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Abstract
In evolutionary algorithms, crossover operators are used to recombine multiple can-
didate solutions to yield a new solution that hopefully inherits good genetic mate-
rial. Hyper-heuristics are high-level methodologies which operate on a search space
of heuristics for solving complex problems. In a selection hyper-heuristic framework,
a heuristic is chosen from an existing set of low-level heuristics and applied to the
current solution to produce a new solution at each point in the search. Crossover is
increasingly being included in general purpose hyper-heuristic tools such as HyFlex
and Hyperion, however little work has been done to assess how best to utilise it. Since
a single-point search hyper-heuristic operates on a single candidate solution and two
candidate solutions are required for crossover, a mechanism is required to control the
choice of the other solution. The frameworks we propose maintain a list of potential
solutions for use in crossover. We investigate the use of such lists at two conceptual
levels. Firstly, crossover is controlled at the hyper-heuristic level where no problem-
specific information is required. Secondly, it is controlled at the problem domain level
where problem-specific information is used to produce good quality solutions to use
for crossover. A number of selection hyper-heuristics are compared using these frame-
works over three benchmark libraries with varying properties for an NP-hard optimi-
sation problem; the multidimensional 0-1 knapsack problem. It is shown that allowing
crossover to be managed at the domain level outperforms managing crossover at the
hyper-heuristic level in this problem domain.

Keywords
Combinatorial optimisation, Hyper-heuristics, Local Search, Multidimensional Knap-
sack Problem, Metaheuristic

1 Introduction

Hyper-heuristics are high-level search methodologies which aim to solve computation-
ally difficult problems. Unlike traditional techniques, a hyper-heuristic operates on a
search space of low-level heuristics rather than directly on the search space of solutions.
The term ‘hyper-heuristic’ was first used by Denzinger et al. (1996) to describe a tech-
nique choosing and combining a number of artificial intelligence methods. Although

c⃝201X by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx



J. H. Drake, E. Özcan, E. K. Burke

the term hyper-heuristic was first used at this time, ideas exhibiting hyper-heuristic
behaviour can be traced back as early as 1961 (Fisher and Thompson, 1961). Hyper-
heuristics have been applied successfully to a wide range of problems such as exam-
ination timetabling (Özcan et al., 2009, 2010; Burke et al., 2003b), production schedul-
ing (Fisher and Thompson, 1961), nurse scheduling (Burke et al., 2003b) and vehicle
routing (Garrido and Castro, 2009). A recent definition of hyper-heuristics is offered by
Burke et al. (2010a,b):

‘A hyper-heuristic is a search method or learning mechanism for selecting or
generating heuristics to solve computational search problems.’

This terminology includes systems which use high level strategies other than
heuristics within the definition of hyper-heuristics. It also covers the two main classes
of hyper-heuristics, those concerned with heuristic selection and those with heuristic
generation. Here we will be working with selection hyper-heuristics. Operating on a
single solution, low-level heuristics are repeatedly selected and applied with a deci-
sion made as to whether to accept the move until some termination criteria is met.

Crossover is often used in population-based metaheuristics as a mechanism to re-
combine multiple solutions. Two or more candidate solutions are selected from a pop-
ulation and a new solution is generated containing material from all parents. The in-
tention is that only the best quality solutions will be kept in the population containing
a mixture of material from previous solutions. This causes a problem in single-point
search as each operator requires two parents as input. A trivial choice for one parent
in a single-point selection hyper-heuristic is the current solution however some choice
must be made when considering the second candidate solution. Many modern hyper-
heuristic frameworks such as HyFlex (Burke et al., 2009a) and Hyperion (Swan et al.,
2011) now include crossover operators as part of the set of low-level heuristics. Limited
work has been done to research methods to select the solutions to use as input for such
operators.

In this paper, we investigate the management of input arguments for crossover
operators in single-point search hyper-heuristics. We define frameworks at two con-
ceptual levels to control crossover in single-point hyper-heuristics. Experiments are
performed to analyse the performance difference between allowing a hyper-heuristic
to select the second argument for a binary crossover operator using domain indepen-
dent knowledge, or controlling this decision directly in the problem domain using
domain specific knowledge. Our hyper-heuristics are applied to three benchmark li-
braries for the multidimensional 0-1 knapsack problem (MKP), each with varying prop-
erties, something which has not been done in any previous studies. We are not trying
to achieve state-of-the-art results in this domain, our focus is to use the MKP as bench-
mark to compare the proposed frameworks for crossover control.

Section 2 provides an overview of hyper-heuristics, a definition and brief classi-
fication of hyper-heuristics is included. This is followed by more detailed discussion
of selection hyper-heuristics and the use of crossover within this paradigm. Section 3
gives an overview of the MKP literature. Section 4 introduces crossover management
at two different levels, provides detailed information on the selection hyper-heuristics
used in this paper and defines the MKP benchmarks used as a testbed. Section 5 de-
tails the parameter tuning necessary before the full experimentation. Section 6 provides
results and discussion of the proposed selection hyper-heuristics applied to the MKP.
Finally, Section 7 draws some conclusions based on our results.
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2 Hyper-heuristics

There are currently two main categories of hyper-heuristics outlined in Burke et al.
(2010b). The first category contains those methodologies which select low-level heuris-
tics to apply from a set of existing heuristics. The second one contains methodologies
which create new heuristics from a set of components of other existing low-level heuris-
tics (Burke et al., 2009b). These categories are then further broken down to distinguish
between hyper-heuristics which construct solutions (Burke et al., 2007) and those which
aim to improve complete solutions through local search (Özcan et al., 2009).

Aside from the nature of the search space, many hyper-heuristics learn from feed-
back given regarding heuristic performance to guide low-level heuristic choice. Such
feedback is used to learn in either an online or an offline manner. Online learning oc-
curs during the process of solving a problem instance (Drake et al., 2012). In offline
learning a system is trained on a subset of problems prior to full execution in order to
assert a set of rules to apply to unseen instances (Hyde, 2010).

Burke et al. (2010a) identified a number of closely related areas to hyper-
heuristic research including: Adaptive Operator Selection (Fialho et al., 2008), Reactive
Search (Battiti et al., 2008), Variable Neighbourhood Search (Nenad and Pierre, 1997),
Adaptive Memetic Algorithms (Ong et al., 2006) and Algorithm Portfolios (Huberman
et al., 1997). Although an overview of these methods is not provided here, a number of
approaches discussed overlap these areas. The references provided are a good starting
point for each of these techniques for the interested reader.

2.1 Single-point search hyper-heuristics

The traditional single-point search hyper-heuristic framework relies on two key com-
ponents, a heuristic selection method and a move acceptance criterion. Such hyper-
heuristics will be labelled selection method - acceptance criteria hereafter in this paper
with acronyms used where space is restricted. The perturbative heuristics can be split
into two categories, mutational heuristics and hill climbers. A mutational heuristic
takes a solution as input, performs an operation to perturb the solution and outputs a
new solution without quality guarantee. A hill climber accepts a solution as input, per-
forms an operation to perturb the solution and guarantees to output a solution whose
quality is at least as good as the original input.

