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Abstract. Hyper-heuristics are a class of high-level search technologies
to solve computationally difficult problems which operate on a search
space of low-level heuristics rather than solutions directly. A iterative
selection hyper-heuristic framework based on single-point search relies
on two key components, a heuristic selection method and a move ac-
ceptance criteria. The Choice Function is an elegant heuristic selection
method which scores heuristics based on a combination of three differ-
ent measures and applies the heuristic with the highest rank at each
given step. Each measure is weighted appropriately to provide balance
between intensification and diversification during the heuristic search
process. Choosing the right parameter values to weight these measures is
not a trivial process and a small number of methods have been proposed
in the literature. In this study we describe a new method, inspired by
reinforcement learning, which controls these parameters automatically.
The proposed method is tested and compared to previous approaches
over a standard benchmark across six problem domains.
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1 Introduction

The term ‘hyper-heuristic’ was first used in the field of combinatorial optimisa-
tion by Cowling et al. [1] and was defined as ‘heuristics to choose heuristics’. This
paper investigated the application of a number of random, greedy and Choice
Function-based hyper-heuristic approaches to a real-world sales summit schedul-
ing problem using two deterministic move acceptance criteria, all moves (AM)
and only improving (OI). Although the term hyper-heuristic was first used at
this time, ideas which exhibited hyper-heuristic behaviour can be traced back as
early as 1961 [2] in the field of job shop scheduling where combining scheduling
rules was shown to perform better than taking any of the rules individually. In
the first journal article to appear using the term Burke et al. [3] presented a



tabu-search-based hyper-heuristic. In this system a set of low-level heuristics are
ranked using rules based on reinforcement learning and compete against each
other for selection. The hyper-heuristic selects the highest ranked heuristic not
present in the tabu list. If an improvement is made after applying the selected
heuristic its rank is increased, if not, its rank is decreased and it is placed in the
tabu list until the current solution has changed. This hyper-heuristic was applied
to nurse scheduling and university course timetabling problems obtaining com-
petitive results. Hyper-heuristics have since been applied successfully to a wide
range of problems such as examination timetabling [3–7], production scheduling
[2], nurse scheduling [3, 8], bin packing [8, 9], sports scheduling [10], dynamic
environments [11] and vehicle routing [8, 12].

Research trends have lead to a number of different hyper-heuristics ap-
proaches being developed, particularly those concerned with automatically gen-
erating new heuristics, for which the original definition of a hyper-heuristic is
too limited to cover. A more general definition is offered by Burke et al. [13, 14]:

‘A hyper-heuristic is a search method or learning mechanism for selecting
or generating heuristics to solve computational search problems.’

This more general terminology includes systems which use high level strate-
gies other than heuristics within the definition of hyper-heuristics and covers the
two main classes of hyper-heuristics, those concerned with heuristic selection and
those with heuristic generation. Here, our concern will be those methodologies
which are used to select heuristics.

2 Selection Hyper-heuristics and the Choice Function

Traditional single-point based search hyper-heuristics rely on two key compo-
nents, a heuristic selection method and a move acceptance criteria as decomposed
by Özcan et al. [15] and depicted in Figure 1. Such hyper-heuristics will some-
times be labelled selection method-acceptance criteria in this paper. Hyper-
heuristics using this framework operate on a single solution and repeatedly select
and apply low-level heuristics to this solution. At each stage a decision made as
to whether to accept the move until some termination criteria is met.

Cowling et al. [1] experimented with a number of heuristic selection mech-
anisms including Simple Random and Choice Function using accept All Moves
and accept Only Improving moves as acceptance criteria. Simple Random se-
lects a heuristic to apply randomly from the set of low-level heuristics at each
point in the search. The Choice Function is an elegant selection method which
scores heuristics based on a combination of three different measures. The heuris-
tic to apply is then be chosen by a strategy based on these scores. The first
measure (f1) records the previous performance of each individual heuristic, with
more recent executions carrying larger weight. The value of f1 for each low-level
heuristic h1, h2, ..., hj is calculated as:

f1(hj) =
∑
n

αn−1 In(hj)

Tn(hj)
(1)



Fig. 1. Classic single-point search hyper-heuristic framework
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where In(hj) is the change in evaluation function, Tn(hj) is the time taken to
call the heuristic for each previous invocation n of heuristic hj and α is a value
between 0 and 1 giving greater importance to recent performance.

The second measure (f2) attempts to capture any pair-wise dependencies
between heuristics. Values of f2 are calculated for each heuristic hj when invoked
immediately following hk using the formula in Equation 6:

f2(hk, hj) =
∑
n

βn−1 In(hk, hj)

Tn(hk, hj)
(2)

where In(hk, hj) is the change in evaluation function, Tn(hk, hj) is the time taken
to call the heuristic for each previous invocation n of heuristic hj following hk

and β is a value between 0 and 1 which also gives greater importance to recent
performance.

