..., n}, available at a given time 0, and2

each to be processed on each of a set of m machines in the same order,3

M = {1, ...,m}. A job j ∈ J requires a fixed but job-specific non-negative4

processing time pj,i on each machine i ∈M . The objective of the PFSP is to5

minimise the makespan. That is, to minimise the completion time of the last6

job on the last machine Cmax (Pinedo, 2002). A feasible schedule is hence7

uniquely represented by a permutation of the jobs. There are n! possible8

permutations and the problem is NP-complete (Garey et al., 1976).9

A solution can hence be represented, uniquely, by a permutation S =10

(σ1, ..., σj, ...σn), where σj ∈ J indicates the job in the jth position. The11

completion time Cσj ,i of job σj on machine i can be calculated using the12

following formulae:13

Cσ1,1 = pσ1,1 (1)

Cσ1,i = Cσ1,i−1 + pσ1,i, where i = 2, ...,m (2)

Cσj ,i = max(Cσj ,i−1, Cσj−1,i) + pσj ,i,

where i = 2, ...,m, and j = 2, ..., n (3)

Cmax = Cσn,m (4)

2.2. The Capacitated Vehicle Routing Problem14

The Capacitated Vehicle Routing Problem (Dantzig and Ramser, 1959)15

can be defined in the following graph theoretic notation. Let G(V,E) be an16

undirected complete graph where V = {v0, v1, v2, ...vn} is the vertex set and17

where vertices E is a set of edges.18

Let the set vi where i = {1, ...n} represent the customers who are ex-19

pecting to be serviced with deliveries and let v0 be the service depot. Also20

associated with each vertex vj is a non-negative demand dj. This value is21

given each time a delivery is made. For the depot v0 there is a zero demand22

d0.23

The set E represents the set of roads that connect the customers to each24

other and the depot. Thus each edge e ∈ E is defined as a pair of vertices25

(vi, vj). Associated with each edge is a cost ci,j of the route between the two26

vertices.27

Finally there is also a set of unlimited trucks each with same loading28

capacity. The aim is to service all the customers visiting them once only and29

using as few trucks as possible. In any potential delivery round a customer’s30

5

demand has to be taken into account. The total demands of customers on1

the round must not exceed the capacity of the vehicle. This means that it is2

normally not possible to visit all customers with one truck. As a consequence3

each delivery round for a truck is called a route.4

The goal of the CVRP problem is to minimise the overall travelling dis-5

tance to service all customers with varying demand using a given number of6

trucks, each with the same fixed capacity.7

This problem was proved to be NP-Hard by Garey and Johnson (1979).8

2.3. Benchmark instances9

We used the following benchmark instances for testing the experiments10

described in Section 5. For PFSP, we selected 12 benchmark problems11

from Taillard (1993). Each Taillard PFSP benchmark instance is labelled12

as taiX j m, where X is the instance number and (j,m), where j indicates13

the number of jobs, and m the number of machines. In order to facilitate our14

analysis, we selected 12 of the harder instances two from the (50, 20) pool,15

two from the (100, 20) pool and then three from the (200, 10) and (200, 20)16

pools and finally three from the (500, 20) pool of instances for which an op-17

timal solution is not known. For CVRP, we tested 12 problems from the18

benchmarks of Augerat et al. (1995). Each instance of this benchmark is19

denoted as A − nM − kL, where M and L indicate the number of delivery20

points including the depot and the target number of routes, respectively.21

3. AGENT-BASED FRAMEWORK22

3.1. Framework architecture and operation23

We describe a general agent-based distributed framework where each24

agent implements a different metaheuristic/local search combination. An25

agent continuously adapts itself during the search process using a cooper-26

ation protocol based on the retention partial solutions deemed as possible27

constituents of future good solutions. These are shared with the other agents.28

The framework makes use of two types of agent: launcher and meta-29

heuristic agents.30

• The launcher agent is responsible for queueing the problem instances to31

be solved for a given domain, configuring the metaheuristic agents, suc-32

cessively passing a given problem instance to the metaheuristic agents33

and gathering the solutions from the metaheuristic agents. To achieve34

6

this it converts domain specific problem instances into the agent mes-1

saging protocol using an ontology for scheduling and routing (see Sec-2

tion 3.2). However the launcher agent plays no actual part in the search,3

its job is to prepare and schedule problems to be solved by the other4

agents.5

• A metaheuristic agent executes one of the metaheuristic/local search6

heuristic combinations that are available. These combinations and their7

parameter settings are all defined on launching. In this way each agent8

is able to conduct searches using different combinations and parameter9

settings from the other agents employed in the search. Each meta-10

heuristic agent conducts its search using the messaging structure de-11

fined in the ontology for scheduling and routing and uses no problem12

specific data and as such is generic.13

A search proceeds with the launcher reading a number of problem in-14

stances into memory. It converts them into objects that can be defined by15

the Ontology for scheduling and routing (section 3.2 below) and then sends16

each object, one at a time, to the metaheuristic agents to be addressed. For17

a given problem instance, the metaheuristic agents participate in a commu-18

nication protocol which is in effect a distributed metaheuristic that enables19

them to search collectively for good quality solutions. This is a sequence of20

messages passed between the metaheuristic agents and each message is sent21

as a consequence of internal processing conducted by each agent. One itera-22

tion of this protocol is called a conversation and is based upon the well-known23

contract net protocol (FIPA, 2009). In order to arrive at a good solution the24

agents will conduct 10 such conversations.25

To understand the pattern matching protocol it is necessary to explain the26

proposed model for scheduling and routing used throughout the framework.27

3.2. Scheduling and routing ontology28

The ontology (Gruber, 1993) plays an important role within our frame-29

work. It defines a set of general representational primitives that are used30

to model a number of scheduling and routing problems. The communica-31

tion protocol and the heuristics are all based on data structures developed32

from these primitives. This means the framework is modular in that new33

(meta)heuristics can be easily developed and then deployed on different prob-34

lems.35

7

Ontology for agent-based framework

SolutionData

Edge

Constraints

SolutionElements

Cities Jobs Assignments

The SolutionElements object
Is the interface between the
framework and specific problem
instance

