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Abstract. We extend a previous mathematical formulation of hyper-
heuristics to reflect the emerging generalization of the concept. We show
that this leads naturally to a recursive definition of hyper-heuristic and to
a division of responsibility that is suggestive of a blackboard architecture,
in which individual heuristics annotate a workspace with information
that may also be of interest to other heuristics. Such a framework invites
consideration of the kind of relaxations of the domain barrier that can
be achieved without loss of generality.

1 Introduction

The term hyperheuristic first appeared in [1] in the context of automated theorem
proving. As introduced in [2], hyper-heuristics can be considered as the study
of ‘heuristics to choose heuristics’. Recent work by Burke et al. [3] classified
diverse approaches under the more general concept of ‘heuristics for searching
the space of heuristics’. We proceed to reflect this generalization by extending
the mathematical framework given by Woodward et al. in [4]. In formulating a
generalization, we also address some issues arising from the initial framework
definition. We proceed from there to discuss some of the architectural and engi-
neering implications of this generalization. We draw parallels with the operation
of a cognitively-inspired architecture and discuss the notion of incorporating
‘heuristic-autonomy’ as an additional dimension of the design space.

In order to achieve the side-effect free requirements of a mathematical formu-
lation within the context of computer science, we have found it most convenient
to adhere (where possible) to the notation of the Haskell programming language
[5] — for those unfamilar with the Haskell language, knowlege of the elementary
notion of function signatures is likely to suffice. In [4], the following definitions
are provided: for solution-state space S, a heuristic is a function h : S → S and
O = {o1, o2, . . . , on} is a set of predefined domain-specific heuristics. (i, j, k) is
a 3-tuple intepreted in the invoking ‘problem layer’ as follows: apply heuristic
oi to the solution stored in list position j and store the resulting solution sk
in position k. Let e : S → R be the objective function and Q be the 4-tuple
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(i, j, k, e(sk)). A hyper-heuristic is then a function:

H : [Q] → O × N2 (1)

(where square brackets denote a list) i.e. a hyper-heuristic can generate the
information required for a new list entry and ask for it to be inserted into any
chosen position in the list (the idea being that some heuristics may make elect
use of this position ordering). Fig. 1 depicts the enforcement of the flow of
information between the hyper-heuristic and problem layers.

 

Hyper-heuristic Layer 

Problem Layer 

Domain Barrier 

Methodologies to decide which low level heuristic (oi) to apply to 

which solution (j) and at which location (k) to store the new 

solution (sk) in the list of solutions based on the history of 

previously visited solutions and their objective values and more... 

e(sk) (i,j,k) 

• Set of low level heuristics {o1,..., on} 

• Evaluation/objective function (e) and problem instance 

• List of solutions 

• and more... 

Fig. 1. Decomposition of a Hyper-heuristic into Hyper- and Problem- layers.

We note that this formulation does not appear to allow for O to vary during
the course of the run, i.e. it is restricted to selective rather than generative ac-
tivity. The restriction to an objective value of R rather than Rn also precludes
multiobjective optimization, though this is trivially addressed (at least on a con-
ceptual level). A more significant issue arises with the ‘mathematical’ nature of
this formulation. The definition implies specific activity on behalf of the invoking
problem layer: the idea is that the invoker iteratively applies H in order to ob-
tain a solution. In order to be genuinely ‘mathematical’, each invocation should
be stateless, i.e. free of side-effects. The above definition is not sufficient in this
respect for many of the metaheuristics we might wish to implement in practice.
For example, if H is a metaheuristic such as A∗, then it is necessary to anno-
tate each encountered state with the current ‘least path cost’ - this information
cannot be determined merely from the history list Q. The same issue applies
when annotating states with recency and frequency information in tabu-search.
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As a minimum, it is therefore necessary to extend the signature of H to include
a workspace parameter W :

H : [Q]×W → O × N2 ×W (2)

In the most elementary realization, a workspace can be considered to be a set
of (key, value) pairs that can be used to index elements of metaheuristic state
(such as the path-cost described above) that cannot be derived from the list Q.