Cowling et al. (2001a) experimented with a number of heuristic selection mecha-
nisms including Simple Random and Choice Function using two simple move accep-
tance criteria, accept All Moves and accept Only Improving moves. In the initial work,
these parameters were set values however these can be changed adaptively using the
method described by Cowling et al. (2001b). In this early work, the Choice Function
selection combined with All Moves acceptance was shown to work well. The choice
function has been shown as a successful selection mechanism in a number of further
studies (Bilgin et al., 2006; Blazewicz et al., 2013; Kiraz et al., 2013).

Nareyek (2001) analysed a number of weight adaptation functions and two simple
selection methods when using Reinforcement Learning (Sutton and Barto, 1998) as a
selection mechanism. Taking the low-level heuristic with the maximum utility value
rather than using a weighted probability of selection and using a simple additive and
subtractive weight adaptation were shown to be reasonable choices when using Rein-
forcement Learning as a heuristic selection method.

Özcan et al. (2009) used Late Acceptance Strategy hill climbing within a single-
point search hyper-heuristic framework to solve standard benchmarks of the exami-
nation timetabling problem. This work suggested that Late Acceptance Strategy was
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J. H. Drake, E. Özcan, E. K. Burke

relatively successful when used with Simple Random selection and less suitable when
used with more intelligent methods such as Choice Function and Reinforcement Learn-
ing.

Garcı́a-Villoria et al. (2011) applied a number of different hyper-heuristic methods
to an NP-hard scheduling problem, the response time variability problem. After in-
troducing a constructive hyper-heuristics for this problem, a set of single-point search
hyper-heuristics were tested. Simple Random, Greedy and two Probability-based selec-
tion methods were used to select a heuristic from a set of local search operators with All
Moves accepted. Using a hyper-heuristic to select a local search heuristic was shown
to outperform naive iterative selection. The local search heuristics were then replaced
by a set of metaheuristics. The combination of metaheuristics within a hyper-heuristic
framework was superior than applying each of the metaheuristics individually.

Burke et al. (2012) applied a number of hyper-heuristics to a set of examina-
tion timetabling instances. Hyper-heuristics using either Simple Random, Greedy,
Choice Function or Reinforcement Learning selection methods were tested in combi-
nation with three move acceptance criteria based on Simulated Annealing. The hyper-
heuristics utilising Reinforcement Learning performed poorly in these studies. Better
performance was observed using Simple Random selection with the same move ac-
ceptance criteria. In other words, an ‘intelligent’ mechanism is unable to learn which
heuristic to apply at a given time suggests a complex relationship between selection
method and acceptance criteria that merits further investigation.

Demeester et al. (2012) used Simple Random hyper-heuristics to solve three exam
timetabling datasets. Improving or Equal, Great Deluge, Simulated Annealing, Late
Acceptance Strategy and Steepest Descent Late Acceptance Strategy were used as move
acceptance criteria. The Simple Random - Simulated Annealing hyper-heuristic im-
proved on a number of best results from the literature over the Toronto benchmark
dataset and performed well over a second dataset provided by the authors. Other
hyper-heuristics using Simulated Annealing as an acceptance criterion have been ap-
plied to a number of domains including the multimodal homecare scheduling problem
(Rendl et al., 2012), DNA sequence prediction (Blazewicz et al., 2013), bin packing and
university course timetabling (Bai et al., 2012).

The work in this paper uses many single-point search hyper-heuristics such as
those described here, a large number of other selection mechanisms and move accep-
tance criteria exist in the literature. As a complete description of all selection mecha-
nism and move acceptance criteria is beyond the scope of this paper, a number of sur-
vey papers (Burke et al., 2010a; Ross, 2005; Chakhlevitch and Cowling, 2008) provide a
thorough grounding in this area.

2.2 Hyper-heuristic frameworks

Özcan et al. (2008) describe and compare four different hyper-heuristic frameworks.
FA is the traditional hyper-heuristic framework where a low-level heuristic is selected
and applied and subsequently accepted or rejected based the quality of the move. FB

selects a low-level heuristic from a set of mutational heuristics and hill climbers. If a
mutational heuristic is selected, a hill climber is then applied before a decision whether
to accept or reject the move is made. FC selects and applies a mutational heuristic
LLHi ∈ LLH1, ..., LLHn, where n is the number of mutational heuristics available,
followed by a pre-defined hill climber HC before deciding whether to accept the new
solution. Such a framework is illustrated in Figure 1 and is the framework we will
use in this paper. FD distinctly separates mutational heuristics and hill climbers into
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Figure 1: Single-point search hyper-heuristic framework with local improvement (FC)
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two groups. A mutational heuristic is chosen and applied from the first group and
accepted or rejected based on performance. A hill climber is then chosen from the sec-
ond group and a separate decision is made whether to accept or reject the move. FC

was found to yield better results than the traditional FA framework on a number of
benchmark functions. Hyper-heuristics operating using an FC framework have simi-
lar characteristics to Memetic Algorithms. Memetic Algorithms (Moscato et al., 2004)
combine evolutionary algorithms and local search techniques. A simple Memetic Al-
gorithm will attempt to improve each candidate solution in a population through some
hill climbing mechanism. Memetic Algorithms have previously shown to be success-
ful on a number of different problem domains including the MKP (Chu and Beasley,
1998; Özcan and Basaran, 2009). In this paper we will analyse the effect of introducing
crossover into an FC hyper-heuristic framework.

2.3 Crossover in single-point search hyper-heuristics

Evolutionary algorithms (EAs) are a class of techniques commonly used to solve op-
timisation problems. An EA maintains a population of individuals which are recom-
bined and/or mutated in order to form the next generation of the population. The
intention of this process is to gradually improve the quality of the individuals in the
population. The quality of a solution is measured by a fitness function also known as an
evaluation or cost function. The associated fitness value of an individual is a measure to
distinguish good solutions from bad solutions. The improvement in the population is
achieved through the processes of selection, recombination (crossover) and mutation.
Given two suitably fit individuals (parents), the underlying principle of crossover is
to recombine them to produce new solutions (children) in such a way that the child
solutions inherit the good characteristics of both parents. There are a large number of
crossover operators proposed in the literature for general and specific purposes.

Despite the introduction of crossover operators into modern hyper-heuristic
frameworks such as HyFlex (Burke et al., 2009a) and Hyperion (Swan et al., 2011), lim-
ited research effort has been directed at managing this type of low-level heuristic. In
a recent competition (Ochoa and Hyde, 2011) based on the HyFlex framework, only
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two of the top ten entrants provided a description of a strategy to control arguments
for crossover. Of these two, one simply uses the best seen solution so far as the second
argument and the other, the eventual competition winner (Misir et al., 2012), provides
a detailed explanation of a crossover management scheme. This hyper-heuristic main-
tains a memory of the 5 best solutions seen so far of which a random solution is used
each time a crossover low-level heuristic is chosen. When a new best-of-run solution
is found it replaces one of the 5 solutions in memory chosen at random. More recently
Kheiri and Özcan (2013) used a simple scheme to manage the second arguments for
low-level heuristics, again using the HyFlex framework. A circular queue containing
the best solutions seen so far is maintained to provide second arguments for crossover
operators however the length of the queue is arbitrarily set. A pointer indicates which
solution is to be used each time a crossover heuristic requires a second argument and
is advanced to the next solution in the queue after each application of crossover.