Problem specific data

interface

Objects of the agent-based
framework

Problem specific objects inheriting from the abstract SolutionElements object

NodeList

Customers & Depots

Figure 1: The combinatorial optimisation ontology

The ontology used by the framework generalises these notions as abstract1

objects.2

• SolutionElements: A SolutionElement is an abstract object that can3

represent a problem specific object such as a job in PFSP or, a customer4

or depot in CVRP.5

• Edge: An Edge object contains two SolutionElements objects. These6

are used to represent pairs of jobs or customers in a permutation that7

will be in the cooperation protocol to identify good patterns in improv-8

ing permutations.9

• Constraints: The Constraints interface is between the high level10

framework and the concrete constraints used by a specific problem.11

These are used to verify a valid permutation.12

• NodeList: A NodeList object is a list of SolutionElements objects or13

Edges. It represents a schedule of jobs in the PFSP. In the case of14

CVRP, a NodeList represents a Route and is therefore a sub-list of a15

full permutation.16

8

• SolutionData: A SolutionData object is a list of NodeList objects1

and therefore is the permutation that is optimised by the framework.2

In this study it represents a schedule of jobs in PFSP, or a collection of3

routes in CVRP.4

All message passing in the framework, including the whole ontology, is5

written in XML. This can be advantageous as many benchmark problems,6

these days, are also in XML making the interface between problem definition7

and ontology seamless in practice. Figure 1 shows the structure of the ontol-8

ogy and how SolutionElements are the interface between the framework and9

a concrete problem.10

3.3. Edge selection and short-term memory11

The framework features a method of Edge selection and short-term mem-12

ory. A conversation, as has been explained already, is a type of distributed13

heuristic. Its purpose is to identify constituent features of incumbent solu-14

tions that are likely to lead to the building of improving solutions.15

This is achieved by using objects defined in the ontology. SolutionData16

object in the ontology is built from the sub-objects of NodeLists and Edges17

and SolutionElements. Thus to represent a permutation of n jobs for PFSP18

a SolutionData object is built from one NodeList object and which itself is19

made up n− 1 Edges objects which are themselves built from n SolutionEle-20

ments. Similarly a CVRP representation of n customers is one Solution Data21

object with x (this number is determined during the search) NodeLists. The22

NodeLists are built of n− 1 Edges and n SolutionElements.23

If we take a permutation of the unique ID numbers of each the Solu-
tionElements objects we can represent a SolutionData object with 10 ele-
ments as follows: (3, 4, 6, 7, 5, 8, 9, 0, 1, 2). Furthermore we can break this
permutation into a collection of Edge objects:

(3, 4), (4, 6), (6, 7), (7, 5), (5, 8), (8, 9), (9, 0), (0, 1), (1, 2), (2, 3)

During a conversation each agent runs its metaheuristic and produces a24

new incumbent solution. Each agent then breaks this solution into Edge25

objects and sends then to one of the metaheuristic agents that has been26

designated as the “initiator” for the duration of that conversation only. All27

metaheuristic agents are exactly the same and have the potential to take on28

the role of an initiator in a conversation.29

9

The initiator agent collects all the Edge objects from all the other agents1

into a list and scores them by frequency. Here, frequency is the number of2

times an Edge appears in the initiators list. The only Edge objects that are3

retained are the ones that have the same score as the number of agents that4

are participating in the conversation. The idea here is that if an Edge occurs5

frequently in all incumbent solutions, it is likely to be an Edge that will be6

part of an improving solution. These retained good Edges are then shared7

by the initiator with the other agents.8

Another feature is the learning mechanism where each agent keeps a short-9

term memory of good Edges. This is a queue of good Edges that operates10

somewhat like a Tabu list. An agent’s queue is populated during the first11

conversation with edges from the incumbent solution produced by its meta-12

heuristic. Thereafter the queue is maintained at a factor, that is 20%, of13

the size of the candidate solution for the problem instance at hand. In sub-14

sequent conversations as new edges not already in the list arrive, they are15

pushed onto the front of the queue while other edges are popped off the back16

of the queue so that the size of the list does not change.17

The Edges in the short-term memory are used at the start of each con-18

versation to modify the performance of agent’s metaheuristic to enable it to19

find better solutions.20

The basic idea of this learning mechanism is that both the RandNEH and21

RandCWS heuristics of (Juan et al., 2015) used in this study make use of22

ordered lists to construct new solutions. These heuristics use biased random23

functions to choose items from these lists. We use the Edges identified by24

the learning mechanism to reorder these lists and so influence the way new25

solutions are constructed.26

4. IMPLEMENTATION27

The framework is implemented using JADE (Bellifemine et al., 2007). It28

allows a developer to concentrate on the function and behaviour of agents29

while it handles inter-agent and inter-platform communication and hus-30

bandry.31

The configuration file of a launcher agent lists which problems are to be32

solved. It also contains how many conversations the metaheuristic agents are33

going to conduct for a particular problem.34

At start-up, parameters determine which metaheuristic will be employed35

as well as any parameter settings associated with it. Once the metaheuristic36

10

agents have completed the set number of conversations they each send their1

best result to the launcher agent. The launcher then prints an output file2

with the best solution and objective function value.3

The framework conducts a search where each agent is launched and reg-4

isters with the JADE platform that hosts the framework. Once this is com-5

plete, the agents wait for the launcher agent to read in a problem from file.6

The launcher will then send the problem to each of the metaheuristic agents.7

Only when the metaheuristic agents receive that problem from the launcher8

do they embark on a search.9

4.1. Heuristics used by the agents10

In this study depending on whether they are solving PFSP or VRP, the11

agents instantiate the heuristics developed by Juan et al. (2010b,a) respec-12

tively.13

In the case of PFSP, the metaheuristic used is the Randomised NEH14

(RandNEH) algorithm of Juan et al. (2010b). It is a stochastic version of the15

classic heuristic of Nawaz et al. (1983). Just as the NEH algorithm creates an16

ordered list of jobs sorted from tardiest to quickest, the RandNEH algorithm,17

instead of choosing jobs in order from the list, chooses them according to a18

randomised process based on the Triangular probability distribution.19

While for the CVRP, the metaheuristic used is the Randomised Clarke20

Wright Savings (RandCWS) algorithm of Juan et al. (2010a). It is a stochas-21

tic version of the classic savings heuristic of Clarke and Wright (1964). Rather22