2 A Revised Formulation

In [3], Burke et al. classify hyper-heuristics in two orthogonal dimensions. The
first dimension represents selection versus generation and the second the source
of feedback during learning (online,offline or none). Both dimensions are further
partitioned by the nature of the search space (constructive or pertubative). De-
ciding which elements of this design space to explore and when to do so is of
course a search problem in its own right and Burke et al. note the emerging
trend for hybrid methodologies that seek to achieve this.

It is nonetheless the case that the vast majority of current research work
in hyper-heuristics requires the designer to make an a priori decision regarding
which (singular) element of the hyper-heuristic design space their system is to
explore. It is our contention that significant further progress in hyper-heuristics
requires a system that is capable of allocating resources to the exploration of any
element of the design space. Such a system would ideally marshall co-operation
between these activities to produce solutions otherwise unobtainable.

We proceed to describe a unifying formulation intended to facilitate dynamic
exploration of any of the dimensions of the design space. We start by defining
the signature of a low-level heuristic h0 ∈ HT to be:

h0 : T → T

where T is a type parameter denoting the type of the solution state (e.g. bitstring,
permutation, real-valued vector etc), as described below. We then define a hyper-
heuristic h1 ∈ HT to have signature:

h1 : T × [HT ] → T

A specific instantiation of the type parameter T determines the role of HT . For
perturbative heuristics, T is some complete solution-state S, whereas for con-
structive heuristics T is some partial solution-state P . Selective hyper-heuristics
may then be instantiated over complete or partial solution-states as appropriate.
For some solution-state of type E, let G be the space of functions : E → E. A
generative hyper-heuristic is then HE→E .

In order for a framework to range over the entire design space, distinct ele-
ments of the design space must be able to interoperate where meaningful. Since
we are defining our framework in functional terms, the first place we might
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seek a mechanism for (hyper)heuristic interoperability is via a unified function
signature. Consider perturbative heuristics as having signature

perturb : S → S

i.e. a mapping from state to state for some generic state type S, with constructive
heuristics as

construct : P → Maybe P

where P is some generic notion of partial state. This syntax for construct ex-
presses the notion constructive heuristics are in general partial (as opposed to
total) functions (e.g. in the case of a fallible stochastic or greedy construction).

The above classification means that the primitive heuristics present a number
of distinct function signatures to the hyperheuristic level (taken from the Carte-
sian product of selection\generation and constructive\pertubative). In fact, mul-
tiple concrete representations of solution state are clearly possible (e.g. list versus
graph for the TSP). In addition to this proliferation of function signatures, an
issue arises from the differing atomic granularity of partial construction versus
perturbation. Unless we stipulate that partial construction is internally iterated
to yield a complete state, then perturbative and constructive heuristics cannot
share a simple common signature.

Acting together, these design issues indicate that a direct unification of these
function signatures (i.e. in which the parameters are the union of those re-
quired by the heuristics from each element of the design space) is neither nat-
ural nor desirable. As per Dijksta’s famous maxim, we resolve this issue via
an additional level of indirection. Specifically, we mandate a signature for both
types of heuristic that takes a single workspace argument. Hence, we now have
perturb : W → W and construct : W → W .

We therefore have a unified signature for our heuristics as follows:

h′
0 : W → W, h′

1 : W → W

where the parameter W is a workspace that is now taken to be the repository for
the both the state of the heuristics (as above) and the state of the search. The
associated semantics are that heuristics read whatever parameters they require
from the workspace (e.g. search trajectory and/or other hyper-heuristic-specific
state) and write the relavant output of their computation (e.g. an update to its
associated search trajectory and/or heuristic state) into the result. Note that h′

0

and h′
1 are no longer explicitly bound to a type-parameter S - which represen-

tations a heuristic may choose to access from the workspace and manipulate is
now an implementation issue of that heuristic.