The methods discussed above relate to hyper-heuristics which manage the argu-
ments for crossover operators at the hyper-heuristic level. Cobos et al. (2011) presented
two selection hyper-heuristics operating over a set of metaheuristics including Genetic
Algorithm variants. Rather than the single-point search framework used in (Kheiri and
Özcan, 2013; Misir et al., 2012), the low-level heuristics in this framework operate over
a shared population of solutions. The Genetic Algorithm variants perform crossover
on two individuals selected from this shared population. In this case, the responsibility
for providing the two arguments necessary for crossover is below the domain barrier
and is managed by the low-level heuristics rather than at the hyper-heuristic level.

Maturana et al. (2010) selected a crossover operator to use at each step in evolution-
ary algorithms for SAT. Although the choice of operator is made at the hyper-heuristic
level, the selection of arguments for the crossover operator selected is performed at the
domain level. Using two-parent crossover for all of the operators available, the indi-
viduals are selected using two schemes. In the early experimentation, this selection is
performed randomly between all individuals in the population. A fitness-biased selec-
tion scheme is also used however the details of this mechanism are not explained.

The management of the second input argument required for crossover is not con-
sidered an important part of hyper-heuristic design by many researchers; indeed there
are no standard mechanisms defined for controlling crossover in this context. An open
research question is whether the responsibility of providing arguments for crossover
and other multi-argument operators in selection hyper-heuristics should be the respon-
sibility of the high-level hyper-heuristic or the low-level heuristics operating below the
domain barrier. This is important if it is considered that managing these solutions at
the hyper-heuristic level is in breach of crossing the domain barrier.

3 The Multidimensional Knapsack Problem

The NP-hard (Garey and Johnson, 1979) multidimensional 0-1 knapsack problem
(MKP) (Weingartner and Ness, 1967) is a generalised case of the 0-1 knapsack prob-
lem whose roots can be traced back to capital budgeting (Lorie and Savage, 1955) and
project selection (Petersen, 1967) applications. The MKP is a resource allocation model
whose objective is to select a subset of objects which yield the greatest profit whilst ob-
serving the constraints on knapsack capacities. Each object n carries a different weight
in each knapsack and when selected, consumes resources in each dimension m.

6 Evolutionary Computation Volume x, Number x



Crossover in Selection Hyper-heuristics

Formally the MKP can be stated as:

maximise
n∑

j=1

pjxj (1)

subject to
n∑

j=1

aijxj ≤ bi, i = 1, ...,m (2)

with xj ∈ {0, 1}, j = 1, ..., n (3)

where pj is the profit for selecting item j, aij is the resource consumption of item
j in dimension i, bi is the capacity constraint of each dimension i. Using direct binary
encoding, x1,...,xn is a set of decision variables indicating whether or not object j is in-
cluded in the knapsack. Tavares et al. (2008) investigated five different representations
and analysed their effects on solution quality. This work highlighted that using direct
binary encoding in conjunction with local search or repair operators in both mutation-
based and crossover-based evolutionary algorithms is suitable for the MKP.

A number of methods, both exact and metaheuristic have been used to solve the
MKP and single constraint equivalent. These include Memetic Algorithms (Chu and
Beasley, 1998; Özcan and Basaran, 2009), Tabu Search (Vasquez and Hao, 2001), Sim-
ulated Annealing (Qian and Ding, 2007), Particle Swarm Optimisation (Hembecker
et al., 2007), Kernal Search (Angelelli et al., 2010), Core-based and Tree Search algo-
rithms (Mansini and Speranza, 2012; Boussier et al., 2010; Vimont et al., 2008) and Ge-
netic Algorithms (Khuri et al., 1994). No previous known work uses selection hyper-
heuristics to solve the MKP.

The MKP has become a favoured domain for research into hybrid metaheuris-
tics and mathematical programming methods. Such techniques belong to the emerg-
ing research field of Matheuristics (Maniezzo et al., 2010; Raidl and Puchinger, 2008).
Matheuristics have successfully been applied to a variety of problem domains includ-
ing the MKP (Chu and Beasley, 1998; Puchinger et al., 2006; Raidl, 1998; Vasquez and
Vimont, 2005; Hanafi et al., 2010; Fleszar and Hindi, 2009; Croce and Grosso, 2012;
Hanafi and Wilbaut, 2011) providing some of the best results in the literature. The lin-
ear programming (LP) relaxation of the MKP allows the variables xj from Equation 3 to
take fractional values rather than being restricted to discrete values of 0 and 1 as shown
in Equation 4:

0 ≤ xj ≤ 1, j = 1, ..., n (4)

The LP-relaxed version of the problem is solvable in polynomial time and can pro-
vide useful information about the current problem instance. Indeed, some of the best
results in the literature are from methods combining LP-relaxation and heuristics (Chu
and Beasley, 1998; Vasquez and Vimont, 2005). Chu and Beasley (1998) combined a tra-
ditional Genetic Algorithm with a repair based on the dual variables of the LP-relaxed
problem. Raidl (1998) used a similar method which used the actual values of the LP-
relaxed solution when repairing candidate solutions. Puchinger et al. (2006) explore
the core concept for the MKP. The core concept reduces the problem to a subset of de-
cision variables which are the most difficult to decide whether or not they are in an
optimal solution. The core concept fixes the variables of high and low efficiency and
restricts the optimisation to the difficult to place ‘medium’ efficiency items. A Memetic
Algorithm and guided Variable Neighborhood Search showed better results than when
applied to the original problem directly. Vasquez and Vimont (2005) provide the best
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known results for the largest instances from the benchmarks of Chu and Beasley (1998).
This approach applies Tabu Search to promising areas of the search space derived from
LP-relaxed optima with the improved algorithm fixing additional variables matching
the attributes of a ‘good’ solution.

4 Controlling crossover in selection hyper-heuristics for the
Multidimensional Knapsack Problem

As interest in hyper-heuristic research increases, the use of general purpose hyper-
heuristic frameworks such as HyFlex (Burke et al., 2009a) and Hyperion (Swan et al.,
2011) is growing. Such frameworks often contain crossover low-level heuristics how-
ever the management of these operators it often overlooked, despite being a corner-
stone of evolutionary computation for a considerable period of time. The majority of
the top ten entrants to CHeSC2011 do not provide methods for managing crossover
arguments although such operators are available to these hyper-heuristics. As the def-
inition of hyper-heuristics creates a distinct separation between the high-level search
strategy and the problem domain level, the question of which level should be respon-
sible for managing the arguments required for crossover operators is an open research
issue. The multidimensional knapsack problem (MKP) has been chosen as a testbed
for two reasons. Firstly, as the MKP can be represented as a binary bitstring, a large
number of general low-level heuristics already exist in the literature. Secondly, a large
number of different benchmark datasets exist for this problem. The availability of these
benchmarks allows us to test the generality of the methods we use over a wide variety
of problem instances within a single problem domain.

