
Automatically Designing More General Mutation Operators
of Evolutionary Programming for Groups of Function

Classes Using a Hyper-Heuristic

Libin Hong
School of Computer Science

University of Nottingham P.R.C.

Libin.HONG@nottingham.edu.cn

John H. Drake
School of Computer Science

University of Nottingham P.R.C.

John.DRAKE@nottingham.edu.cn

John R. Woodward
Computing Science and Mathematics

University of Stirling U.K.

JRW@cs.stir.ac.uk

Ender Özcan
Department of Computer Science

University of Nottingham U.K.

Ender.Ozcan@nottingham.ac.uk

ABSTRACT
In this study we use Genetic Programming (GP) as an offline
hyper-heuristic to evolve a mutation operator for Evolution-
ary Programming. This is done using the Gaussian and
uniform distributions as the terminal set, and arithmetic
operators as the function set. The mutation operators are
automatically designed for a specific function class. The
contribution of this paper is to show that a GP can not only
automatically design a mutation operator for Evolutionary
Programming (EP) on functions generated from a specific
function class, but also can design more general mutation
operators on functions generated from groups of function
classes. In addition, the automatically designed mutation
operators also show good performance on new functions gen-
erated from a specific function class or a group of function
classes.

Keywords
Hyper-Heuristic, Genetic Programming, Optimization, Func-
tion Class

1. INTRODUCTION
A hyper-heuristic searches for heuristics for computational

search problems. During the searching process it can gener-
ate or select heuristics according to its learning mechanism
[4]. Burke et al. [5] proposed a distinction between online
and offline learning, according to the source of the feedback
during learning. For an online hyper-heuristic, the learning
occurs when the heuristic is solving an instance of a prob-
lem. For an offline hyper-heuristic collects knowledge, from
a training a set of instances to solve unknown instances of
the same problem. Recently GP has been used with hyper-

GECCO ’16, July 20-24, 2016, Denver, CO, USA

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

heuristics for the bin packing problem [6], the multidimen-
sional knapsack problem [8], to evolve highly competitive
general algorithms for envelope reduction in sparse matrices
[12], to handle multiple conflicting objectives in dynamic job
shop scheduling [18], to automatically design a mutation op-
erator for Evolutionary Programming [10], to compare rule
representations [11], to evolve due-date assignment models
in job shop environments [20], to automatic design sched-
ule policies for dynamic multi-objective job shop scheduling
[19], to evolve ensembles of dispatching rules for the job shop
scheduling problem [22], for feature selection and question–
answer ranking in IBM Watson [2], to automated design
production scheduling heuristics [3].

Burke et al. [6] proposed to automatically design heuris-
tic for the bin packing problem and these heuristics are “a
Jack-of-all-Trades or a Master of One.” Burke et al. [6]
point out that heuristics can be evolved to be specialists
on a particular sub-problem, or general enough to work on
all sub-problems. However there is a trade-off between per-
formance and generalisation. The hypothesis of this paper,
inspired by [6]: if the probability distribution over function
instances is specific, we can design a specific EP mutation
operator for a specific function class. We can also design
a mutation operator of EP that performs well on a group
of function classes. To verify this hypothesis we designed
two types of experiment. In the first experiment, we tailor
mutation operators for EP to a specific function class, and
the best results are used as the fitness values for GP. This
kind of experiment was proposed in [10]. In the second ex-
periment, we tailor more general mutation operators for a
group of function classes (each group contains three function
classes) and use the number of outright wins as the fitness
values for the GP. After completing the experiment, we test
the Automatically Designed Mutation Operators (ADM)
from both experiments and human designed mutation op-
erators on a separate independent test set of functions. To
make a fair comparison, we use Borda count to evaluate the
performance. The comparison shows that the more general
automatically designed mutation operators from the second
experiment has the better performance on average on groups
of function classes.

The outline of this paper is as follows. In Section 2, we
describe function optimization. In Section 3, we describe

the training types and the parameter settings for GP and
EP. In Section 4, we describe all the testing of ADMs on
function classes to identify the performance of the result. In
Section 5, we analyse and compare the testing results. In
Section 6, we summarize and conclude the paper.

2. FUNCTION OPTIMIZATION BY EVOLU-
TIONARY PROGRAMMING

EP is an algorithm to evolve a population of numerical
vectors in order to find a global optimum of a function in a
limited search region. Mutation is the only operator for EP.
Researchers have made great efforts to finding and selecting
mutation operators, or developing more advanced mutation
strategies for EP in recent years [23, 24, 13, 7, 16, 15, 9].

Global minimization can be formalized as a pair (S, f),
where S ∈ Rn is a bounded set on Rn and f : S −→ R is an
n-dimensional real-valued function. Hence the EP algorithm
searches for a global optimum within a limited space. The
aim of EP is to find a point xmin ∈ S such that f(xmin) is
a global minimum on S. More specifically it is required to
find an xmin∈ S such that

∀x ∈ S : f(xmin) ≤ f(x)

Here f does not need to be continuous or differentiable
but it must be bounded. The mutation process of EP can
be represented by the following equations.

xi
′(j) = xi(j) + ηi(j)Dj (1)

ηi
′(j) = ηi(j)exp(γ′N(0,1) + γNj(0,1)) (2)

In the above equations, i is the dimension and j repre-
sents j − th component of the vectors xi, xi

′, ηi and ηi
′, Dj

represents the mutation operator, researchers usually use a
Cauchy, Gaussian or Lévy distribution as the mutation op-
erator [23, 24, 13]. For a complete description of EP, refer
to [1]. Lee et al. [13] point out that the Lévy distribution
with α=1.0 is the Cauchy distribution and with α=2.0 is
the Gaussian distribution. We use α=1.0 and α=2.0 to rep-
resent the Cauchy and Gaussian distribution. In this paper,
the framework automatically designs a piece of the program
for EP to replace Dj . Then the EP algorithm uses the can-
didate mutation operator Dj to do the training and testing
on functions generated from function classes.