3 Implications of this Formulation

Since h′
0 and h′

1 share a common signature, our definition of hyperheuristic is
now recursive - the list of heuristics H that h1 accesses from the workspace may
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themselves be hyperheuristics. Hyperheuristic invocations may thus be recur-
sively nested to an arbitrary depth. Such an aggregation mechanism facilitates
the generation of new hyperheuristics. An equivalent formulation for recursion
has been implemented in the Hyperion hyperheuristic solution-domain frame-
work [6]. The use of the workspace as the repository for collective state has the
following implications:

1. By means of the workspace, we can pass not only the parameters [Q], O, i, j of
the original formulation, but also any other information that might profitably
be shared between heuristics. In general, heuristics can elect to make use of
workspace information contributed by other heuristics of which they are
aware. For example, the heuristics output by any generative hyper-heuristic
might profitably be made available to selective hyper-heuristics as a palette
for selection, or to other generative hyper-heuristics as elements for variation
operators. It is therefore implicit in this formulation that the set O of prim-
itive heuristics and hyper-heuristics created therefrom (or indeed any other
parameter) can be varied dynamically by a suitably-informed heuristic.

2. A constructive heuristic that eventually (i.e. after successive invocations)
yields a complete solution from a succession of partial ones can add this to
the complete solution trajectory.

3. Perhaps most significantly, the domain barrier need now be no more opaque
than is genuinely useful in practice. As a concrete example of additional
workspace information that can be formulated in a domain-independant fash-
ion is the notion of the inverse of a perturbative heuristic — such information
can profitably be used in tabu-lists, for example.

A consequence of 2. is that we need no longer require that any single invoca-
tion of a heuristic succeeds in adding a new (complete or partial) solution-state
to the head of the search trajectory. Activity can thus be considered to be amor-
tized over a succession of invocations. This notion of ‘amortized’ or ‘eventual’
construction means that we are freed from having to choose between ‘timesliced’
and ‘greatest common multiple’ approach to the different atomic granularities
of partial construction and perturbation — the indirection via the workspace
means that it is not necessary to enforce any specific iteration policies.

In fact, if we view the differing granularities of partial construction and per-
turbation as a special case of process-granularity in general, this approach allows
us to integrate heuristics that are resident in main-memory with those that are
federated (e.g. accessed via remote-procedure call or web-service). The invoca-
tion overhead for the latter will generally be much higher than the former, and
so we might want a single invocation to perform much more ‘useful work’ (e.g.
exploring to a local optimum) in the latter case. The indirected approach we
advocate is necessary in order to remain as agnostic as possible about granular-
ities.

3.1 Learning

Up to this point, the ‘learning’ dimension of the design space has not been
directly addressed. The success of learning is often in proportion to the CPU
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time or storage-capacity allocated to it, so rather than being a static dimension
of the system, we might profitably consider the allocation of resources to (online
or offline) learning to be an aspect of some high-level control mechanism (which
may of course itself be a hyper-heuristic).

Examples of online learning include reinforcement learning [7], tabu search
([8], [9]) and adaptive penalties [10]. Offline learning seeks to extract information
obtained from a set of training instances in order to better inform the subse-
quent search process. Examples of offline learning for hyper-heuristics includes
learning-classifier systems [11], case-based reasoning [12] and genetic program-
ming [13]. While much work has been done in the offline analysis of landscapes
and devising metrics of landscape quality ([14], [15], [16], [17], [18], [19]), this
information is not routinely used to inform online activity. As a simple but con-
crete example, the autocorrelation length of the landscape [20] could be used
to inform parameters such as tabu-tenure or population size, but such interplay
between design and experiment is not a routine part of metaheuristic develop-
ment. To draw a real-world analogy, this is akin to attempting to design a car
without prior knowledge of the nature of roads.