4.1 Controlling crossover in selection hyper-heuristics

Traditionally crossover is included in population-based approaches, as opposed to the
single-point approaches used in many selection hyper-heuristics. In binary crossover
two candidate solutions are selected from a population and a new solution is gener-
ated containing material from both parents. This causes a problem when considering
where the second candidate solution in single-point search as each operator requires
two parents as input. As it is not obvious where the second candidate solution for
crossover should be managed in a single-point selection hyper-heuristic, we propose
two frameworks. In each case, a list of potential solutions for crossover is maintained.
The general shared framework is shown in Figure 2, with a set of crossover low-level
heuristics LLHi, ..., LLHn operating on set of candidate solutions represented as binary
strings.

The first framework maintains a list at the hyper-heuristic level. Although the
candidate solutions exist below the domain barrier, the hyper-heuristic decides which
solution to use for crossover based on feedback given during the search. This raises a
number of questions including: which information should be passed back to the hyper-
heuristic, how should this list be maintained and how long should this list be? The
interaction between the hyper-heuristic and the solutions is depicted by arrow (a) in
Figure 2.

The second framework allows the low-level heuristics to manage the list of sec-
ond solutions for crossover directly. Again this poses similar questions regarding the
size of such a list and how it should be initialised and maintained. This framework is
also shown in Figure 2, with the interaction between the low-level heuristics and the
solutions depicted by arrow (b). Figure 2 should be viewed as an extension to the FC

framework presented in Figure 1.

8 Evolutionary Computation Volume x, Number x



Crossover in Selection Hyper-heuristics

Figure 2: A general framework for controlling crossover with hyper-heuristic control
shown by arrow (a) and low-level control shown by arrow (b)
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4.1.1 Controlling crossover at the hyper-heuristic level
Candidate solutions for use as input arguments for crossover operators can be con-
trolled at the hyper-heuristic level. In Memory Crossover, a list of solutions which were
the best-of-run when found is maintained, from which second parents are chosen for
crossover operators. Initially this list is populated randomly. Each time a new best-of-
run solution is found it replaces the worst existing solution in the list. This method is
similar to the crossover control strategies successfully used by (Misir et al., 2012) and
(Kheiri and Özcan, 2013). A method of choosing a solution to use from this memory
is needed. Any evolutionary algorithm parent selection method can be used for this,
we preferred using tournament selection. In tournament selection, a subset of solutions
of a given tournament size is chosen from a list. These solutions are paired up and the
highest quality solution in a pair is kept and the other discarded. The pairing process
continues until a single solution is left. This method of crossover control is similar
to steady-state Genetic Algorithms which select and update a population in much the
same way.

In order to see if any benefit is gained by controlling crossover in this way, two
other methods of choosing the second parent are also tested. Random Crossover, also
known as Headless Chicken Crossover (Jones, 1995), takes the two parents to be the
current solution in the hyper-heuristic and a randomly generated bitstring. This does
not fit in with the original ethos of crossover which is to preserve and exploit the good
characteristics of suitably fit parents. In this case, the list of potential solutions for
crossover is a single random solution. In addition, each hyper-heuristic is also tested
with crossover low-level heuristics omitted completely

4.1.2 Controlling crossover at the domain-specific level
It is also possible to maintain a list of candidate solutions at the domain-specific level.
Here, problem-specific heuristics are use to populate a static list of candidate solutions
generated based on problem domain-specific knowledge. One of these solutions is then
used as the second parent during a crossover operation. The list is static since we expect
the solutions in the list to contain the ‘building blocks’ of high quality solutions. This
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is implemented as a queue of solutions whereby each time a solution is required for
crossover the solution at the head of the queue is taken. This solution will be used in
the crossover operation before being placed at the tail of the queue. Some procedure
must be defined to initialise this list.

A number of methods exist in the literature to initialise solutions for the MKP. Got-
tlieb (2000) compared a number of initialisation methods for evolutionary algorithms
solving the MKP. The two best initialisation routines of this study were C* and R*. C*
is a variation of the method of Chu and Beasley (1998) where starting with an empty
solution the algorithm attempts to add each item in a random order. R* is based on a
method originally proposed by Raidl (1998) and uses the solutions to the LP-relaxed
version of each problem to construct each candidate solution. A potential drawback
of both of these approaches is that as only feasible solutions can be generated, there
are a large number of infeasible solutions close to the optimal solutions which are not
considered to be included.

Here a new initialisation method allowing infeasible solutions jqdInit is proposed.
This method is shown in Algorithm 1. Given a solution S ∈ {0, 1}n starting with a so-
lution with no items selected, each item j is considered sequentially from left to right.
An item is included in the solution with probability equal to the items value in the LP-
relaxed solution irrespective of whether a feasible solution is obtained or not. Pseudo-
random numbers Rj (0 ≤ Rj < 1) are used in this step. In terms of time complexity, all
three initialisation methods must visit every variable in n once and so are asymptoti-
cally equivalent running in O(n) time.

Algorithm 1 Algorithm to generate MKP solutions allowing infeasibility (jqdInit)

1: Let xLP
k represent the LP-relaxed solution of item k

2: Set Sj ← 0, ∀j ∈ 1, ..., n
3: for j = 1 to n do
4: if xLP

j ≥ Rj then
5: Sj ← 1
6: end if
7: end for
8: return S

4.2 Hyper-heuristic components

The selection methods and acceptance criteria used in this paper are introduced in Sec-
tion 4.2.1 and Section 4.2.2 respectively.

4.2.1 Selection mechanisms
Simple Random (SR) randomly selects a heuristic from the set of low-level heuristics
at each point in the search.

The Choice Function (CF) is a more elegant selection method which scores heuris-
tics based on a combination of three different measures and applies the heuristic with
the highest rank. The first measure (f1) records the previous performance of each indi-
vidual heuristic, with more recent executions carrying larger weight. The value of f1
for each low-level heuristic h1, h2, ..., hj is calculated as:

f1(hj) =
∑
n

αn−1 In(hj)

Tn(hj)
(5)
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where In(hj) is the change in evaluation function, Tn(hj) is the time spent calling the
heuristic for each previous invocation n of heuristic hj and α is a value between 0 and
1 giving greater importance to recent performance.

The second (f2) measures previous performance following the last low-level
heuristic chosen in an attempt to capture any pair-wise dependencies between heuris-
tics. Values for f2 are calculated in a similar fashion for each heuristic hj when invoked
immediately following hk as shown in Equation 2:

f2(hj , hk) =
∑
n

βn−1 In(hk, hj)

Tn(hk, hj)
(6)

where In(hk, hj) is the change in evaluation function, Tn(hk, hj) is the time spent call-
ing the heuristic for each previous invocation n of heuristic hj following hk and β is a
value between 0 and 1 giving greater importance to recent performance.

The final measure (f3) is simply the time elapsed (τ(hj)) since the heuristic was last
executed, included to add an element of diversity to the low-level heuristics chosen.

f3(hj) = τ(hj) (7)

As mentioned previously, a score for each heuristic is given in order to rank heuris-
tics. This score is calculated as choice function F :

F (hj) = αf1(hj) + βf2(hk, hj) + δf3(hj) (8)

where the previously defined α and β weight f1 and f2 respectively to provide suffi-
cient intensification of the search process and δ weights f3 to provide sufficient diver-
sification.