3. USING GP TO AUTOMATICALLY DE-
SIGN A MUTATION OPERATOR FOR EP

In this section we describe the methods that set up con-
nections between GP and EP. The EP parameters we use for
this paper are in Table 2. In order to reduce the time cost
of the training phase, we set the number of generations for
each function class, please refer to Section 3.3. The codes
we list in Table 3 are implemented according to Mantegna’s
description [17]. Equation 3 and 4 show how to generate
a random variable from a Lévy distribution with the cor-
responding α (0.75 ≤ α ≤ 1.95). In equation 3, V is cal-
culated from X and Y , where X is a random variant from
a N(0, σ2) distribution and Y is a random variate from a
N(0, 1) distribution. K(α) and C(α) are two parameters
with real values, which can be looked up in [17], and must
be determined properly. The values of σx, K(α) and C(α)

used in this paper are listed in Table 4. For a more detailed
derivation of the equations, please refer to [17].

V =
X

| Y |1/α
(3)

W = ((K(α)− 1)exp(−V/C(α)) + 1)V (4)

3.1 Functions and Function Classes
In a suite of 23 functions often used in EP research [23,

24], the functions can be classified as: f1–f7 are unimodal
functions, f8–f13 are multimodal functions with many local
optima, f14–f23 are multimodal functions with a few local
optima [24].

In this study, we do not use single functions for benchmark
function optimisation. Instead, we use function classes, where
each class is a single parameterised function which embodies
a set of unique functions each having fixed parameter val-
ues. Based on these 23 functions, we have constructed corre-
sponding function classes. To distinguish between functions
and function classes, we use the notation fg to represent
function and Fg to represent function class. In this paper,
we select 3 function classes from each of the unimodal, and
multimodal with many and few local optima (F1, F2, F6,
F10, F12, F13, F16, F19 and F23). The training and test
function classes used in this study are given in Table 1, with
the index of each function class corresponding to the origi-
nal functions of [23]. In Table 1, ai, bi and ci are uniformly
distributed in range [1, 2], [−1, 1] and [−1, 1], respectively.
An example of a function class is: y =

∑n
i=1 aix

2
i , in this

case y =
∑n
i=1 1.3x2i is a function from this function class,

while y =
∑n
i=1 0.3x2i is not from this function class.

3.2 Experimental Design and Fitness Functions
for GP

The experiments can be divided into two different training
types: one type of training is for a specific function class,
e.g., F1, another type of training is for a group of function
classes, e.g., the unimodal F1, F2 and F6. We designed two
different fitness functions for each training. In both training
types the GP settings are the same, only the functions vary.
For the parameter settings of GP, please refer to Table 5. We
call a program generated by GP an Automatically Designed
Mutation operator (ADM). The tailored ADM automati-
cally designed for a function class Fg by training type 1 is
represented by ADMg, where g is the function class index.
ADMg is called a dedicated ADM for function class Fg. The
tailored ADM automatically designed for a group of func-
tion classes Fg, Fj and Fk by training type 2 is represented
as ADMg,j,k, where g, j, k represent the indexes of the dif-
ferent function classes. ADMg,j,k is called a more general
ADM for function class on Fg, Fj and Fk. To distinguish
the fitness functions for each type of training, we describe
training of type 1 and training of type 2 in the paragraphs
below.

Training Type 1: Each ADMg is used as an EP mu-
tation operator on 9 functions drawn from a given function
class. The fitness of an ADMg is the average of the best
values obtained in each of the individual 9 EP runs on a
given function class. We use the same 9 functions from each
function class for the entire run of the GP on a given func-
tion class. For one function class, 18 functions are taken for
training, 9 of which are used to calculate the fitness value
and 9 of which are used to the monitor overfitting.

Table 1 Function Classes with n dimensions and domain S, ai ∈ [1, 2], bi, ci ∈ [−1, 1].

Function Class n S

F1(x) =
∑n
i=1[(aixi − bi)

2 + ci] 30 [−100, 100]n

F2(x) =
∑n
i=1 | aixi | +

∏n
i=1 | bixi | 30 [−10, 10]n

F3(x) =
∑n
i=1[ai

∑i
j=1 xj]

2 30 [−100, 100]n

F4(x) = maxi{| aixi |, 1 ≤ i ≤ n} 30 [−100, 100]n

F5(x) =
∑n
i=1[ai(xi+1 − x

2
i)

2 + bi(xi − 1)2 + ci] 30 [−30, 30]n

F6(x) =
∑n
i=1(baixi + 0.5c)2 + bi 30 [−100, 100]n

F7(x) =
∑n
i=1 aiix

4
i + random[0, 1) 30 [−1.28, 1.28]n

F8(x) =
∑n
i=1 −(xi sin(

√
|xi|) + ai) 30 [−500, 500]n

F9(x) =
∑n
i=1[aix

2
i + bi(1 − cos(2πxi))] 30 [−5.12, 5.12]n

F10(x) = − exp(−0.2
√

1
n

∑n
i=1

aix
2
i
) − exp(1

n

∑n
i=1 bi cos 2πxi) + e 30 [−32, 32]n

F11(x) =
ai

4000

∑n
i=1 x

2
i − bi

∏n
i=1 cos(

xi√
i
) 30 [−600, 600]n

F12(x) = π
n
{10sin2(πyi) + ai

∑n−1
i=1

(yi − 1)2[1 + 10sin2(πyi+1)

+ (yn − 1)2]} +
∑n
i=1 u(xi, 10, 100, 4),

yi = 1 + 1
4
(xi + 1)

u(xi, w, k,m) =

 k(xi − w)m, xi > w,
0, −w ≤ xi ≤ w,
k(−xi − w)m, xi < −w.

30 [−50, 50]n

F13(x) = 0.1{sin2(3πx1) + ai
∑n−1
i=1

(xi − 1)2[1 + sin2(3πxi+1)] +

(xn − 1)[1 + sin2(2πxn)]} +
∑n
i=1 u(xi, 5, 100, 4)

30 [−50, 50]n

F14(x) = [1
500

+ ai
∑25
i=1

1
j+

∑2
i=1

(xi−wij)6
]−1 2 [−65.536, 65.536]n

F15(x) =
∑11
i=1[wi −

aix1(y2i+yix2)

bi(y
2
i
+yix3+x4)

]2 4 [−5, 5]n

F16(x) = a1(4x21 − 2.1x41 + 1
3
x61 + x1x2 − 4x22 + 4x42) + b1 2 [−5, 5]n

F17(x) = a1(x2 −
5.1
4π2 x

2
1 + 5

π
x1 − 6)2 + 10b1(1 − 1

8π
)cosx1 + 10 2 [−5, 10] × [0, 15]