The third measure (f3) is the time elapsed (τ(hj)) since the heuristic was
last selected by the Choice Function. This allows all heuristics at least a small
chance of selection.

f3(hj) = τ(hj) (3)

In order to rank heuristics a score is given to each heuristic with Choice
Function F calculated as:

F (hj) = αf1(hj) + βf2(hk, hj) + δf3(hj) (4)

where α and β as defined previously weight f1 and f2 respectively to provide
intensification of the heuristic search process whilst δ weights f3 to provide
sufficient diversification. In this initial work these parameters were set as static
values based on the authors experimental insight. This study showed the Choice
Function selection combined with All Moves acceptance worked well.



Further to this work, Cowling et al. [16] described a method to adaptively
change these parameters. A mechanism is proposed which increases the weights
of α or β when using a heuristic selected by the Choice Function results in an
improvement in the objective value. Although no specific implementation details
are provided, this reward is said to be proportional to the size of improvement
over the previous solution. Conversely, if a decrease in solution quality is obtained
these weights are penalised proportionally to the change in objective value. Us-
ing this mechanism lead to an improved performance compared to the original
results. Here we will use the implementation of the Choice Function used by
Bilgin et al. [17] for benchmark function optimisation and Özcan et al. [4] and
Burke et al. [6] for Examination Timetabling. This implementation increases α
and β and reduces δ by the same value if an improvement is made and reduces
α and β and increases δ if no improvement is made.

3 Modified Choice Function

Recently the HyFlex framework [8] was proposed and developed in order to
support the first Cross-domain Heuristic Search Challenge, CHeSC 2011 [18].
HyFlex was designed with the goal of providing a common framework to test and
compare different cross domain algorithms. Currently HyFlex contains six prob-
lem domains for algorithms to be tested on; maximum satisfiability (MAX-SAT),
one-dimensional bin packing, personnel scheduling, permutation flow shop, the
travelling salesman problem (TSP) and the vehicle routing problem (VRP). Us-
ing this framework allows us to directly compare our approach with previously
proposed algorithms.

Using the classic version of the Choice Function has some limitations when
applied to the HyFlex framework. Firstly, we are often not interested in the pro-
portional improvement gained by a given heuristic but rather whether there has
been any improvement at all. In the early stages of a search, a relatively poor
heuristic could gain a large reward if it obtains a large improvement in objec-
tive value from a poor starting position. Later on in the search, a heuristic may
yield a small improvement which is much more significant in the context of the
optimisation process but will not receive such a large reward for this improve-
ment. Secondly, if no improving solutions are found for a period of time, the
Choice Function can very quickly descend into random search if the weighting is
dominated by the diversification component. This can be a useful trait however
the rate at which the diversification increases in significance must be controlled.
Özcan et al. [4] observed that Simple Random heuristic selection with Late Ac-
ceptance Strategy move acceptance performed very well on a set of Examination
Timetabling instances. In this particular case very few (4) perturbative low-level
heuristics were implemented.

We propose a modified version of the Choice Function which aims to address
these issues through the management of the parameters weighting f1, f2 and f3
inspired by reinforcement learning [19]. This mechanism will rely on a system of
reward and punishment in order to tune these parameters. Our Modified Choice



Function does not make a distinction between the values of α or β which weight
f1 and f2 respectively and considers them as a single intensification parameter
which we will refer to as simply ϕ. This value will also be used to give greater im-
portance to recent performance as with the original Choice Function of Cowling
et al. [1]. The parameter to weight f3 is used to control the level of diversification
of heuristic search as before and will still be referred to as δ. In the Modified
Choice Function the score Ft for each heuristic hj is now calculated as:

Ft(hj) = ϕtf1(hj) + ϕtf2(hk, hj) + δtf3(hj) (5)

where t is the number of invocations of hj since an improvement was made
using this heuristic. At each stage, if an improvement in objective value is made
ϕ is rewarded and set to a static maximum value close to the upper limit of
the interval (0,1) whilst δ is concurrently reduced to a static minimum value
close to the bottom end of this interval. This leads to a greater emphasis on
intensification and greatly reduces the level of diversity of heuristic selection
choice each time an improvement is obtained. If no improvement in objective
value is made the level of intensification is decreased by linearly reducing ϕ and
the weighting of diversification is increased at the same rate. This gives the
intensification component of the Choice Function more time as the dominating
factor in the calculation of F . For the experiments in this paper we define the
parameters ϕt and δt as:

ϕt(hj) =

{
0.99, if an improving move is made

max {ϕt−1 − 0.01, 0.01}, if a non-improving move is made
(6)

and

δt(hj) = 1− ϕt(hj) (7)