Reinforcement Learning (RL) assigns a utility weight to each low-level heuristic.
If a heuristic improves a solution, this weight is increased by an amount defined by
the chosen adaptation function. Conversely, if a heuristic does not improve a solution
this weight is decreased accordingly. Heuristic selection at the next step of the search is
then based on these values, choosing randomly between the heuristics with the largest
utility weight.

4.2.2 Move acceptance criteria
Only Improving (OI) is a simple move acceptance criterion which accepts any improv-
ing move made by application of a low-level heuristic chosen by the selection method.

Simulated Annealing (SA) (Kirkpatrick et al., 1983) is a generic metaheuristic
technique for optimisation often used as an acceptance criterion in hyper-heuristics.
In Simulated Annealing, a move resulting in a solution of equal or greater quality than
the previous move is accepted. If a move yields a poorer solution, the move is accepted
probabilistically based on the decrease in solution quality and the decreasing temper-
ature over time. The acceptable level of worsening solutions will decrease as the tem-
perature decreases and the probability of moving to a worse solution will reduce over
time. This probability p is given as:

p =
1

1 + e−∆/T
(9)

where ∆ is the change in fitness function value and T is the current temperature value.
Late Acceptance Strategy (LAS) Burke and Bykov (2008) promotes a general trend

of improvement throughout a search process by comparing a candidate solution to one
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generated a specified number of steps before kept in memory. If the current solution
is better than the previous solution in memory it replaces that solution and the next
oldest solution is used for the next comparison. If the current solution is worse than
the old solution, the last previous accepted solution replaces the old solution.

4.3 Low-level heuristics

A set of standard low-level heuristics from the literature have been implemented for
our hyper-heuristics to operate on. In the case of a crossover operator, two children are
generated each time a low-level heuristic of this type is selected with the best solution
kept for consideration by the move acceptance criteria. The low-level heuristics used
are as follows:

One-point Crossover (1PX) (Goldberg, 1989), given two candidate solutions, se-
lects a single crossover point at random and exchanges the genetic data that appears
on one side of this point between the two individuals.

Two-point Crossover (2PX) (Goldberg, 1989) is similar to 1PX except two crossover
sites are given and the genetic material that is contained within these two sites is ex-
changed.

Uniform Crossover (UX) (Syswerda, 1989) considers each position within two cho-
sen candidate solutions and exchanges each bit with a given exchange probability pe,
set at 0.5.

Swap Mutation (SWP) (Özcan et al., 2006) selects two distinct substrings of a can-
didate and exchanges their position to generate a new solution. The length of these
substrings is set to the number of variables n/10.

Parameterised Mutation (PARAxx) inverts a specified number of bits within a
string. This is essentially the bit string mutation of Koza (1992) however rather than
relying on mutational probabilities, parameterised mutation guarantees the number of
bits that are mutated during the operation. In these experiments, three variations of
this operator are implemented to perform light, medium and heavy mutation at rates
of 10% (PARA10), 25% (PARA25) and 50% (PARA50) respectively.

Hill climbing heuristic A number of papers in the literature (Chu and Beasley,
1998; Pirkul, 1987; Magazine and Oguz, 1984) make use of an add and (or) drop phase to
either construct, improve or repair solutions to the MKP. These techniques more often
than not use a utility-weight value to sort objects in order of their relative efficiency. Chu
and Beasley (1998) adopted the surrogate duality suggested by Pirkul (1987) multiplying
each weight by a relevance value r:

utilj =
pj∑m

i=1 riwij
(10)

Relevance values ri are taken to be the dual variables of each dimension i in the solu-
tion to the LP-relaxation of the MKP. Using these relevance values a simple local search
operator for the MKP can be implemented. When given an infeasible solution, drop
items from the knapsack in order of increasing utility-weight until a feasible solution is
found. When a feasible solution is obtained, attempt to add items in order of decreas-
ing utility-weight until a feasible solution cannot be found by adding another of the
unselected items. Puchinger et al. (2006) tested a number of efficiency methods and the
relevance weights of Chu and Beasley (1998) based on dual variable values is observed
to be the best efficiency measure for the MKP. This operator is applied as a local search
mechanism after each crossover or mutational operator is applied to repair and locally
improve solutions as required by the FC selection hyper-heuristic framework.

12 Evolutionary Computation Volume x, Number x



Crossover in Selection Hyper-heuristics

4.4 Experimental data and test framework definitions

The MKP has been chosen as a suitable test domain as a number of different benchmark
libraries are available with varying properties. This means different types of problems
can be tested without the need to change the problem domain. SAC-94 is a standard
benchmark library of MKP instances from a number of papers in the literature often
representing real-world examples. These instances are generally small with m ranging
from 2 to 30 and n ranging from 10 to 105 with optimal solutions known for all. Chu
and Beasley (1998) noted that the SAC-94 instances are too small to draw meaningful
conclusions of an algorithms performance from, leading to the proposal of the ORLib
instances. This is widely used benchmark library in the literature and contains 270
instances containing n ∈ {100, 250, 500} variables, m ∈ {5, 10, 30} dimensions and
tightness ratio ∈ {0.25, 0.50, 0.75}. As optimal solutions are unknown for some of
these instances, performance is measured using the %-gap distance from the upper
bound provided by the solution to the LP-relaxed problem calculated as:

100 ∗ LPopt−SolutionFound
LPopt (11)

A third benchmark set was provided by Glover and Kochenberger (nd) including
much larger instances with n between 100 and 2500 and m between 15 and 100. Again
no optimal solutions are known so performance is measured in terms of %-gap. All in-
stances are available in a unified format from http://www.cs.nott.ac.uk/˜jqd/
mkp/index.html.

A run terminates after 106 fitness evaluations for each problem instance in order to
directly compare results with the techniques in the literature (Chu and Beasley, 1998;
Özcan and Basaran, 2009). Initial solutions are set as a single random binary string
of length n, where n is the total number of objects associated with each instance. For
tests using the SAC-94 benchmark set, a single run of each hyper-heuristic is sufficient
as these instances are extremely small. In the case of the OR-Lib benchmark each set
of 10 instances is taken from same distribution, as a result taking the average %-gap
over these 10 instances for each of the 27 sets effectively shows the performance of
10 runs of each hyper-heuristic. For the larger GK instances, each of the experiments
are repeated 10 times to account for the stochastic nature of the hyper-heuristics with
average performance over 10 runs reported. A list length of 500 is used in the Late Ac-
ceptance Strategy-based hyper-heuristics as suggested by previous approaches (Burke
and Bykov, 2008; Özcan et al., 2009). Simulated Annealing calculates the probability p
of accepting a solution as defined in Section 4.2.2. The initial value of T is set to the dif-
ference between the initial solution and the solution obtained by solving the LP-relaxed
version of the problem. During the search process T is reduced to 0 in a linear fashion
proportional to the number of fitness evaluations left. All hyper-heuristic experiments
were carried out on an Intel Core 2 Duo 3 GHz CPU with 2 GB memory.