F18(x) = a1[1 + (x1 + x2 + 1)2(19 − 14x1 + 3x21 − 14x2

+ 6x1x2 + 3x22)] × [30 + (2x1 − 3x2)2(18 − 32x1

+ 12x21 + 48x2 − 36x1x2 + 27x22)] + b1

2 [−2, 2]n

F19(x) = −
∑4
i=1 yiexp[−

∑4
j=1 ajwij(xj − pij)

2 + bi] 3 [0, 1]n

F20(x) = −
∑4
i=1 yiexp[−

∑6
j=1 ajwij(xj − pij)

2 + bi] 6 [0, 1]n

F21(x) = −
∑5
i=1 ai[(x − wi)

T (x − wi) + yi + bi]
−1 4 [0, 10]n

F22(x) = −
∑7
i=1 ai[(x − wi)

T (x − wi) + yi + bi]
−1 4 [0, 10]n

F23(x) = −
∑10
i=1 ai[(x − wi)

T (x − wi) + yi + bi]
−1 where yi = 0.1 4 [0, 10]n

Table 2 Parameter settings for EP.

Parameter Settings
population size 100
tournament size 10

initial standard deviations of initial population 3.0

Table 3 How the Lévy distribution is constructed from the
normal distribution.

Algorithm for Lévy distribution
α1 = 1.0/α
X = N(0, σ2)
Y = N(0, 1)

V = X/(abs(Y)α1)
W = ((K(α) − 1) ∗ exp(−abs(V)/C(α)) + 1.0) ∗ V

Table 4 α values and related σ2, K(α) and C(α).

α σ2 K(α) C(α)
1.2 0.878829 1.20519 2.941
1.4 0.759679 1.44647 2.8315
1.6 0.628231 1.79361 2.6125
1.8 0.458638 2.50147 2.206

Table 5 Parameter settings for GP.

Parameter Settings
crossover proportion 45%
mutation proportion 45%

reproduction proportion 10%
selection method lexictour [14]
tournament size 2
depthnodes 2 [14]

population size 20
maximum generation 25

elitism keep best

Table 6 Function set for GP.

Symbol Function Arity
+ addition 2
− subtraction 2
× multiplication 2
÷ protected division 2

power power 2
exp exponential function 1
abs absolute 1

Table 7 Terminal set for GP.

Symbol Terminal

N(µ, σ2) Normal Distribution
U ∼[0, 3]

This type of training was used in [10]. In this training, the
fitness value of the GP is from the averaged fitness values of
9 EP runs.

Training Type 2: We train ADMg,j,k on 9 functions
(three from each of Fg, Fj and Fk) by GP. Then we validate
ADMg,j,k on 9 separate functions (three from each of Fg, Fj
and Fk). If the fitness value of the EP that uses ADMg,j,k

beats all of the human designed mutation operators (Lévy
distribution (with α=1.0, 1.2, 1.4, 1.6, 1.8, 2.0)), Lévy with
α = 1.0 is Cauchy, Lévy with α = 2.0 is Gaussian), on the
given function, it scores 1 point, thus it can score between
0 and a maximum of 9 (we call this the number of outright
wins). Here we use the number of outright wins because
averaging fitness values can be skewed by a single large value,
and using a rank-based method is more robust to outliers.
In this training, the fitness value of the GP is the number
of outright wins.

For both training types, the framework can not only ex-
press a number of currently existing human designed EP mu-
tation operators (Cauchy, Gaussian and Lévy distributions),
but also can generate new kinds of mutation operators for
EP. The main aim of this paper is to set up an algorithmic
framework which can automatically design a more general
mutation operator for EP on groups of function classes. We
use GP as an offline hyper-heuristic to evolve a mutation
operator for EP. But in contrast to what we have done in
[10], in this paper the hyper-heuristic uses three groups of
function classes, each group containing three function classes
Fg, Fj and Fk, where g, j, k are different indexes of function
classes.

3.3 Parameter Settings for EP
The settings for EP are presented in Table 2: the pop-

ulation size is set to 100, the tournament size is set to 10,
the initial standard deviations is set to 3.0. The settings for
dimensions n and domains S are listed in Table 1. We have
to point out that in our experiment the maximum number
of generations of EP is set to 1000 for F1, F2, F6, F10, F12

and F13. The maximum number of generations of EP is set
to 100 for F16, F19 and F23.

3.4 Parameter Settings for GP
The parameter settings for GP are listed in Table 5. The

function set and terminal set of GP are listed in Table 6
and 7. µ is a random number in [−2, 2], as we wish the
designed mutation operator is not Y-axis symmetric. σ2 is
a random number in [0, 5]. depthnodes is set as 2 indicates
restrictions are to be applied in tree size (number of nodes)
[14]. U is the uniform distribution with range [0, 3]. The
other settings of GP are: population size 20, the maximum
number of generations 25. The settings of GP in Table 5
are able to generate the values in Table 4, and the (human
designed) piece of programs in Table 3 and other programs.

4. TESTING AUTOMATICALLY DESIGNED
MUTATION OPERATORS

We employ ADMs (in Table 14) and human designed mu-
tation operators on EP and test them on each function class
Fg. For each ADM we record 50 values from 50 independent
EP runs, each being the lowest value through all generations
of EP, we then average them, this is called the mean best
values. We test all ADMs on Fg respectively. In all test-
ing the generated functions from each function class are the

same. This means the results in Tables 8, 9, 10, 11, 12 and
13 are based on the same 50 functions generated from each
function class Fg.

4.1 Testing the More General ADMs and Hu-
man Designed Mutation Operators

We did the testing for ADMg,j,k and human designed mu-
tation operators (Lévy distribution (with α=1.0, 1.2, 1.4,
1.6, 1.8, 2.0)) on Fg. The mean best values and standard
deviations are listed in Table 8. Based on the original data
for Table 8, we also calculate the Borda counts Bg for all test
mutation operators to compare the performance ofADM1,2,6,
ADM10,12,13, ADM16,19,23 and human designed mutation
operators (in all, 9 mutation operators) in Table 10. We
follow the method to calculate Borda counts in [21]: Test
each mutation operator for each function and it has a rank
Rmn, where m is the function index (1 ≤ m ≤ 50) and n is
the mutation operator index (1 ≤ n ≤ 9). The value of Rmn
is in range [1, 9]. The Borda counts Bg =

∑m
i=1Rmn(m ∈

1, 2, 3, ...50), is the sum of Rmn on 50 functions generated
from the function class Fg; it has its best possible value 50
and the worst possible value 450 (g is the index of the func-
tion class). Each mutation operator has Borda counts Bg on
Fg and the sum of the Borda counts Bg,j,k = Bg +Bj +Bk.