It is also worth noting that online and offline activity actually aid one-another
in both directions, i.e. information produced online (sampling the search space)
is likely to be of use offline (e.g. to inform a subsequent heuristic generation pro-
cess). Overall, it is therefore our belief that a hard distinction between online and
offline learning is a significant obstacle to progress. We are further of the opinion
that this issue (as with many in the current state of metaheuristic research) is
much more of an architectural\software engineering issue than a conceptual one.
We believe that this is further motivation for an integrated exploration of the
design space.

3.2 Options and Responsibilities for Top-Level Control

In concrete implementation terms, the decentralization of concerns discussed in
this article is an essential characteristic of a blackboard architecture [21]. Black-
board architectures are opportunistic, data-driven mechanisms for mediating
between a collection of indirectly-collaborative knowledge sources. They are of
greatest utility when the control sequence or solution structure for a problem is
not best delineated in advance, which are certainly properties of hyper-heuristic
search. One property enjoyed by modern blackboard architectures is concur-
rency. Numerous control variants are discussed in [22]. We briefly consider here
some options in the specific context of hyper-heuristic control:

A somewhat polar school of thought contends that (if sufficiently abstracted
from the underlying problem domain) the very topmost hyper-heuristic control
mechanism must necessarily be solving the multi-armed bandit problem [23]
for the agents (resources) that it is coordinating. Such a resource-management
abstraction has a number of theoretical benefits, not least that it allows us to
ground the system in utilitarian terms (CPU or cloud-computing costs) and to
entertain space-time tradeoffs (e.g. the length of the history list Q) within a
unified framework.
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One might also consider a top-level that embarks on a form of ‘generate
and test’ for hypotheses in the manner of scientific discovery systems such as
BACON,QNM or LaGrange [24]. As a concrete example of the utility of
such a system, in order to avoid overfitting it is imperative that the system be
exposed to a set of representative training examples. The ability to generate new
test cases would thus be an interesting avenue of exploration.

Alternatively, if one were to take devolution of concerns to its logical conclu-
sion, this effectively yields a multi-agent system. Co-operation between low-level
heuristics is explored in [25], but to the knowledge of the authors no complete
integration of design space elements has been proposed. From this perspective,
‘heuristic autonomy’ can be seen as another dimension of the design space.
This notion of ‘maximal automomy’ invites the possibility of a subsumption-
architecture approach in which the system has no conventional top-down control
mechanism [26], but which can nonetheless be grounded (in the ‘good-enough,
fast-enough, cheap-enough’ sense) via the choice of suitable ‘timeout’ etc. pa-
rameters for the heuristic agents.

4 Conclusion

Metaheuristic researchers are enthusiastic in adopting of metaphors of compu-
tation from the natural world. The human mind is the the most stellar known
example of natural parallel computation, so it perhaps suprising that cognitive
architectures have done little to inform hyper-heuristic activity.

Thus inspired, we have described a unifying ‘mathematical’ formulation for
hyper-heuristics and proceeded to show that a number of design forces motivate
the adoption of a shared repository (workspace) for heuristic activity, updated
indirectly via heuristics that can enjoy an arbitrary degree of autonomy.

The formulation as described facilitates the removal of the hard distinction
between online and offline activity, relegating them instead to a higher-order form
of “exploration versus explotation”. Thus, clients of hyper-heuristics (researchers
and end-users) are not required to work within a single statically-determined
compartment of the design-space — in this sense, all activities are online and
compete to be allocated resources by the top-level controller. We hope in future
work to demonstrate that this characterizes two key elements of domain-agnostic
optimization: a) an abstractly utilitarian controller and b) a resource-allocation
strategy that is ‘grounded’ in metrics such as CPU time and rate of improvement.

In architectural terms, this formulation also invites the relaxation of the do-
main barrier. While it has always been implicit that any concrete realisation of
the domain barrier represents a particular point on the ‘generality versus lever-
age’ continuum, the default concrete example (as exemplified by [4]) is perhaps
too-often perceived as mandatory. It is our hope that the revised formulation
presented here will help to change the prevailing conceptual model of hyper-
heuristics in this respect.
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