4.5 Fitness Function

As discussed previously a measure is needed to assess the quality of each solution.
There are a number of options when choosing a fitness function for the MKP. In this
work the following fitness function from Özcan and Basaran (2009) is used:

profit− o ∗ s ∗ (maxProfit+ 1) (12)

Where profit is the profit gained from the items currently selected for inclusion, o is
the number of overfilled knapsacks, s is the number of selected items and maxProfit is
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Table 1: Average %-gap over ORLib subset for each memory size

Memory Size
Instance Size (n) 0.10*n 0.25*n 0.50*n

OR30x100-0.75 1.03 1.05 1.10
OR30x250-0.75 0.57 0.56 0.59
OR30x500-0.75 0.77 0.73 0.77

Average 0.79 0.78 0.82

the largest profit value of any of the items. This fitness function will always be positive
for a feasible solution and negative for an infeasible solution.

5 Parameter tuning

5.1 Finding a suitable memory size for Memory Crossover

Preliminary experiments are carried out in order to ascertain an appropriate size for the
memory to be used in the Memory Crossover framework. As the ORLib benchmark set
contains instances with n ∈ {100, 250, 500} variables, the best memory size may be
different for different instance sizes. A subset of 30 ORLib instances where m = 30
and the tightness ratio = 0.75 for each object n ∈ {100, 250, 500} is used. A single
run of a Simple Random - Only Improving hyper-heuristic is performed on each set
of instances with each memory size and the performance in terms of %-gap reported.
Three different memory lengths are tested, with length = {0.1 ∗ n, 0.25 ∗ n, 0.5 ∗ n}. In
all cases tournament selection with tournament size = 2 is used to select which solution
to choose from the memory when a second solution is required for crossover. The
complete set of 7 low-level heuristics are available to the hyper-heuristic. The results in
terms of average %-gap are presented in Table 1.

These results do not show a clear distinction between using different memory
lengths although the two smaller memory sizes perform slightly better than 0.50 ∗ n.
There is also no clear correlation between the size of memory used and the size of the
instance being solved. In order to assess statistical significance in this paper an inde-
pendent student’s t-test within a 95% confidence interval is performed for a given set
of instances. In this case there is no statistically significant difference in performance
between each of the three memory lengths. In light of this, memory size 0.1 ∗ n is
used for the following experiments. This will ensure poor quality solutions which are
found early in the search are removed from the list quickly in favour of better quality
solutions.

5.2 Finding a suitable initialisation method for the list of solutions

The three initialisation techniques described in Section 4.1.2 (C*, R* and jqdInit) are
tested on a subset of 90 instances of ORLib where m ∈ {5} and n ∈ {100, 250, 500} using
Simple Random - Only Improving. Again the hyper-heuristic is allowed to run for 106

fitness evaluations on each instance. Table 2 details the average of the best solution in
the list for each initialisation method and Table 3 shows the average solution quality
of all solutions in the list over each set of 10 instances. Standard deviations are given
as subscripts. The average best solution and average list quality when using R* is far
superior to C*. This is unsurprising as R* was designed to generate solutions which are
closer to the optimal than those generated with C*. Again an independent student’s
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t-test within a 95% confidence interval is performed to assess statistical significance.
The best solutions produced by jqdInit are also superior to C* on average with this
difference being statistically significant in all cases except for OR5x100-0.25, for some
instances in this dataset jqdInit would not produce any feasible solutions. The best
solutions produced by jqdInit only slightly poorer on average than those produced by
R*, this difference is only statistically significant in the case of OR5x100-0.25. As jqdInit
allows infeasible solutions, the average list quality is very poor in terms of fitness score
and are statistically significantly worse quality than both C* and R*. As these solutions
may still contain the ‘building blocks’ of good quality solution this does not affect the
final solution quality as seen in Table 4. This suggests that infeasible solutions can
help the search process and highlights the importance of including infeasible solutions
when solving the MKP as optimal solutions are known to be close to the boundary of
feasibility.

Table 2: Average best solutions for C*, R* and jqdInit initialisation methods over each
set of 10 instances in the 90 ORLib instances with m = 5

Instance set C* R* jqdInit
OR5x100-0.25 19105 2.31 23948 0.37 16325 46.57

OR5x100-0.50 37136 1.91 43015 0.26 42742 0.69

OR5x100-0.75 55909 0.86 60158 0.23 60082 0.33

OR5x250-0.25 47840 1.19 60137 0.16 59902 0.32

OR5x250-0.50 94016 0.51 109080 0.10 108653 0.24

OR5x250-0.75 140632 0.44 151344 0.06 151255 0.10

OR5x500-0.25 94431 0.86 120392 0.05 119937 0.27

OR5x500-0.50 188748 0.65 219323 0.03 218962 0.11

OR5x500-0.75 280437 0.35 302185 0.02 301870 0.05

Table 3: Average list quality for C*, R* and jqdInit initialisation methods over each set
of 10 instances in the 90 ORLib instances with m = 5

Instance set C* R* jqdInit
OR5x100-0.25 17781 1.88 23545 0.29 -64285 63.77

OR5x100-0.50 35553 1.31 42575 0.38 -97229 65.86

OR5x100-0.75 54633 0.75 59777 0.22 -184816 73.04

OR5x250-0.25 45045 1.07 59739 0.15 -181532 53.70

OR5x250-0.50 90814 0.39 108657 0.11 -284952 73.26

OR5x250-0.75 137421 0.32 150905 0.08 -436705 81.19

OR5x500-0.25 90016 0.75 119951 0.06 -348724 60.51

OR5x500-0.50 183289 0.26 218853 0.03 -620003 52.80

OR5x500-0.75 275380 0.19 301674 0.01 -918566 62.05

Table 4 shows the results in terms of %-gap as the average over 10 instances for
each instance set with standard deviations included as subscripts. Interestingly on
these larger instances C* is the poorest performing initialisation method with an aver-
age %-gap of 0.67. Using jqdInit yields the best results over these instances achieving
an average %-gap of 0.39, slightly outperforming R* which has an average %-gap of
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Table 4: Performance of initialisation methods over the 90 ORLib instances with m = 5

Instance set C* R* jqdInit
OR5x100-0.25 1.31 0.17 1.48 0.26 1.25 0.23

OR5x100-0.50 0.63 0.10 0.63 0.16 0.62 0.12

OR5x100-0.75 0.39 0.07 0.38 0.11 0.42 0.08

OR5x250-0.25 0.70 0.15 0.51 0.11 0.45 0.10

OR5x250-0.50 0.37 0.09 0.26 0.07 0.22 0.04

OR5x250-0.75 0.25 0.06 0.15 0.04 0.15 0.04

OR5x500-0.25 0.70 0.12 0.25 0.05 0.24 0.04

OR5x500-0.50 1.19 0.32 0.12 0.03 0.13 0.03

OR5x500-0.75 0.50 0.18 0.08 0.02 0.07 0.01

Average 0.67 0.14 0.43 0.09 0.39 0.08

0.43. Despite both the average and best solutions produced by the R* initialisation be-
ing better than the jqdInit in all of the datasets tested, the new initialisation method
leads to better results overall after a full hyper-heuristic run.