4.2 Testing More General ADMs and Dedi-
cated ADMs

To observe the performance of dedicatedADMg andADMg,j,k

on Fg, we tested ADMg and ADMg,j,k on Fg. We list the
mean best values and standard deviations in Table 11. In
this table we consolidate the mean best values and standard
deviations for ADM1,2,6, ADM10,12,13 and ADM16,19,23, we
also put more decimal places for F16 and F19, as otherwise,
the results are too close to distinguish. We use the Borda
counts to compare the performance of the 12 mutation op-
erators in Table 13. In this comparison, the number of func-
tions p = 50 and the number of mutation operators q = 12.
Therefore, the best possible score is 50, and the worst pos-
sible is 600. Each mutation operator has Borda counts Bg
on Fg, each mutation operator has the sum of Borda counts
Bg,j,k = Bg +Bj +Bk.

4.3 Testing More General ADMs and Human
Designed Mutation Operators on Non-Trained
Function Classes

To observe the performance of ADMg,j,k on Non-Trained
Function Classes (F3, F4, F5, F7, F8, F9, F11, F14, F15, F17,
F18, F20, F21 and F22), we tested ADMg,j,k and human
designed mutation operators (Lévy (α =1.0, 1.2, 1.4, 1.6,
1.8, 2.0)) on Non-Trained Function Classes. The results are
in Table 15.

5. ANALYSIS AND COMPARISON
In this section we compare the mutation operatorsADMg,j,k,

ADMg and the human designed mutation operators. An
ADMg designed for the function class Fg is called a tailored
mutation operator, while an ADMg tested on Fj is called
a non-tailored mutation operator. For example, ADM1 is
tailored mutation operator for F1, but it is a non-tailored
mutation operator for the function class F2. Similarly for a
group of function classes F1, F2 and F6, ADM1,2,6 is a more
general tailored mutation operator for this group of func-

tion classes, while ADM10,12,13 and ADM16,19,23 are non-
tailored mutation operators.

5.1 Analysis and Comparison of More Gen-
eral ADMs and Human Designed Muta-
tion Operators

From Table 8, 9, 11 and 12 we can see that ADMg,j,k

show the outstanding performance on all Fg in most cases.
In Table 10, which presents the Borda counts, among all
Borda counts of tested mutation operators, ADMg,j,k has
the best/lowest scores on the groups of function classes:
the Borda counts B1,2,6 of ADM1,2,6 is 344, which is the
best/lowest value on F1, F2 and F6. The Borda counts
B10,12,13 of ADM10,12,13 is 320, which is the best/lowest
value on F10, F12 and F13. The Borda counts B16,19,23 of
ADM16,19,23 is 213, which is the best/lowest value on F16,
F19 and F23. Although B1, B2 and B6 for ADM1,2,6 are
not the best values for F1, F2 and F6, B1,2,6 the sum of
B1, B2 and B6 shows that ADM1,2,6 has the best perfor-
mance among all tested mutation operators. B12 and B13

for ADM10,12,13 are the best/lowest value on F12 and F13

respectively, B10 of ADM1,2,6 show the best performance
on F10. We think this is because the function characteris-
tics of F10 are different from the characteristics of F12 and
F13. B16, B19 and B23 for ADM16,19,23 are the best/lowest
value on F16, F19 and F23 respectively. In general, a tailored
ADMg,j,k always show a better performance than the hu-
man designed mutation operator and non-tailoredADMg,j,k.

Table 9 shows the results of the Wilcoxon Signed-Rank
Test within 5% significance level comparing a tailoredADMg,j,k

compared with human designed mutation operators (Lévy
distribution (with α=1.0, 1.2, 1.4, 1.6, 1.8, 2.0)). Table 12
shows the results of a Wilcoxon Signed-Rank Test within 5%
significance level comparing a tailored ADMg,j,k compared
with other ADMs. In both tables, “≥”and“≤” indicate that
the ADMg,j,k performs better or worse on Fg, Fj and Fk re-
spectively, compared to human designed mutation operators
or ADMs. In the case that this difference is statistically sig-
nificant, “>” and “<” are used.

5.2 Analysis and Comparison of More Gen-
eral ADMs and ADMs

In Table 11 the results using ADMg to do test on Fg.
ADM1, ADM2, ADM6, ADM12, ADM19 and ADM23 show
the best performance on F1, F2, F6, F12, F19 and F23 respec-
tively. ADM10 shows the second best performance on F10,
as ADM1,2,6 has the best performance on F10. ADM13 has
the third best performance on F13, asADM12 andADM10,12,13

beat ADM13 on F13. ADM16 is a special case, ADM16 does
not show any outstanding performance among the ADMs on
F16. We think this is because the training of ADM16 was
insufficient, or we need to record more decimals to do the
analysis, as the values in boldface are the same.

In Table 13 the Borda counts B1,2,6 of ADM1,2,6 is 434,
which beats all other ADMs on F1, F2 and F6. The Borda
counts B10,12,13 of ADM10,12,13 is 441, which beats all other
ADMs on F10, F12 and F13 as well. However, the Borda
counts B16,19,23 of ADM16,19,23, which is the second best
value, is 393 on F16, F19 and F23. The best value 284 is
that of the Borda counts B16,19,23 of ADM19 on F16, F19

and F23. This is an acceptable exception, as in the GP
training system we only use the human designed mutation
operator to evaluate the performance of the ADMs, both

ADMg and ADMg,j,k beat the human designed mutation
operator separately.

Overall, the results in Table 11 and 13 demonstrate that
the tailored mutation operator ADMg has better mean best
values than the non-tailored mutation operators andADMg,j,k

on Fg, although there are some exceptions (for example,
ADM10 on F10 and ADM16 on F16 are not the best). The
Borda counts in Table 13 demonstrate that the tailored gen-
eral mutation operator ADMg,j,k has better performance on
the groups of function classes Fg, Fj and Fk. Both ADMg,j,k

and ADMg have better performances than the human de-
signed mutation operators on average; the experiment we
designed successfully found a more general mutation opera-
tor ADMg,j,k that has better performance than other mu-
tation operators on a group of function classes Fg, Fj , Fk
on average.