than generating new routes by choosing the greatest relevant saving from the23

savings list, it chooses according to a Geometric distribution where the jth24

savings from the list is chosen by a probabilistic function described in Juan25

et al. (2010a).26

Both these algorithms have been integrated into our system according to27

our framework. This was quite a simple process where the heuristics imple-28

ment the abstract objects defined in the scheduling and routing ontology.29

For example, the Edge and Job objects of the RandNEH algorithm are now30

subclasses of the Edge and SolutionElements abstract classes of the frame-31

work. Similarly for VRP problems, where the Route, Edge and Customer32

objects are now subclasses of the NodeElements, Edge and SolutionElements33

objects of the framework.34

This means we can use the good Edges found as a result of a conversation35

of the framework to modify the Job lists and Saving lists of the RandNEH36

and RandCWS algorithms respectively.37

11

In the case of PFSP, the list of Edges found by the agents is turned1

into a list of SolutionElements (Jobs) where their order in the Edge list2

is preserved. The Jobs list generated by the RandNEH algorithm is then3

reordered with respect to the list of Jobs generated from the Edge list, with4

the new Jobs being moved to the front of the list. This affects the operation5

of the RandNEH algorithm where the new Jobs are likely be favoured in the6

construction of any new improving schedule.7

It is a similar process for the RandCWS algorithm. However this time8

the Edges in Edge list are also Super Classes of the Edges in the savings9

Savings List. Again the Savings List is reordered with respect to the Edge10

list where these Edges are moved to the head of the Savings List. This again11

affects the operation of the RandCWS algorithm favouring the good Edges12

found as a result of the Agents’ conversations.13

4.2. Description of a conversation14

Figure 2 shows the edge selection protocol used by the metaheuristic15

agents. One complete execution of the algorithm illustrated is a conversation.16

In any conversation, there will be an agent that takes on the role of an17

initiator and the others are responders. In the very first conversation agent118

will always take on the role of initiator. Thereafter, any agent can be the19

initiator, but it is determined in the previous conversation which agent will20

be the initiator for the current conversation (see below).21

In Figure 2 an agent taking on the role of initiator starts a conversation.22

At the start of a conversation, each agent either takes a list of Edge objects23

generated from a previous conversation or from one generated by the launch24

agent (see I1 and R1 in Figure 2).25

The agents then find a new incumbent solutions using their given heuris-26

tics in conjunction with the edges provided in the previous step (see I2 and27

R2 in Figure 2).28

The initiator breaks its incumbent solution into edges and then invites29

the responder agents to do the same and send them to the initiator, I3 and30

R3 of Figure 2.31

The receiving agents also send the value of their best-so-far solution. This32

will be used by the initiator to determine which agent will be the new initiator33

in the next conversation (see I4 in Figure 2).34

In I4, the initiator receives the Edge objects from the responding agents35

and collects them together. Each Edge object is scored and ranked based on36

frequency. This can be seen in box I4 of Figure 2 as the function getScore.37

12

Initiator Responder(s)

I
2
 Meta-heuristic

best-solution-so-far

R
2
 Meta-heuristic

best-solution-so-far

R
3
 Create Edges

Create Edge objects
Send value of best-

solution-so far

I
4
 Compare and Rank

getScore,
getInitiator

R
4
 Receive Edges

Add Edges to Pool
Set Initiator

I
5
 Create list of best

Edges from pool

R
5
Create list of best

Edges from pool

Send(Call for Edges)

Send (Edges)

Send (best Edges)

Send(task Complete)

I
3
 Create Edges

Create Edge objects

I
1
Modify Heuristic R

1
Modify Heuristic

Figure 2: The Cooperation Protocol showing one iteration of a conversation

In I4 of Figure 2, through the function getInitiator, the initiator also de-1

termines which metaheuristic agent is going to be the initiator in the next2

conversation. This is achieved by choosing the agent the best objective func-3

tion value to be the initiator.4

The initiator then sends good Edge objects, found during this conversa-5

tion, to the receiving metaheuristic agents.6

Each agent keeps a pool or short-term memory of high scoring Edge7

objects. The pool acts as a sort of queue and its length is set when the agent8

13

is launched. In this study all the agents have a pool size of 20% of length1

of the instance currently being optimised. During the first conversation each2

agent populates its pool as good edges are identified. Once the pool is up to3

size, it is maintained as a queue as described in Section 3.3.4

The other metaheuristic agents receive the lists of Edge objects from the5

initiator (see box R4 in Figure 2). They also update their internal memory’s6

or pools as described above. In box I5 and R5 of Figure 2, both initiator7

and responder metaheuristic agents then each create a new solution by using8

edges from their updated internal pools. These good edges are passed to the9

metaheuristic the agent is configured to execute in the current search. The10

metaheuristic uses these good edges when it is next called at the start of the11

next conversation (back to I1 and R1 of Figure 2). This process repeats and12

continues until the number of conversations set from the launcher agent are13

completed.14

5. EXPERIMENTAL DESIGN15

In this section we discuss the experimental design.16

5.1. Launcher agent17

One launcher agent is invoked in each run. The launcher agent reads18

from a configuration file the number of agents to be instantiated (see Section19

5.4) as well as the number of conversations that will be conducted during the20

test.21

The launcher agent executes a construction heuristic to build an initial22

solution for each instance and run: for PFSP a biased-randomised version23

of the NEH algorithm (Nawaz et al., 1983) with Taillard’s speedups imple-24

mented by (Juan et al., 2010b); and for CVRP, the Randomised CW Savings25

algorithm (Juan et al., 2014, 2010a). This initial solution is passed on to26

each of the individual agents.27

5.2. The number of conversations28

Juan et al. (Juan et al., 2010b, 2014, 2010a) suggested that, to be effec-29

tive, the RandNEH and RandCWS heuristics should be run for a maximum30

time of about 2.5 minutes. We benchmarked their code and observed the31

same phenomena, hence used the same running time on our machine during32

our experiments.33

14

0 50 100 150

39
00

39
40

39
80

A typical solution trjectory for RandNEH

Instance−tai051_50_20
Time(s)

F
itn

es
s

V
al

ue
s

(a) tai051-50-20

0 20 40 60 80

38
80

39
20

39
60

A typical solution trjectory for RandCWS

Instance−A−n45−k7
Time(s)