The key difference between the previous methods and the proposed initialisation
method is the tolerance of infeasible solutions. These solutions may still contain the
‘building blocks’ of good quality solutions. The final solution quality does not seem to
be adversely affected as a result of this as seen in Table 4. This suggests that infeasible
solutions can help the search process when solving the MKP, particularly as optimal so-
lutions are known to be close to the boundary of feasibility. As jqdInit is competitive
with the two existing methods from the literature it is used during all further experi-
mentation.

6 Experiments

Experiments are performed controlling crossover at both the hyper-heuristic level and
the domain level. In each case, the hyper-heuristics are initially tuned and tested over
a standard benchmark set before their general applicability is assessed on two further
datasets.

6.1 Controlling crossover at the hyper-heuristic level for the MKP

As described in Section 4.1 crossover can be controlled at the hyper-heuristic level with
no domain-specific knowledge. When a second individual is required for crossover it is
selected from a list of potential solutions maintained by the hyper-heuristic. To assess
the impact of controlling crossover at the hyper-heuristic level in this framework, the
experiments are performed for three separate test cases: with Random Crossover, with
Memory Crossover and No Crossover. Table 5 shows the performance of each hyper-
heuristic over all ORLib instances using each of the crossover management strategies
with standard deviations included as subscript. In this table the acronyms introduced
in Section 4.2 are used for each selection method-acceptance criteria combination.

The best performing hyper-heuristic was Choice Function - Only Improving with
No Crossover, with the lowest average %-gap of 1.07 over all ORLib instances. Perform-
ing a one way ANOVA test at a 95% confidence level confirms that there is statistically
significant difference between the performance of the 27 hyper-heuristics. Using Only
Improving acceptance criterion is clearly superior on average to both Late Acceptance
Strategy and Simulated Annealing in this framework when no crossover or Random
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Table 5: Average %-gap over all ORLib instances for each hyper-heuristic with Random
Crossover, Memory Crossover and No Crossover

Hyper- Random Memory No
heuristic Crossover Crossover Crossover
SR-OI 1.16 0.84 1.12 0.81 1.11 0.82

CF-OI 1.18 0.83 1.19 0.86 1.07 0.80

RL-OI 1.16 0.81 1.14 0.84 1.10 0.84

SR-LAS 2.79 2.12 1.20 0.93 2.54 1.84

CF-LAS 2.86 2.19 1.23 0.97 2.72 2.01

RL-LAS 2.67 1.97 1.20 0.92 2.48 1.77

SR-SA 2.35 1.33 1.21 0.85 2.10 1.18

CF-SA 2.30 1.29 1.19 0.82 2.10 1.19

RL-SA 2.21 1.22 1.21 0.86 2.04 1.10

Crossover is used. The results of a post-hoc Tukey’s HSD test confirm that these differ-
ences are significant with no statistically significant difference between the techniques
sharing a common acceptance criterion. In the case of Only Improving acceptance, all
three crossover types perform similarly with no statistically significant difference be-
tween results. When using Late Acceptance Strategy and Simulated Annealing as ac-
ceptance criteria, the performance is significantly better if Memory Crossover is used.
The results obtained using these hyper-heuristics (Late Acceptance Strategy and Sim-
ulated Annealing with Memory Crossover) do not vary significantly from the hyper-
heuristics using Only Improving acceptance criterion.

Overall the %-gaps of the hyper-heuristics with No Crossover are lower than those
that use Random Crossover suggesting that using crossover as a mutation operator
in this way does not benefit the search. This supports previous assertions that the
search space of heuristics can be reduced in an attempt to improve performance. Özcan
and Basaran (2009) noted that reducing the number of memes can improve the per-
formance of a Memetic Algorithm solving the MKP, Chakhlevitch and Cowling (2005)
also showed similar improvement when reducing the number of low-level heuristics in
a hyper-heuristic framework operating on a scheduling problem. For each acceptance
criteria there is little difference in the results obtained by using a different selection
mechanism. However, there is significant difference between the results obtained us-
ing different acceptance criteria. This suggests that the acceptance criteria used has a
more significant impact on the performance of a hyper-heuristic than selection mecha-
nism using this heuristic set. This behaviour was also observed by Özcan et al. (2008)
where a number of hyper-heuristics were tested over a set of benchmark functions.

Figure 3 shows the utilisation rates of each low-level heuristic for each of the
Choice Function - Only Improving hyper-heuristics with Random Crossover, Memory
Crossover and No Crossover (the best performing hyper-heuristic on average). Utility
rate indicates the percentage usage of a low-level heuristic during a run. Figure 3(a)
shows utility rate of each heuristic considering only moves which improve on the cur-
rent best-of-run solution. Figure 3(b) shows the average utility rate of each heuristic
considering all moves (i.e. how many times each heuristic was chosen during the search
process). These utility rates are average values over a single run of each instance over
all 270 instances in ORLib. In all cases there are clearly stronger low-level heuristics
on average however this is not reflected in the amount of times each heuristic is se-
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Figure 3: Average low-level heuristic utilisation for Choice Function - Only Improving
hyper-heuristics with Random, Memory and No Crossover over all instances in ORLib
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(b) Utility rate over all moves

Random Memory None
0

10

20

30

40

50

60

70

80

90

100

U
til

ity
 r

at
e 

ov
er

 a
ll 

m
ov

es

 

 
PARA10
PARA25
PARA50
SWP
UX
ONEPX
TWOPX

Table 6: Average %-gap over all ORLib instances for each hyper-heuristic using a list of
solutions to provide the second child for crossover managed at the domain level

Acceptance Criteria
Only Late Acceptance Simulated

Selection Mechanism Improving Strategy Annealing
Simple Random 0.74 0.76 0.71 0.74 0.71 0.76

Choice Function 0.75 0.78 0.70 0.74 0.71 0.76

Reinforcement Learning 0.73 0.74 0.71 0.75 0.70 0.76

lected overall. Due to the nature of the Choice Function some low-level heuristics will
be selected at a higher rate than others at certain points of the search, usually through
repeated invocation. Although in percentage terms, this is roughly uniform over the
full benchmark dataset it is not the case that low-level heuristic selection is uniform
for a particular instance. Moreover these figures show that all of the low-level heuris-
tics available are capable of contributing to the improvement of a solution at a given
stage for at least some of the instances. This provides a justification for their continued
presence in the low-level heuristic set. Similar behaviour was observed for all hyper-
heuristics tested.

6.2 Controlling crossover at the domain level for the MKP

As discussed in Section 3 the constraints of the 0-1 multidimensional knapsack problem
can be relaxed to take fractional values as shown in Equation 4 yielding the related
LP-relaxed version of the problem. It is widely accepted that the solutions to the LP-
relaxed version of the MKP can provide good approximations for the 0-1 version of
the problem. Moreover, the framework developed for this work already performs the
computational effort required to obtain the solutions to the LP-relaxed problem.