5.3 Analysis and Comparison of More Gen-
eral ADMs and Human Designed Muta-
tion Operators on Non-Trained Function
Classes

In Table 15, we test the more general mutation operator
ADMg,j,k and the human designed mutation operators on
the non-trained function classes Fg over 50 runs. From this
table, although ADM1,2,6 does not show the best perfor-
mance on F3, F4, F5, F7, its performance is not the worst,
we think this is because ADM1,2,6 fit F1, F2 and F6 well,
but may have over-fit on F3, F4, F5 and F7. ADM10,12,13

show the best performance on F8, and the second best on
F9, F11. ADM16,19,23 has the best performance on F17, F18,
F20, F21, F22, but has the worst performance on F14 and
F15, we think this is because F14 and F15 has different func-
tion characteristics, and hence ADM10,12,13 cannot fit them
well.

To make the results can be easily observed. In Table 8
and 15 the mean best values are in bold. In Table 9 and
12 “>” are in bold. In Table 10 and 13 the lowest Borda
counts Bg and Bg,j,k of the tested mutation operator are in
bold. In Table 11 the mean best values using ADMg to do
test on Fg are in bold and the results which are lower than
test result of ADMg on Fg are also in bold.

6. SUMMARY AND CONCLUSIONS
In this paper we designed a framework to automatically

design more general tailored mutation operators for several
groups of function classes. Previously, researchers have used
GP to tailor mutation operators [10] for EP on a specific
function class. We proposed using the number of outright
wins, the number of times that automatically designed mu-
tation operator has beaten the human designed mutation
operators, as the fitness value for the GP. We did the test to
evaluate the performance of the more general tailored mu-
tation operators, tailored mutation operators and human
designed mutation operators on a specific function class and
on groups of function classes.

The main conclusions of this paper are: Firstly, on new
functions generated from a particular function class, a tai-
lored mutation operator evolved on functions drawn from
that function class will perform better on average than a tai-
lored mutation operator evolved on functions from a differ-
ent function class. Secondly, a more general tailored muta-
tion operator can be evolved to be specialists on a particular

group of function classes. Thirdly, both tailored mutation
operator and more general tailored mutation operator have
better performances than human designed mutation oper-
ators. Fourthly, compared with the more general tailored
mutation operator and the tailored mutation operator on
a specific function class, tailored mutation operator usually
has better performance on a specific function class, but the
more general tailored mutation operator usually has better
performance on a group of function classes on average.

7. REFERENCES
[1] T. Back and H.-P. Schwefel. An overview of

evolutionary algorithms for parameter optimization.
Evolutionary Computation, 1:1–23, 1993.

[2] U. Bhowan and D. McCloskey. Genetic programming
for feature selection and question-answer ranking in
ibm watson. In Genetic Programming, volume 9025 of
Lecture Notes in Computer Science, pages 153–166.
Springer International Publishing, 2015.

[3] J. Branke, S. Nguyen, C. W. Pickardt, and M. Zhang.
Automated design of production scheduling heuristics:
A review. IEEE Transactions on Evolutionary
Computation, 20(1):110–124, Feb 2016.

[4] E. K. Burke, M. Gendreau, M. Hyde, G. Kendall,
G. Ochoa, E. Özcan, and R. Qu. Hyper-heuristics: A
survey of the state of the art. Journal of the
Operational Research Society, pages 1695–1724, 2013.

[5] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa,
E. Özcan, and J. R. Woodward. A classification of
hyper-heuristic approaches. In Handbook of
Metaheuristics, pages 449–468. Springer US, 2010.

[6] E. K. Burke, M. R. Hyde, G. Kendall, and
J. Woodward. Automatic heuristic generation with
genetic programming: evolving a jack-of-all-trades or
a master of one. In Proceedings of the 9th Annual
Conference on Genetic and Evolutionary
Computation, pages 1559–1565. 2007.

[7] H. Dong, J. He, H. Huang, and W. Hou. Evolutionary
programming using a mixed mutation strategy.
Information Sciences, 177(1):312–327, 2007.

[8] J. H. Drake, M. Hyde, K. Ibrahim, and E. Özcan. A
genetic programming hyper-heuristic for the
multidimensional knapsack problem. 43:1500–1511,
2014.

[9] L. Hong, J. H. Drake, and E. Özcan. A step size based
self-adaptive mutation operator for evolutionary
programming. In Proceedings of Genetic and
Evolutionary Computation Conference 2014, pages
1381–1388. ACM, 2014.

[10] L. Hong, J. Woodward, J. Li, and E. Özcan.
Automated design of probability distributions as
mutation operators for evolutionary programming
using genetic programming. In Genetic Programming,
volume 7831 of Lecture Notes in Computer Science,
pages 85–96. Springer Berlin Heidelberg, 2013.

[11] T. H. J. Branke and B. Scholz-Reiter. Hyper-heuristic
evolution of dispatching rules: A comparison of rule
representations. volume 23, pages 249–277.
Evolutionary Computation, 2014.

[12] B. Koohestani and R. Poli. A genetic programming
approach for evolving highly-competitive general
algorithms for envelope reduction in sparse matrices.

In Proceedings of the 12th International Conference on
Parallel Problem Solving from Nature, volume 2, pages
287–296. Springer-Verlag, Berlin, Heidelberg, 2012.

[13] C.-Y. Lee and X. Yao. Evolutionary programming
using mutations based on the lévy probability
distribution. IEEE Transactions on Evolutionary
Computation, 8(1):1–13, 2004.

[14] S. Luke and L. Panait. Lexicographic parsimony
pressure. In Proceedings of Genetic and Evolutionary
Computation Conference 2002, pages 829–836. Morgan
Kaufmann Publishers, 2002.

[15] R. Mallipeddi, S. Mallipeddi, and P. Suganthan.
Ensemble strategies with adaptive evolutionary
programming. Information Sciences,
180(9):1571–1581, 2010.

[16] R. Mallipeddi and P. N. Suganthan. Evaluation of
novel adaptive evolutionary programming on four
constraint handling techniques. In Proceedings of
IEEE World Congress on Computational Intelligence,
pages 4045–4052. 2008.

[17] R. N. Mantegna. Fast, accurate algorithm for
numerical simulation of lévy stable stochastic
processes. Physical Review E, 49:4677–4683, May 1994.