4 Computational Results

Prior to the original competition, the results of eight hyper-heuristics were pro-
vided by the organisers to assess an algorithms performance [18]. These hyper-
heuristics were inspired by state-of-the-art techniques from the hyper-heuristic
literature. Each hyper-heuristic performs a single run on 10 instances for each
of 4 problem domains; maximum satisfiability (MAX-SAT), one-dimensional bin
packing, personnel scheduling and permutation flow shop. They are then ranked
using a system based on the Formula One scoring system, the best perform-
ing hyper-heuristic for each instance is awarded 10 points, the second 8 points
and then each further hyper-heuristic awarded 6, 5, 4, 3, 2, 1 and 0 points re-
spectively. As this ranking system is based on relative performance, the Choice
Function and Modified Choice Function are compared to the competition en-
tries independently. All experiments were carried out on machines allowing a
hyper-heuristic 576 seconds running time for each instance by the benchmarking



tool provided by the competition organisers. In order for a fair comparison to be
made crossover heuristics are ignored as the original Choice Function provides
no details of how to manage operators which require more than one argument.
Figure 2(a) shows the results of the Modified Choice Function using accept All
Moves as an acceptance criteria when compared with the eight hyper-heuristics
(HH1-HH8) provided for the competition. Figure 2(b) shows the results of the
same experiments using the original Choice Function and accept All Moves ac-
ceptance as implemented by Bilgin et al. [17] and Burke et al. [6].

Fig. 2. Formula One scores for a single run of Modified Choice Function - All Moves
hyper-heuristic and the CHeSC default hyper-heuristics (a) and a single run of classic
Choice Function - All Moves hyper-heuristic and the CHeSC default hyper-heuristics

HH1 HH2 HH3 HH4 HH5 HH6 HH7 HH8 ModCF-AM

MAX-SAT 55.25 73.25 36.5 24.5 1 46 51.75 14.5 87.25
Bin Packing 59 61 76 71 15 51 39 1 17
Personnel Scheduling 64 57.5 22 50.5 50 0 49.5 31 65.5
Flow Shop 30 21 26.5 86 19.5 77.5 21 69 39.5

Overall 208.25 212.75 161 232 85.5 174.5 161.25 115.5 209.25

(a)

HH1 HH2 HH3 HH4 HH5 HH6 HH7 HH8 CF-AM

MAX-SAT 58 78 39.5 25.5 1 49 54.5 15.5 69
Bin Packing 59 61 78 71 19 51 38 7 6
Personnel Scheduling 65.5 64.5 23 52.5 53 0 52 31 48.5
Flow Shop 38 27.5 32 86 25.5 78.5 26.5 70 6

Overall 220.5 231 172.5 235 98.5 178.5 171 123.5 129.5

(b)

From these tables we see that the Modified Choice Function outperforms all
of the CHeSC default hyper-heuristics in MAX-SAT and Personnel Scheduling.
More importantly the Modified Choice Function outperforms the original Choice
Function in all four problem domains although both versions seem to struggle
more on the Bin Packing and Flow Shop instances. This could be due to the
omission of crossover operators if such operators perform well in these problem
domain. The best performing hyper-heuristic in this set (HH4) is based on iter-
ative local search, this supports the work of Özcan et al. [20] which showed that
the FC selection hyper-heuristic framework performed well compared to other
hyper-heuristic frameworks.

Following the competition the results were provided for the competition en-
tries over a subset of the problems of all six problem domains. These results were
taken as the median of 31 runs of each hyper-heuristic on each instance. Our
results are also taken as the median of 31 runs in order to maintain consistency
and allow direct comparison to the competition entries. Figure 3(a) shows the re-
sults of the classic Choice Function and All Moves acceptance criteria compared



to the 20 competition entries using the Formula One scoring system. Figure 3(b)
shows the results of the same experiments using the Modified Choice Function
and accept All Moves as an acceptance criteria.

Fig. 3. Results of the median of 31 runs of the classic Choice Function - All Moves
hyper-heuristic (a) and the Modified Choice Function - All Moves hyper-heuristic (b),
compared to CHeSC competitors using Formula One scores

Rank Name Score

1 AdapHH 181
2 VNS-TW 134
3 ML 131.5
4 PHunter 93.25
5 EPH 89.25
6 HAHA 75.75
7 NAHH 75
8 ISEA 71
9 KSATS-HH 66
10 HAEA 53.5
11 ACO-HH 39
12 GenHive 36.5
13 DynILS 27
14 SA-ILS 24.25
15 XCJ 22.5
16 AVEG-Nep 21
17 GISS 16.75
18 SelfSearch 7
19 MCHH-S 4.75
20 Classic CF - AM 1
21 Ant-Q 0

(a)