F
itn

es
s

V
al

ue
s

(b) A-n45-k7

Figure 3: Typical Solution trajectories of the RandNEH and RandCWS algorithms

This gave us a guide as to how long our system should be run and there-1

fore determine the number of conversations that would be needed. The time2

taken for the agents to complete a conversation is mainly governed by the3

time taken for an agent’s given heuristic to execute. To this end, we con-4

ducted tests showing that both heuristics typically have a period of maximum5

improvement of about 12 seconds. As an example, Figure 3 plots the solution6

trajectories of the PFSP instance tai051 and the CVRP instance A-n45-k97

against time. We can see that these algorithms have their period of greatest8

improvement in about the first 12 seconds of operation. Thus we determined9

that the system should execute 10 conversations for our system to run for10

about the same time as the standalone versions of the RandNEH and Rand-11

CWS heuristics. This would also take into account any lag caused by the12

asynchronous nature of the system.13

5.3. Parameter Settings14

Since the RandCWS and RandNEH methods of Juan et al. were already15

written in JAVA, they were integrated with minimum effort as a module16

of our agent based system. They utilise the edge selection heuristic of the17

agent-based system by taking edges identified during each conversation and18

re-ordering the jobs list of the RandNEH algorithms and the savings list of19

the RandCWS algorithm as explained in Section 4.1.20

Both algorithms use a random seed which is a number which introduces21

a bias to a random number generator. In the tests for both the PFSP and22

CVRP, each agent is configured with exactly the same random seeds (Juan23

et al., 2010a,b).24

15

However in their article Juan et al. (2011) describe how they combined1

Monte-Carlo simulation techniques with the Clarke Wright Savings algorithm2

to develop the probabilistic RandCWS algorithm. It was designed so that it3

would require little parameter tuning. To this end they describe a parameter4

α that is used to define different geometric distributions. Such a distribution5

can then used by the RandCWS heuristic to choose the next edge from the6

Clarke Wright Savings list as part of its solution building process. The α7

-parameter is itself chosen at random from a uniform distribution between8

two values (a, b) where 0 < a ≤ b < 1. In their paper, Juan et al choose9

α-values from the interval α ∈ {0.05−0.25}. They show that for any α-value10

in this interval, the algorithm will give similar and good performance. In11

correspondence with the authors, it was confirmed that the algorithm will12

perform less well for α-values of above 2.3, while at the other end of the range13

α-values close to the 0.05 will perform as any in the cited interval.14

The intuitive idea for spreading the α− values is to maximise the use of15

different distributions during a search. While these choices do not effect the16

solution quality it means the agents will produce slightly different solutions17

which will produce different edges that will enhance the performance of the18

distributed edge selection algorithm.19

In both case studies each metaheuristic is allowed to run for 12 seconds20

each time it is called.21

Following Juan et al. (2014, 2013) in what we call our standalone ex-22

periments, that is the traditional case without cooperative search being23

used, we compare our cooperating agents with the stand alone by run-24

ning the experiments for each group for a maximum time of 40 minutes25

to match the computational effort of the system running 16 agents i.e.26

16× 150s = 2400s (40mins). Thus all agents versus standalone comparisons27

are made against this worst case scenario.28

5.4. Experimental set-up29

The main hypothesis to be tested in these experiments is that cooperating30

agents produce better results than their stand alone equivalents. The results31

are also compared with state-of-art results for each of these benchmarks. To32

this end, for each instance of the tests the following scenarios were run:33

The CVRP tests were conducted as follows with α − values selected on34

0.01 increments from the set {0.03 to 0.18}35

• Stand alone agent: 1 metaheuristic agent where the α− value = 0.0336

16

• 4 agents: α ∈ {0.03− 0.06}1

• 8 agents: α ∈ {0.03− 0.1}2

• 12 agents: α ∈ {0.03− 0.14}3

• 16 agents:α ∈ {0.03− 0.18}4

The PFSP tests were conducted similarly but without the need for α −5

values.6

They are tested in this way so that standalone agents running just one7

metaheuristic at a time can be compared statistically with groups of coop-8

erating agents in order to test the main hypothesis.9

Every instance is tested 20 times. The resulting values are then used to10

evaluate the performance of the test. In particular the average and minimum11

value of the 20 runs for each problem are taken. These are compared with12

the known optimal or best values for each problem instance.13

To test the hypothesis that agents cooperating by edge selection perform14

better than stand alone agents, Wilcoxon signed rank tests are conducted15

for each benchmark instance, with a 95% confidence level. We used the16

Wilcoxon test rather than t-test because we cannot guarantee that the test17

results will be normally distributed Moore and McCabe (1989). These tests18

compare the difference between the distributions of 16, 12, 8, and 4 agents19

cooperating with the stand alone agents. A secondary hypothesis is explored20

where the performances of groups of 4, 8, 12 and 16 agents are compared using21

the Wilcoxon signed rank test to ascertain whether increasing the number22

of agents results in better performance. The following notation is used in23

tables 2, 3, 6 and 7. Given two algorithms (or different settings for the same24

algorithm); A versus B, > (<) denotes that A (B) is better than B (A) and25

this performance difference is statistically significant at a 95% confidence26

level. However, ≥ (≤) denotes that A (B) is better than B (A) although27

statistical significance could not be supported. Lastly, ≈ denotes the case28

where both approaches consistently achieve the same value.29

The results for each problem are averaged and the average percentage30

deviation from the known optimum is calculated. The percentage deviation31

from a known optimum is calculated in the standard manner:32

Methodsolution −Bestsolution
Bestsolution

× 100 (5)

17

The results are also analysed to find the best result of each group of agents1

over the 20 runs of each problem instance.2

Juan et al. (2014, 2013)3

5.5. Machines4

All tests are run on the same Linux cluster using 8 identical machines;5

two agents were run per-node of the cluster. The agents are configured to6

use 2 GB of memory.7

6. RESULTS OF EXPERIMENTS8

6.1. Permutation Flow-shop Scheduling results9

Table 1 shows the average percentage deviation from the best known or10

optimum value for each of the benchmark instances tested, as well as the11

percentage deviation for the best value found across the 20 runs. The table12

also compares our results with the Hybrid Genetic algorithm of Zobolas et al.13

(2009). Here the average value reported by Zobolas et al. (2009) is given as a14

percentage deviation from the best known solution (BKS). Despite the fact15

that this is a type of hyper-heuristic system where the only parameter tuning16

is the number of conversations executed, the PFSP results are competitive17

with the state-of-the-art results for these problem instances. It is only in the18

larger three instances where our average deviation is not better than that of19

Zobolas et al. (2009).20

Table 1: The average (avr.) and best percentage deviation from the upper bound over 20
runs for each instance for PFSP. The best values are highlighted in bold