[18] S. Nguyen, M. Zhang, M. Johnston, and K. Tan.
Dynamic multi-objective job shop scheduling: A
genetic programming approach. In Automated
Scheduling and Planning, volume 505 of Studies in
Computational Intelligence, pages 251–282. Springer
Berlin Heidelberg, 2013.

[19] S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan.
Automatic design of scheduling policies for dynamic
multi-objective job shop scheduling via cooperative
coevolution genetic programming. IEEE Transactions
on Evolutionary Computation, 18(2):193–208, April
2014.

[20] S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan.
Genetic programming for evolving due-date
assignment models in job shop environments.
Evolutionary Computation, 22(1):105–138, March
2014.

[21] G. Ochoa, J. Walker, M. Hyde, and T. Curtois.
Adaptive evolutionary algorithms and extensions to
the hyflex hyper-heuristic framework. In Proceedings
of Parallel Problem Solving from Nature - PPSN XII:
12th International Conference, volume 7492 of Lecture
Notes in Computer Science, pages 418–427. Springer
Berlin Heidelberg, 2012.

[22] J. Park, S. Nguyen, M. Zhang, and M. Johnston.
Evolving ensembles of dispatching rules using genetic
programming for job shop scheduling. In Genetic
Programming, volume 9025 of Lecture Notes in
Computer Science, pages 92–104. Springer
International Publishing, 2015.

[23] X. Yao and Y. Liu. Fast evolutionary programming. In
Proceedings of the 5th Annual Conference on
Evolutionary Programming, pages 451–460. MIT
Press, 1996.

[24] X. Yao, Y. Liu, and G. Lin. Evolutionary
programming made faster. IEEE Transactions on
Evolutionary Computation, 3:82–102, 1999.

Table 8 The results of ADMg,j,k, Lévy(1.0, 1.2, 1.4, 1.6, 1.8, 2.0) on trained function classes Fg. Mean indicates the mean of the best values found over all generations
over 50 runs for Fg. Std Dev stands for standard deviations.

Fg ADM1,2,6 ADM10,12,13 ADM16,19,23 α = 1.0 α = 1.2 α = 1.4 α = 1.6 α = 1.8 α = 2.0

F1
Mean 0.3711 0.3624 166.2 0.3624 0.3654 0.3797 0.5124 0.5567 1.0003

Std Dev (3.11) (3.19) (883.8) (3.19) (3.19) (3.19) (3.17) (3.12) (3.25)

F2
Mean 0.040 0.072 0.043 0.160 0.109 0.089 0.077 0.068 0.048

Std Dev (4.40E-03) (9.16E-03) (9.59E-02) (1.48E-02) (1.42E-02) (9.03E-03) (8.54E-03) (6.13E-03) (6.51E-03)

F6
Mean 0.50 0.46 729.1 0.46 0.52 1.48 178.5 111.4 605.9

Std Dev (3.41) (3.41) (1621.6) (3.41) (3.49) (5.92) (1179.3) (312.1) (1578.1)

F10
Mean -20.04 -19.24 -7.77 -3.66 -15.58 -19.05 -17.32 -14.32 -10.71

Std Dev (0.31) (3.86) (5.93) (7.58) (8.24) (2.78) (2.52) (3.99) (4.09)

F12
Mean 0.0148 0.0031 3.1889 0.0135 0.1117 0.7234 1.1435 2.2114 4.0837

Std Dev (0.03) (0.02) (2.91) (0.05) (0.20) (1.00) (1.14) (1.88) (3.85)

F13
Mean 0.0936 0.0042 20.85 0.0074 0.4746 4.10 12.42 14.21 27.54

Std Dev (0.24) (0.01) (25.4) (0.02) (1.52) (10.2) (12.9) (19.9) (28.3)

F16
Mean -1.803489196 -1.803489196 -1.803489196 -1.80348918 -1.803489185 -1.803489184 -1.803489186 -1.803489186 -1.803489192

Std Dev (0.65) (0.65) (0.65) (0.65) (0.65) (0.65) (0.65) (0.65) (0.65)

F19
Mean -5.23096752 -5.230967433 -5.230967576 -5.225685243 -5.225723116 -5.230937535 -5.225024015 -5.225726632 -5.230966751

Std Dev (1.99) (1.99) (1.99) (1.99) (1.98) (1.99) (1.99) (1.98) (1.99)

F23
Mean -1.55E+07 -1.83E+07 -9.75E+07 -1.33E+06 -3.78E+06 -7.60E+06 -3.10E+06 -6.41E+06 -3.50E+06

Std Dev (4.22E+07) (7.02E+07) (3.26E+08) (2.46E+06) (1.19E+07) (2.62E+07) (6.94E+06) (2.61E+07) (5.76E+06)

Table 9 Wilcoxon Signed-Rank Test of ADMg,j,k versus Lévy Distribution (with α = 1.0, 1.2, 1.4, 1.6, 1.8, 2.0).

Fg ADMg,j,k ADM1,2,6 ADM10,12,13 ADM16,19,23 α = 1.0 α = 1.2 α = 1.4 α = 1.6 α = 1.8 α = 2.0

F1 ADM1,2,6 N/A < > < ≤ ≥ > > >
F2 ADM1,2,6 N/A > > > > > > > >
F6 ADM1,2,6 N/A = > = = > > > >
F10 ADM10,12,13 > N/A > > > > > > >
F12 ADM10,12,13 > N/A > ≥ > > > > >
F13 ADM10,12,13 > N/A > ≥ > > > > >
F16 ADM16,19,23 = = N/A > > > > > ≥
F19 ADM16,19,23 > > N/A > > > > > >
F23 ADM16,19,23 ≥ ≥ N/A > ≥ ≥ ≥ > >

Table 10 Borda counts for different ADMs on Fg.

Fg Bg/Bg,j,k ADM1,2,6 ADM10,12,13 ADM16,19,23 α = 1.0 α = 1.2 α = 1.4 α = 1.6 α = 1.8 α = 2.0

F1 B1 187 125 447 154 167 195 293 312 370
F2 B2 99 241 95 447 388 343 276 225 136
F6 B6 58 50 408 50 57 129 280 336 404

F1 F2 F6 B1,2,6 344 416 950 651 612 667 849 873 910
F10 B10 72 122 364 403 214 182 246 300 347
F12 B12 134 105 380 116 192 260 313 357 393
F13 B13 157 93 376 104 184 250 347 352 387

F10 F12 F13 B10,12,13 363 320 1120 623 590 692 906 1009 1127
F16 B16 55 55 50 267 247 228 222 221 130
F19 B19 110 140 50 354 344 345 340 312 245
F23 B23 184 207 113 346 305 270 286 270 269

F16 F19 F23 B16,19,23 349 402 213 967 896 843 848 803 644

Table 11 The means and standard deviations for different ADMs tested on different function classes.