Rank Name Score

1 AdapHH 177.1
2 VNS-TW 131.6
3 ML 127.5
4 PHunter 90.25
5 EPH 88.75
6 NAHH 72.5
7 HAHA 71.85
8 ISEA 68.5
9 KSATS-HH 61.35
10 HAEA 52
11 ACO-HH 39
12 Modified CF - AM 38.85
13 GenHive 36.5
14 DynILS 27
15 SA-ILS 22.75
16 XCJ 20.5
17 AVEG-Nep 19.5
18 GISS 16.25
19 SelfSearch 5
20 MCHH-S 3.25
21 Ant-Q 0

(b)

Since the competition results were made available, Di Gaspero and Urli [21]
described variations of their original method (AVEG-Nep), which are also based
on Reinforcement Learning. The best of the variants included in this paper
ranked 13th overall compared to the original competitors. Here we see that man-
aging the parameter settings of a Choice Function using Reinforcement Learn-
ing inspired techniques can outperform such methods, ranking 12th overall. For
this hyper-heuristic points are only scored in two problem domains, Person-
nel Scheduling and MAX-SAT leaving room for improvement in the other four
domains. The vast majority (32.85) of these points were scored in MAX-SAT
where our method excels. When compared to the competition entries, the Mod-
ified Choice Function outperforms all other competitors. It is likely that a very
small number of heuristics are providing improvement in this problem domain
and the increased focus on intensification is providing the gain in performance.



Figure 4 shows a breakdown of the number of points awarded to each technique
over the MAX-SAT competition instances.

Fig. 4. Number of points scored in the MAX-SAT domain using the Formula One
system for each CHeSC competitor
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Using the classic choice function performs particularly badly against the other
competition entries ranking 20th out of 21 overall only obtaining a single point
in Personnel Scheduling. The Formula One scoring system is limited in that
it only measures relative performance against a set of previous approaches. As
such a more direct comparison between the two experiments can be performed
on the objective values achieved by both hyper-heuristics. Table 1 shows the
results of an independent student’s t-test on the values of each of the 31 runs for
each instance in the competition within a 95% confidence interval. These results
show the Modified Choice Function statistically significantly outperforming the
classic Choice Function completely in 3 of the 6 problem domains. In many cases
there is no statistically significant difference in performance. In only 3 of the 30
problem instances the classic choice function performs statistically significantly
better than the Modified Choice Function.

5 Concluding Remarks

In this work we have described a modified version of the Choice Function heuris-
tic selection method which manages the parameters which weight the intensifica-
tion and diversification components of Choice Function scores through methods
inspired by reinforcement learning. This Modified Choice Function aggressively
rewards the intensification weighting and heavily punishes the diversification
component each time an improvement is made. We have shown that managing
these parameters in such a way provides great benefits compared to a clas-
sic implementation of the Choice Function. So far, this work has been limited



Table 1. Pairwise comparison between MCF-AM and CF-AM using independent T-
Test. In this table s+ (s-) denotes that using MCF-AM (CF-AM) is performing sta-
tistically significantly better than using CF-AM (MCF-AM), while =+ (=−) denotes
that there is no statistically significant performance variation between MCF-AM and
CF-AM however MCF-AM (CF-AM) performs slightly better (worse) on average.

Problem Domain Instance 1 Instance 2 Instance 3 Instance 4 Instance 5

MAX-SAT s+ s+ s+ s+ s+
Bin Packing =− s+ s+ =− s−
Personnel Scheduling =− =+ =+ =− =+
Flow Shop s+ s+ s+ s+ s+
TSP s− =− s− s+ =+
VRP s+ s+ s+ s+ s+

to improving the Choice Function selection mechanism itself. Previous work in
the literature has suggested that performance can be improved by reducing the
search space of heuristics [22, 23]. We plan to include the method proposed by
Özcan and Kheiri [24] to reduce the set of active heuristics in combination with
the Modified Choice Function heuristic selection method and apply it to the
problem instances available in HyFlex. We restricted this study to focus on only
the selection mechanism component of a traditional hyper-heuristic, Özcan et al.
[15, 20] tested a number of hyper-heuristics over a set of benchmark functions and
observed that the acceptance criteria used can have a more significant impact on
the performance of a hyper-heuristic than selection mechanism. We would like
to extend this work to analyse the effect of using different move acceptance cri-
teria in conjunction with the Modified Choice Function. In this paper we have
not made use of any operators in the HyFlex framework which require more
than one argument such as crossover. Drake et al. [25] described a number of
methods for managing potential second arguments for crossover and other n-ary
operators. As future work we will include the multiple argument management
techniques from this study to analyse whether including crossover operators can
benefit hyper-heuristics based on the Modified Choice Function.
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heuristics: A survey of the state of the art. Technical Report No. NOTTCS-TR-
SUB-0906241418-2747, School of Comp. Sci., University of Nottingham (2010)
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