Instance BKS Zobolas et al.
1 Agent 4 Agents 8 Agents 12 Agents 16 Agents

avr. best avr. best avr. best avr. best avr. best
tai051 50 20 3850 0.77% 0.92% 0.39% 0.84% 0.55% 0.76% 0.47% 0.69% 0.39% 0.63% 0.44%
tai055 50 20 3610 1.03% 0.54% 0.44% 0.67% 0.50% 0.62% 0.28% 0.57% 0.36% 0.50% 0.30%
tai081 100 20 6202 1.63% 1.55% 1.23% 1.52% 1.26% 1.41% 1.06% 1.34% 1.03% 1.30% 1.02%
tai085 100 20 6314 1.57% 1.39% 1.00% 1.34% 1.11% 1.22% 0.97% 1.15% 1.00% 1.11% 0.89%
tai091 200 10 10862 0.24% 0.12% 0.09% 0.09% 0.09% 0.09% 0.09% 0.09% 0.09% 0.09% 0.09%
tai095 200 10 10524 0.03% 0.10% 0.03% 0.09% 0.03% 0.05% 0.03% 0.03% 0.03% 0.03% 0.03%
tai101 200 20 11195 1.34% 1.49% 1.30% 1.38% 1.09% 1.25% 1.01% 1.22% 1.06% 1.19% 0.93%
tai105 200 20 11259 1.04% 1.08% 0.70% 1.02% 0.89% 0.94% 0.78% 0.94% 0.83% 0.88% 0.71%
tai106 200 20 11176 1.11% 1.60% 1.25% 1.55% 1.35% 1.44% 1.27% 1.43% 1.25% 1.42% 1.33%
tai111 500 20 26059 0.73% 0.99% 0.74% 1.01% 0.88% 0.95% 0.86% 0.92% 0.87% 0.88% 0.69%
tai115 500 20 26334 0.82% 0.99% 0.74% 1.01% 0.88% 0.95% 0.86% 0.92% 0.87% 0.88% 0.69%
tai116 500 20 26477 0.49% 0.72% 0.56% 0.69% 0.56% 0.67% 0.60% 0.62% 0.57% 0.61% 0.54%

With respect to answering our main hypothesis: “is cooperation by pat-21

tern matching better than no cooperation?”, we compared 4 agents cooper-22

ating against a stand alone agent (see Section 5.3). In addition we wanted23

18

to test if increasing the number of agents produced a statistically significant1

improvement in the results. Tables 2 and 3 list these results; in each case we2

tested for statistical significance.3

In table 2, with the exception of the tai055 50 20 instance, it can be seen4

that groups of 8,12 and 16 agents perform better than the stand alone with5

statistical significance. However, for the tai055 50 20 instance, 16 agents6

show some improvement, if not statistically, over the stand alone. Further-7

more, two instances of 4 agents perform statistically better than the stan-8

dalone but the rest all show some improvement but not at the 95% level.9

Table 2: Table showing cooperating agents performing better than the standalone equiv-
alent at the 95% in PFSP

Instance 4 vs 1 8 vs 1 12 vs 1 16 vs 1
tai051 50 20 ≥ > > >
tai055 50 20 ≤ ≤ ≤ ≥
tai081 100 20 ≥ > > >
tai085 100 20 ≥ > > >
tai091 200 10 > > > >
tai095 200 10 ≥ > > >
tai101 200 20 > > > >
tai105 200 20 ≥ > > >
tai106 200 20 ≥ > > >
tai111 500 20 ≤ ≥ > >
tai115 500 20 ≤ > > >
tai116 500 20 ≥ > > >

Table 3 explores the possibility that adding more agents leads to better10

results. Here we can see that 8 agents perform statistically better than 4,11

while 12 agents show some improvement, but not statistically, over 8. The12

same is true for 16 over 12 agents. However the instances tai091 200 10 and13

tai105 200 20 achieve statistical significance as well. By the time we get to14

16 versus 4 agents, 16 agents always perform statistically better except for15

tai091 200 10 where statistical significance is not reached. It should also be16

noted for tai091 200 10 while the cooperating agents perform better than17

the stand alone, thereafter the all achieve the same value. It is clear that18

progressively increasing the number of agents from 4 to 8 to 12 to 16 results19

in an increase in performance. However this improvement is not always20

statistically significant. If we consider the column of the table where 1621

19

agents are compared with 8 we see that the level of improvement gains more1

significance. This is suggestive that it is better to increase the number of2

agents by a factor of 2.3

Table 3: Table showing different groups cooperating agents perform at the 95% confidence
level in PFSP

Instance 8 vs 4 12 vs 8 16 vs 12 16 to 8 16 to 4
tai051 50 20 > ≥ ≥ > >
tai055 50 20 > ≥ > > >
tai081 100 20 > ≥ ≥ > >
tai085 100 20 > ≥ ≥ > >
tai091 200 10 ≈ ≈ ≈ ≈ ≥
tai095 200 10 > ≥ ≥ ≈ >
tai101 200 20 > ≥ ≥ ≥ >
tai105 200 20 > ≤ > > >
tai106 200 20 > ≥ ≥ ≥ >
tai111 500 20 > > ≥ > >
tai115 500 20 > ≥ ≥ ≥ >
tai116 500 20 > > ≥ > >

The cooperation mechanism used in this study works by identifying and4

sharing of good patterns that form partial solutions to the problem at hand.5

These are then passed to a metaheuristic to build a new putative solution6

to the problem. Given this, it is interesting to study the patterns (edges)7

identified by each agent and compare them to the final solution found by the8

system. To this end, the final permutation (Edges which appear in the final9

solution and are identified during the search (see table 4)are highlighted in10

bold) <12, 37, 20, 31, 39,35, 34, 6, 40, 5, 10, 1, 7, 15, 33, 43, 24, 42, 27,11

29, 46, 47, 36, 23, 14, 2, 44, 8, 45, 17, 13, 22, 21, 48, 18, 28, 16, 49, 38, 19,12

26, 41, 11, 32, 25, 9, 30, 4, 50,3> of jobs found by the system during one13

run of the tai051 50 20 instance is compared with the patterns in table 4.14

These are all the unique edges identified during this search. These edges are15

identified multiple times but the table only shows them once.16

Indeed some edges (highlighted in bold) identified by the system do end17

up in the final job permutation. Furthermore, we can identify linked edges18

such as 50, 3, 12 at the end and beginning of the permutation. However19

these are not as many as seen with CVRP results below because of the way20

the makespan 4 is calculated as a special cumulative sum of columns of jobs.21

20

Table 4: Patterns found by 4 cooperating agents PFSP for problem tai051 50 20.
Agents Edges
agent1 (14,15) (4,25) (32,22) (39,16) (25,50) (19,41) (13,32) (44,45) (45,6) (50,3) (28,38)
agent2 (35,34) (9,30) (5,10) (2,44) (12,37) (1,7) (4,50) (10,1) (24,42) (50,3)
agent3 (3,12) (37,39) (30,46) (50,3) (35,15) (41,7) (34,33) (38,24) (47,23) (42,49)
agent4 (40,21) (22,13) (6,42) (33,40) (26,2) (5,14) (7,18) (37,28) (39,35) (44,11)