Fg ADM1,2,6 ADM10,12,13 ADM16,19,23 ADM1 ADM2 ADM6 ADM10 ADM12 ADM13 ADM16 ADM19 ADM23

F1
Mean 0.3711 0.3624 166.2 0.3622 1.5873 0.3951 0.6019 0.3630 0.3625 3553.7 17432.0 54819.6
Std Dev (3.11) (3.19) (883.8) (3.19) (3.43) (3.18) (3.25) (3.19) (3.19) (2653.7) (8861.4) (12936.5)

F2
Mean 0.040 0.072 0.043 0.085 0.034 0.383 0.035 0.136 0.081 15.48 44.78 94.83
Std Dev (4.40E-03) (9.16E-03) (9.59E-02) (1.11E-02) (7.12E-03) (9.87E-02) (5.42E-03) (1.77E-02) (1.15E-02) (5.94) (11.87) (13.41)

F6
Mean 0.50 0.46 729.1 0.46 1759.5 0.46 2.86 0.46 0.46 12656.2 33359.4 84031.8
Std Dev (3.41) (3.41) (1621.6) (3.41) (3887.0) (3.41) (5.42) (3.41) (3.41) (7885.0) (15600.2) (22680.6)

F10
Mean -20.04 -19.24 -7.77 -20.03 -10.26 -0.47 -19.67 -12.04 -17.23 -3.22 -0.46 -0.74
Std Dev (0.31) (3.86) (5.93) (0.31) (3.11) (2.78) (0.85) (9.72) (6.92) (1.82) (0.32) (0.48)

F12
Mean 0.0148 0.0031 3.1889 0.0018 4.9436 0.0475 0.4014 0.0025 0.0031 79742.8 9159012.9 187046819.3
Std Dev (0.03) (0.02) (2.91) (0.01) (3.32) (0.12) (0.71) (0.02) (0.01) (157289.1) (12782055.1) (78867738.0)

F13
Mean 0.0936 0.0042 20.85 0.0172 26.99 0.0972 0.8932 0.0036 0.0054 17023.8 7383897.8 217114903.0
Std Dev (0.24) (0.01) (25.4) (0.06) (27.2) (0.19) (2.02) (0.01) (0.01) (28202.4) (10250182.6) (80527486.2)

F16
Mean -1.803489196 -1.803489196 -1.803489196 -1.803489194 -1.803489194 -1.803489191 -1.803489196 -1.803489194 -1.803489196 -1.803489195 -1.803489196 -1.767501128
Std Dev (0.65) (0.65) (0.65) (0.65) (0.65) (0.65) (0.65) (0.65) (0.65) (0.65) (0.65) (0.65)

F19
Mean -5.23096752 -5.230967433 -5.230967576 -5.230967286 -5.22617391 -5.221829996 -5.230967563 -5.230794029 -5.230967504 -5.23096744 -5.230967578 -4.966909097
Std Dev (1.99) (1.99) (1.99) (1.99) (1.99) (1.99) (1.99) (1.99) (1.99) (1.99) (1.99) (1.91)

F23
Mean -1.55E+07 -1.83E+07 -9.75E+07 -9.24E+06 -3.20E+07 -1.55E+07 -5.10E+07 -7.03E+06 -1.12E+07 -1.34E+07 -4.27E+08 -3.86E+10
Std Dev (4.22E+07) (7.02E+07) (3.26E+08) (1.81E+07) (1.54E+08) (7.97E+07) (1.67E+08) (2.72E+07) (4.11E+07) (2.67E+07) (9.05E+08) (2.49E+11)

Table 12 Statistically significant (Wilcoxon) comparison of different ADMs.

Fg ADMg,j,k ADM1,2,6 ADM10,12,13 ADM16,19,23 ADM1 ADM2 ADM6 ADM10 ADM12 ADM13 ADM16 ADM19 ADM23

F1 ADM1,2,6 N/A < > < > > > < < > > >
F2 ADM1,2,6 N/A > > > > > < > > > > >
F6 ADM1,2,6 N/A = > = > = > = = > > >
F10 ADM10,12,13 < N/A > ≤ > > < > > > > >
F12 ADM10,12,13 > N/A > ≤ > > > ≤ ≤ > > >
F13 ADM10,12,13 > N/A > ≥ > > > ≤ ≥ > > >
F16 ADM16,19,23 = = N/A = > ≥ = = = = = >
F19 ADM16,19,23 > > N/A > > > ≥ > > > = >
F23 ADM16,19,23 ≥ ≥ N/A ≥ > > ≥ > ≥ ≥ ≤ ≤

Table 13 Borda Counts for different ADMs on Fg.

Fg Bg/Bg,j,k ADM1,2,6 ADM10,12,13 ADM16,19,23 ADM1 ADM2 ADM6 ADM10 ADM12 ADM13 ADM16 ADM19 ADM23

F1 B1 202 135 445 141 397 314 298 183 135 468 548 600
F2 B2 172 263 97 318 116 449 134 398 303 501 549 600
F6 B6 60 50 416 50 432 50 260 50 50 451 547 598

F1 F2 F6 B1,2,6 434 448 958 509 945 813 692 631 488 1420 1644 1798
F10 B10 96 145 356 158 338 427 223 313 194 398 509 481
F12 B12 204 154 410 156 433 276 327 158 132 468 549 600
F13 B13 239 142 418 139 428 282 319 145 138 462 549 600

F10 F12 F13 B10,12,13 539 441 1184 453 1199 985 869 616 464 1328 1607 1681
F16 B16 65 66 53 101 117 210 53 96 53 73 50 567
F19 B19 243 313 111 371 393 491 147 426 243 320 50 583
F23 B23 331 362 229 370 342 459 273 396 352 305 184 308

F16 F19 F23 B16,19,23 639 741 393 842 852 1160 473 918 648 698 284 1458

Table 14 ADMs discovered by Genetic Programming.