6.2. Capacitated Vehicle Routing results1

Table 5 compares the percentage deviation for average and best results for2

the different groups of agents from the best known solution. The table also3

compares our percentage deviations for these problem instances with those of4

Altınel and Öncan (2005) (donated by A) and Juan et al. (2010b) (denoted5

by B). However, Juan et al. (2010b) only has results for a selection of the6

instances we tested. They represent the latest work on these benchmark7

instances so we have included them for comparison. Comparing our results8

with those of Altınel and Öncan (2005) and Juan et al. (2010b) we can9

see that agents improve on their results. Furthermore, to the best of our10

knowledge, in four cases we have found results that are better than the11

current best known solutions. A− n39− k6,A− n45− k7,A− n55− k9 and12

A− n63− k9 are highlighted in italics for the best average value and in best13

for our best overall score.14

Table 5: The average (avr.) and best percentage deviation from the optimum/upper
bound over 20 runs for each instance for CVRP

Instance BKS A and B Juan et al.
1 Agent 4 Agents 8 Agents 12 Agents 16 Agents

avr. best avr. best avr. best avr. best avr. best
A-n38-k5 734.18 3.577% 0.54% 0.07% 0.04% 0.09% 0.04% 0.02% -0.03% -0.02% -0.03% -0.03% -0.03%
A-n39-k6 833.14 2.233% - 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01%
A-n44-k6 939.33 2.394% - 0.63% 0.57% 0.70% 0.57% 0.55% 0.39% 0.40% 0.29% 0.32% -0.12%
A-n45-k6 944.88 1.383% - 0.92% 0.92% 0.92% 0.92% 0.69% 0.00% 0.20% 0.00% 0.00% 0.00%
A-n45-k7 1147.28 1.842% 0.07% 0.05% -0.03% 0.07% -0.02% 0.03% -0.03% 0.03% -0.03% -0.01% -0.48%
A-n55-k9 1074.46 2.378% 0.14% 0.13% 0.05% 0.26% 0.05% 0.06% 0.05% 0.05% 0.05% 0.05% 0.05%
A-n60-k9 1355.80 1.64% 0.13% 0.50% 0.50% 0.50% 0.50% 0.46% 0.22% 0.40% 0.22% 0.37% 0.22%
A-n61-k9 1039.08 1.654% 0.49% 0.27% 0.26% 0.26% 0.26% 0.25% 0.13% 0.23% 0.12% 0.22% 0.12%
A-n62-k8 1294.28 4.648% - 0.70% 0.62% 0.76% 0.62% 0.62% 0.62% 0.65% 0.62% 0.62% 0.62%
A-n63-k9 1619.90 2.051% - 0.75% 0.45% 0.88% 0.69% 0.73% 0.40% 0.53% 0.14% 0.32% 0.14%
A-n65-k9 1181.69 2.392% 0.66% 1.06% 1.05% 1.05% 0.72% 0.92% 0.28% 0.82% 0.64% 0.61% 0.14%
A-n80-k10 1766.50 2.952% 0.2% 1.04% 0.99% 1.04% 0.99% 0.98% 0.77% 0.87% 0.77% 0.85% 0.70%

Again we tested for the main hypothesis. We compared groups of 4, 8,15

12,and 16 agents cooperating against a stand alone agent. As before we16

tested for statistical significance using the Wilcoxon signed rank test at the17

95% confidence level. Table 6 lists these result using the same notation as18

used in table 2 above. As with the PFSP, 4 agents cooperating do not show19

21

any improvement from their stand alone equivalent. However, groups of 8, 121

and 16 agents with increasing certainty perform better than the stand alone2

agent. Indeed 16 agents all perform better a 95% confidence level except for3

the A− n39− k6 instance.4

Table 6: Table showing cooperating agents performing better than the standalone equiv-
alent at the 95% in CVRP

Instance 4 vs 1 8 vs 1 12 vs 1 16 vs 1
A-n38-k5 ≤ > > >
A-n39-k6 ≤ ≥ ≥ ≥
A-n44-k7 ≤ > > >
A-n45-k6 ≥ > > >
A-n45-k7 ≤ ≥ ≥ >
A-n55-k9 ≤ > > >
A-n60-k9 ≤ > > >
A-n61-k9 ≥ > > >
A-n62-k8 ≤ > ≥ >
A-n63-k9 ≤ ≥ > >
A-n65-k9 ≥ > > >
A-n80-k10 ≤ > > >

In table 7 we report the results of our tests for the secondary hypothesis.5

As with the PFSP results, we can see a gradual improvement as more agents6

are added. But again it seems it is necessary to double the number of agents7

each time in order to observe improvement in results. The addition of 48

agents each time results in an improvement that is not always statistically9

significant. However if the agents are doubled each time in groups of 4, 810

and 16 there is a greater proportion of statistically significant improvement11

from the additive case.12

Finally, we show the patterns generated for a sample on problem instance13

A− n38− k5 in table 9 and compare them to the final result of this run in14

table 8. We highlight in bold those edges identified by the agents in table15

9 that end up in the final solution in table 8. As can be seen there are16

many more such edges than for the PFSP. This is because the relationship17

between edges and cities is much more direct in the case of CVRP as costs18

are calculated as 2D-euclidean distances between cities.19

From this study we conclude that with no parameter tuning between20

case studies our system can produce results which are commensurate with21

22

Table 7: Table showing different groups cooperating agents perform at the 95% confidence
level in CVRP

Instance 8 vs 4 12 vs 8 16 vs 12 16 vs 8 16 vs 4
A-n38-k5 > > > > >
A-n39-k6 ≥ ≥ ≥ ≥ ≥
A-n44-k7 > > > > >
A-n45-k6 > > > > >
A-n45-k7 > ≥ ≥ ≥ >
A-n55-k9 > ≥ ≥ ≥ >
A-n60-k9 > ≥ ≥ > >
A-n61-k9 > ≥ ≥ ≥ >
A-n62-k8 > ≤ ≥ ≥ >
A-n63-k9 > > > > >
A-n65-k9 > ≥ > > >
A-n80-k10 > > ≥ > >

Table 8: Final Solution to CVRP problem A-n38-k5.

Route Name Routes
Route1 [1, 8, 6, 12, 28, 23, 33, 1]
Route2 [1, 27, 13, 4, 2, 5, 17, 26, 7, 30, 1]
Route3 [1, 9, 34, 36, 24, 31, 11, 22, 1]
Route4 [1, 10, 18, 37, 14, 16, 3, 15, 25, 1]
Route5 [1, 21, 38, 32, 29, 35, 20, 19, 1]

Table 9: Patterns found by 4 cooperating agents for CVRP problem A-n38-k5.

Agents Edges
agent1 (35,20) (38,32) (29,35) (20,19) (21,38) (32,29) (1,21) (19,1)
agent2 (30,31) (11,1) (1,19) (31,11) (35,30) (19,35)
agent3 (35,20) (29,19) (1,21) (20,1) (32,29) (38,32) (21,38) (19,35) (1,19)
agent4 (19,1) (32,38) (38,29) (35,20) (21,32) (20,19) (29,35)

23

the state-of-the-art studies in both fields. Furthermore, in four instances with1

the CVRP tests we were able to the best of our knowledge beat the current2

best results for these instances. We were also able to show for groups of 8, 123

and 16 agents compared with the stand alone equivalent, that cooperation4

by pattern finding is better than no cooperation. Finally we are also able to5

show that doubling the number agents each time leads to improving results6

as shown in Figure 4.7

4 Agents 8 Agents 12 Agents 16 Agents

38
65

38
75

38
85

No. of agents

O
bj

 fu
nc

tio
n

va
lu

e

(a) tai50 20

4 Agents 8 Agents 12 Agents 16 Agents

16
25

16
30

16
35

No. of agents

O
bj

 fu
nc

tio
n

va
lu

e

(b) A-n63-k9

Figure 4: Boxplots of objective values obtained in 10 runs for 16, 12, 8 and 4 agents on a
selected instance from the (a) STSP, (b) PFSP, and (c) CVRP problem domains.