ADM Best ADM found by Genetic Programming

ADM1 ×(1.5994 ÷(÷(0.30352 −(N(1.6042,3.7606) N(-0.52902,1.423))) N(0.23588,0.95197)))
ADM2 −(exp(1) abs(−(N(0.062744,0.62018) abs(2.7811))))
ADM6 ÷(÷(abs(N(1.7515,1.0711)) abs(N(-0.31211,3.1983))) N(1.3303,1.8317))
ADM1,2,6 ÷(÷(×(1.2807 power(0.421291))N(1.5056, 1.7563))N(−1.4591, 4.5805))
ADM10 ×(÷(−(abs(N(0.88065,1.2351)) N(0.98194,2.5068)) abs(exp(2.8935))) exp(−(N(-0.37126,2.3556) 0.36447)))
ADM12 ×(÷(N(1.9071,2.3711) +(÷(N(0.42263,3.6694) +(2.8295 N(-0.57212,4.419))) N(-0.14811,2.3614))) ÷(N(-1.3488,0.46446) +(2.6679

N(0.80107,4.4015))))
ADM13 ×(+(abs(÷(power(N(-0.14435,4.3745) 1.9102) +(+(N(-0.15717,3.4899) 2.2994) 1))) N(-1.9028, 2.9896)) ÷(exp(N(-1.38,1.0231)) −(0.24842

×(N(0.30698,3.0673) exp(exp(N(0.12445,1.7122)))))))
ADM10,12,13 ÷(−(÷(−(N(1.1547, 1.1671)N(−0.11351, 0.017279))−(N(0.69177, 4.5311)N(−1.8809, 0.38345)))÷(÷(÷(exp(N(−0.87195, 0.80431))2.0028)−

(N(−0.81015, 0.21294)N(−1.6028, 4.0077)))0.55601))N(−0.17811, 4.2532))
ADM16 −(N(1.3936,0.31908) 1.4866)
ADM19 ×(−(1.6446 abs(N(-1.7989,0.29046))) exp(−(N(-0.65486,0.91397) 2.8009)))
ADM23 ÷(÷(2.9833 plus(1.4673,−(exp(exp(N(0.40255,2.1374))) ÷(power(0 N(-1.6585,2.4744)) N(1.8439, 4.2323))))) exp(0.45235))
ADM16,19,23 ÷(power(abs(0.18145)1.7633)N(0.26527, 4.8048))

Table 15 The mean and standard deviations of different mutation operators (ADM and Lévy distribution) on different function classes.

Fg ADM1,2,6 ADM10,12,13 ADM16,19,23 α = 1.0 α = 1.2 α = 1.4 α = 1.6 α = 1.8 α = 2.0

F3
Mean 4255.7 3792.5 9640.8 2828.6 3241.0 2945.1 3431.5 3802.6 4519.7

Std Dev (1850.8) (1581.5) (4419.0) (1179.3) (1372.2) (1486.6) (1956.8) (2293.6) (2048.7)

F4
Mean 38.09 34.55 52.12 31.61 34.66 34.88 38.81 39.12 42.97

Std Dev (9.97) (7.62) (10.86) (7.91) (7.44) (7.84) (8.41) (9.18) (7.12)

F5
Mean -6.50 -7.25 5.93 -7.61 -8.19 -6.37 -6.76 -5.37 -3.77

Std Dev (6.63) (5.53) (16.27) (6.18) (6.39) (5.30) (6.12) (6.32) (8.11)

F7
Mean 0.0700 0.0584 0.1276 0.0354 0.0401 0.0519 0.0657 0.0723 0.1133

Std Dev (0.02) (0.02) (0.06) (0.01) (0.01) (0.02) (0.03) (0.02) (0.04)

F8
Mean -11205.1 -11318.7 -10484.1 -11111.0 -10503.4 -10089.0 -9664.8 -8949.3 -8072.7

Std Dev (289.4) (358.7) (414.2) (444.4) (479.1) (518.7) (597.4) (589.9) (742.4)

F9
Mean -10.2267 -10.2257 -10.1072 -10.2207 -10.2238 -10.1823 -10.0411 -9.1189 -7.1658

Std Dev (3.16) (3.16) (3.25) (3.16) (3.16) (3.16) (3.11) (3.65) (3.66)

F11
Mean 0.0246 0.0039 10.66 0.0011 0.0169 0.0313 0.0402 0.0639 0.1567

Std Dev (0.12) (0.01) (18.61) (0.003) (0.03) (0.07) (0.06) (0.15) (0.30)

F14
Mean 1.0662 0.8955 2.4611 0.7973 0.9778 1.0578 1.1140 1.0665 1.2546

Std Dev (1.17) (0.56) (2.28) (0.38) (0.53) (0.79) (0.70) (0.62) (0.75)

F15
Mean 0.0453 0.0415 0.0465 0.0411 0.0426 0.0433 0.0426 0.0464 0.0446

Std Dev (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

F17
Mean 4.942067975 4.942067975 4.942067975 4.942067978 4.942067978 4.942067979 4.942067977 4.942067978 4.942067977

Std Dev (2.77) (2.77) (2.77) (2.77) (2.77) (2.77) (2.77) (2.77) (2.77)

F18
Mean 4.510484905 4.510484905 4.510484889 4.510485582 4.510485593 4.510485625 4.510485455 4.510485479 4.510485176

Std Dev (1.12) (1.12) (1.12) (1.12) (1.12) (1.12) (1.12) (1.12) (1.12)

F20
Mean -4.9265 -4.8417 -4.9847 -4.6685 -4.6149 -4.6951 -4.5936 -4.8405 -4.6868

Std Dev (1.97) (2.06) (1.98) (2.09) (2.11) (2.09) (2.17) (2.04) (2.15)

F21
Mean -6.03E+06 -5.29E+06 -5.56E+07 -4.75E+06 -2.89E+06 -6.24E+06 -2.23E+06 -5.84E+06 -4.30E+06

Std Dev (7.19E+06) (9.35E+06) (7.24E+07) (2.17E+07) (6.49E+06) (1.99E+07) (4.31E+06) (1.35E+07) (7.83E+06)

F22
Mean -4.48E+07 -6.60E+06 -7.19E+07 -3.29E+06 -4.46E+06 -3.32E+06 -1.04E+07 -4.06E+06 -4.29E+07

Std Dev (2.42E+08) (9.44E+06) (1.04E+08) (7.30E+06) (1.69E+07) (4.22E+06) (3.52E+07) (1.10E+07) (2.26E+08)