7. CONCLUSION8

In this study we propose a general agent-based distributed framework9

where each agent implements a different metaheuristic/local search combi-10

nation. An agent continuously adapts itself during the search process using11

a cooperation protocol based on reinforcement learning and pattern finding.12

Good patterns that make up improving solutions are identified by frequency13

of occurrence in a conversation and shared with the other agents. The frame-14

work has been tested on well known benchmark problems for two tests cases15

PFSP and CVRP. In both cases, with no parameter tuning between domains,16

the platform performed at least as well as the state-of-art. For CVRP, we17

were able, in cases of A−n38−k5, A−n44−k6 and A−n45−k7 to improve18

on the best known solutions for these instances1.19

1http://neo.lcc.uma.es/vrp/vrp-instances/capacitated-vrp-instances/

24

We have also shown eight or more agents perform better than a stand1

alone agent with a 95% confidence level. Furthermore, we have shown with a2

reasonable level or certainty, if not always with 95% confidence, that an im-3

provement in performance can be achieved each time you double the number,4

up to 16, agents used.5

The distributed computing framework presented can be run on a local6

network of personal computers each using 2GB memory.7

The framework also aims to be a generic and modular needing very little8

parameter tuning across different problem types tested so far. It has been9

been applied successfully to PFSP and CVRP. It has also been used to model10

fairness in Nurse Rostering (Martin et al., 2013) using real-world data. This11

flexibility is achieved by means of an ontology which enables the agents to12

represent these problems with the same internal structure.13

This is an interesting and little researched topic that warrants further14

investigation such as: extending the ontology to apply the framework to15

new problems; adding more heuristics and metaheuristics and improving the16

pattern finding protocol.17

Finally, this framework will be published as an open source project so that18

other metaheuristics and cooperation protocols can be added and tested by19

other researchers. The project is called MACS (Multi-agent Cooperative20

Search) and will be published at the following website: http://www.cs.21

stir.ac.uk/~spm/.22

8. Acknowledgement23

The study was funded EPSRC Dynamic Adaptive Automated Software24

Engineering (DAASE) project EP/J017515/1.25

9. Appendix A. Supplementary material26

Supplementary data associated with this article can be found, in the27

online version, at: www.tobeprovided.ac.uk28

10. References29

İ. K. Altınel and T. Öncan. A new enhancement of the clarke and wright30

savings heuristic for the capacitated vehicle routing problem. Journal of31

the Operational Research Society, 56(8):954–961, 2005.32

25

P. Augerat, J.M. Belenguer, E Benavent, A. Corberán, D. Naddef, and G. Ri-1

naldi. Computational results with a branch and cut code for the capaci-2

tated vehicle routing problem. Rapport de recherche- IMAG, 1995.3

M. Aydin and T.C. Fogarty. A distributed evolutionary simulated annealing4

algorithm for combinatorial optimisation problems. Journal of Heuristics,5

10(3):269–292, 2004a.6

M. Aydin and T.C. Fogarty. Teams of autonomous agents for job-shop7

scheduling problems: An experimental study. Journal of Intelligent Man-8

ufacturing, 15(4):455–462, 2004b.9

D. Barbucha. A cooperative population learning algorithm for vehicle routing10

problem with time windows. Neurocomputing, 146:210–229, 2014.11

F. L. Bellifemine, G. Caire, and D. Greenwood. Developing multi-agent sys-12

tems with JADE. Wiley, 2007. ISBN 0470057475.13

C. Blum and A. Roli. Metaheuristics in combinatorial optimization:14

Overview and conceptual comparison. ACM Computing Surveys (CSUR),15

35(3):268–308, 2003.16

E.K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, and17

R. Qu. Hyper-heuristics: A survey of the state of the art. Journal of the18

Operational Research Society, 64(12):1695–1724, 2013.19

G. Clarke and J.W. Wright. Scheduling of vehicles from a central depot to a20

number of delivery points. Operations research, 12(4):568–581, 1964.21

S. H. Clearwater, T. Hogg, and B. A. Huberman. Cooperative problem22

solving. Computation: The Micro and the Macro View, pages 33–70, 1992.23

T. Crainic and M. Toulouse. Explicit and emergent cooperation schemes for24

search algorithms. Learning and intelligent optimization, pages 95–109,25

2008.26

G.B. Dantzig and J.H. Ramser. The truck dispatching problem. Management27

Science, 6:80–91, 1959.28

N. El Hachemi, T. G. Crainic, N. Lahrichi, W. Rei, and T. Vidal. Solution29

integration in combinatorial optimization with applications to cooperative30

search and rich vehicle routing. 2014.31

26

FIPA. Fipa iterated contract net interaction protocol specification, 2009.1

URL http://www.fipa.org/specs/fipa00030/index.html.2

M. R. Garey, D. S. Johnson, and R. Sethi. The complexity of flowshop3

and jobshop scheduling. Mathematics of operations research, 1(2):117–129,4

1976.5

M.R. Garey and D.S. Johnson. Computers and Intractability, A Guide to the6

Theory of NP-Completeness. Bell Telephone Laboratories Inc., 1979.7

T. R. Gruber. A translation approach to portable ontology specifications.8

Knowledge acquisition, 5(2):199–220, 1993.9

T. Hogg and C. P. Williams. Solving the really hard problems with co-10

operative search. In Proceedings of the National Conference on Artificial11

Intelligence, pages 231–231, 1993.12

F. Hutter, D. Babic, H.H. Hoos, and A. J. Hu. Boosting verification by13

automatic tuning of decision procedures. In Formal Methods in Computer14

Aided Design, 2007. FMCAD’07, pages 27–34. IEEE, 2007.15

A. A. Juan, J. Faulin, R. Ruiz, B. Barrios, and S. Caballé. The sr-gcws hybrid16

algorithm for solving the capacitated vehicle routing problem. Applied Soft17

Computing, 10(1):215–224, 2010a.18

A A. Juan, J. Fauĺın, J. Jorba, D. Riera, D. Masip, and B. Barrios. On the use19

of monte carlo simulation, cache and splitting techniques to improve the20

clarke and wright savings heuristics. Journal of the Operational Research21

Society, 62(6):1085–1097, 2011.22

A. A. Juan, J. Faulin, J. Jorba, J. Caceres, and J. M. Marquès. Using parallel23

& distributed computing for real-time solving of vehicle routing problems24

with stochastic demands. Annals of Operations Research, 207(1):43–65,25

2013.26

A. A. Juan, Helena R. Lourenço, M. Mateo, R. Luo, and Q. Castella. Using27

iterated local search for solving the flow-shop problem: Parallelization,28

parametrization, and randomization issues. International Transactions in29

Operational Research, 21(1):103–126, 2014.30

27

A.A. Juan, R. Rúız, H. R. Lourenço, M. Mateo, and D. Ionescu. A simulation-1

based approach for solving the flowshop problem. In Proceedings of the2

Winter Simulation Conference, pages 3384–3395. Winter Simulation Con-3

ference, 2010b.4

A.A. Juan, J. Faulin, S. E Grasman, M. Rabe, and G. Figueira. A review of5

simheuristics: Extending metaheuristics to deal with stochastic combina-6

torial optimization problems. Operations Research Perspectives, 2:62–72,7

2015.8

A. Kouider and B. Bouzouia. Multi-agent job shop scheduling system based9

on co-operative approach of idle time minimisation. International Journal10

of Production Research, 50(2):409–424, 2012.11

M. López-Ibánez, J. Dubois-Lacoste, T. Stützle, and M. Birattari. The irace12

package, iterated race for automatic algorithm configuration. IRIDIA,13

Université Libre de Bruxelles, Belgium, Tech. Rep. TR/IRIDIA/2011-004,14

2011.15

R. Malek. An agent-based hyper-heuristic approach to combinatorial op-16

timization problems. In Intelligent Computing and Intelligent Systems17

(ICIS), 2010 IEEE International Conference on, volume 3, pages 428–434,18

2010.19

S.P. Martin, D. Ouelhadj, P. Smet, G Vanden Berghe, and E. Özcan. Coop-20

erative search for fair nurse rosters. Expert Systems with Applications, 4021

(16):6674–6683, 2013.22

D. Meignan, J.C. Creput, and A. Koukam. A coalition-based metaheuris-23

tic for the vehicle routing problem. In Evolutionary Computation, 2008.24

CEC 2008.(IEEE World Congress on Computational Intelligence). IEEE25

Congress on, pages 1176–1182. IEEE, 2008.26

D. Meignan, A. Koukam, and J. C. Créput. Coalition-based metaheuristic:27

a self-adaptive metaheuristic using reinforcement learning and mimetism.28

Journal of Heuristics, pages 1–21, 2010. ISSN 1381-1231.29

M. Milano and A. Roli. Magma: A multiagent architecture for metaheuris-30

tics. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Trans-31

actions on, 34(2):925–941, 2004. ISSN 1083-4419.32

28

David S Moore and George P McCabe. Introduction to the Practice of Statis-1

tics. WH Freeman/Times Books/Henry Holt & Co, 1989.2

M. Nawaz, E. E. Enscore Jr, and I. Ham. A heuristic algorithm for the m-3

machine, n-job flow-shop sequencing problem. Omega, 11(1):91–95, 1983.4

D. Ouelhadj and S. Petrovic. A cooperative hyper-heuristic search frame-5

work. Journal of Heuristics, 16(6):835–857, 2010.6

M. Pinedo. Scheduling: theory, algorithms, and systems. Prentice-Hall, New7

Jersey, 2002.8

J. Ries and P. Beullens. A semi-automated design of instance-based fuzzy pa-9

rameter tuning for metaheuristics based on decision tree induction. Journal10

of the Operational Research Society, 66(5):782–793, 2015.11

P Ross. Hyper-heuristics. In Search Methodologies, pages 611–638. Springer,12

2014.13

E. Taillard. Benchmarks for basic scheduling problems. European Journal of14

Operational Research, 64(2):278–285, 1993.15

E. G. Talbi and V. Bachelet. Cosearch: A parallel cooperative metaheuristic.16

Journal of Mathematical Modelling and Algorithms, 5(1):5–22, 2006. ISSN17

1570-1166.18

M. Toulouse, K. Thulasiraman, and F. Glover. Multi-level cooperative search:19

A new paradigm for combinatorial optimization and an application to20

graph partitioning. Euro-Par’99 Parallel Processing, pages 533–542, 1999.21

E. Vallada and R. Ruiz. Cooperative metaheuristics for the permutation22

flowshop scheduling problem. European Journal of Operational Research,23

193(2):365–376, 2009.24

X. F. Xie and J. Liu. Multiagent optimization system for solving the trav-25

eling salesman problem (tsp). Systems, Man, and Cybernetics, Part B:26

Cybernetics, IEEE Transactions on, 39(2):489–502, 2009.27

G.I. Zobolas, C. D. Tarantilis, and G. Ioannou. Minimizing makespan in28

permutation flow shop scheduling problems using a hybrid metaheuristic29

algorithm. Computers & Operations Research, 36(4):1249–1267, 2009.30

29