Using the initialisation method for the list of solutions obtained in Section 5.2, the
same nine hyper-heuristics are again applied to ORLib using the same parameters as
before. Table 6 shows their performance in terms of %-gap over a single run of each
instance of ORLib.
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The best average %-gap over all ORLib instances is 0.70 and is obtained by Choice
Function - Late Acceptance Strategy and Reinforcement Learning - Simulated Anneal-
ing. An independent student’s t-test within a 95% confidence interval shows no differ-
ence in statistical significance between these two hyper-heuristics. Interestingly, those
hyper-heuristics with Late Acceptance Strategy and Simulated Annealing acceptance
outperform those with Only Improving acceptance. This is in contrast to the previous
hyper-heuristics which control crossover at the hyper-heuristic level where Only Im-
proving acceptance performed best. As with the previous experiments, the acceptance
criteria used has a greater effect on the quality of solutions obtained than selection
method. Although there are two ‘best’ performing hyper-heuristics within this frame-
work we will only compare one hyper-heuristic from each framework in the following
section. We will arbitrarily take the Choice Function - Late Acceptance Strategy to com-
pare to the best performing hyper-heuristic from Section 6.1 and existing methods from
the literature.

6.3 Comparison of hyper-heuristics managing crossover at the hyper-heuristic
level and the domain level

Table 7 shows detailed results for each instance type for Choice Function - Late Ac-
ceptance Strategy with crossover controlled at the domain-specific level and the best
performing hyper-heuristic from Section 6.1 (Choice Function - Only Improving with
No Crossover) over the ORLib benchmarks. When comparing the performance of the
two hyper-heuristics, controlling crossover at the domain-specific level results in better
performance on average for 26 of the 27 sets of instances. This difference is statistically
significant in 22 of these cases.

The general applicability of the best performing hyper-heuristic with crossover
controlled at the domain-specific level is tested by applying it to two further bench-
mark sets, each with differing properties. SAC-94 is a set of benchmark instances from
classic papers in the literature using mostly real-world data as described in Section 4.4
where optimal solutions are known for each problem. It is difficult to perform a direct
comparison with techniques over these instances due to the difference in termination
criteria and running times. For example, some methods in the literature provide the
best results over 30 runs or more. If an algorithm finds the optimal solution in at least
5% of trial runs for a given instance it is deemed a successful run. The success rate
over each dataset is therefore the number of successful runs divided by the number of
problems in the set. Choice Function - Late Acceptance Strategy performs a single run
on each instance as before. Table 8(a) shows the performance of the hyper-heuristic
in terms of success rate over each set of instances in SAC-94. Choice Function - Late
Acceptance Strategy with crossover controlled at the domain-specific level performs at
least as well as Choice Function - Only Improving with No Crossover in every group
of instances in this set.

The final benchmark set on which to test the hyper-heuristics is the set of 11 large
instances provided by Glover and Kochenberger Glover and Kochenberger (nd). The
results for both hyper-heuristics are given as the average of 10 runs on each instance
in Table 8(b). The LP-relaxed optimal solutions are again used as a basis to derive %-
gap with standard deviations for each instance included as subscript. Choice Function
- Only Improving with No Crossover performs relatively badly on this larger set of
instances obtaining an average %-gap of 0.92 compared to 0.45 obtained by the Choice
Function - Late Acceptance Strategy hyper-heuristic with crossover controlled at the
domain-specific level.
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Table 7: Detailed performance of Choice Function - Late Acceptance Strategy with
crossover managed at domain level and Choice Function - Only Improving with No
Crossover on ORLib instances based on average %-gap )

Problem Set CF-LAS CF-OINC

OR5x100-0.25 1.16 0.20 1.22 0.25

OR5x100-0.50 0.53 0.08 0.59 0.16

OR5x100-0.75 0.40 0.07 0.39 0.08

OR5x250-0.25 0.42 0.04 0.51 0.10

OR5x250-0.50 0.20 0.03 0.42 0.19

OR5x250-0.75 0.13 0.01 0.21 0.04

OR5x500-0.25 0.19 0.03 0.60 0.13

OR5x500-0.50 0.10 0.03 0.85 0.13

OR5x500-0.75 0.06 0.01 0.32 0.09

OR10x100-0.25 2.00 0.22 2.08 0.37

OR10x100-0.50 1.02 0.19 1.16 0.15

OR10x100-0.75 0.58 0.08 0.66 0.06

OR10x250-0.25 0.83 0.09 1.02 0.18

OR10x250-0.50 0.39 0.06 0.58 0.11

OR10x250-0.75 0.23 0.03 0.41 0.06

OR10x500-0.25 0.40 0.06 1.10 0.35

OR10x500-0.50 0.18 0.02 1.20 0.31

OR10x500-0.75 0.12 0.01 0.61 0.16

OR30x100-0.25 3.45 0.46 3.91 0.57

OR30x100-0.50 1.56 0.26 1.85 0.27

OR30x100-0.75 0.92 0.08 1.04 0.20

OR30x250-0.25 1.55 0.17 2.12 0.25

OR30x250-0.50 0.71 0.08 1.08 0.14

OR30x250-0.75 0.39 0.04 0.52 0.08

OR30x500-0.25 0.92 0.10 1.99 0.27

OR30x500-0.50 0.39 0.05 1.66 0.10

OR30x500-0.75 0.23 0.02 0.82 0.15

Average 0.70 0.09 1.07 0.18
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Table 8: (a) Success rate over all SAC-94 instances and (b) %-gap over Glover and
Kochenberger instances for Choice Function - Late Acceptance Strategy with domain
level crossover and Choice Function - Only Improving with No Crossover

(a)

Dataset Count CF-LAS CF-OINC

hp 2 0.00 0.00
pb 6 0.67 0.50
pet 6 0.50 0.34
sento 2 1.00 1.00
weing 8 0.63 0.63
weish 30 1.00 0.64

(b)

Instance CF-LAS CF-OINC

GK01 0.57 1.49 1.33 6.82

GK02 0.81 3.86 1.60 9.66

GK03 0.63 3.10 1.64 18.25

GK04 0.91 3.77 1.84 18.18

GK05 0.45 3.00 0.83 13.61

GK06 0.76 5.02 1.54 23.00

GK07 0.19 6.48 0.33 18.81

GK08 0.33 5.68 0.55 9.57

GK09 0.07 7.47 0.10 12.95

GK10 0.14 8.68 0.16 14.07

GK11 0.13 12.34 0.15 15.10

Average 0.455.54 0.9214.55

6.3.1 Comparison to previous approaches

Table 9 shows the results of the best hyper-heuristic presented in this paper, Choice
Function - Late Acceptance Strategy with crossover controlled at the domain-specific
level compared to a number of techniques from the literature. CPLEX (IBM, 2013) is a
general-purpose mixed-integer programming (MIP) package used to solve linear opti-
misation problems. Chu and Beasley (1998) provided results using CPLEX 4.0 over a
set of MKP benchmark instances. Here we include results for CPLEX 12.5 on the in-
stances introduced by Chu and Beasley (1998), SAC-94 and the larger benchmarks of
Glover and Kochenberger (nd) to compare with our methods and as a benchmark for
comparison for future researchers in this area. For each instance, CPLEX 12.5 is allowed
to run for a maximum of 1800 CPU seconds with a maximum working memory of 8GB.

From this table it can be seen that the hyper-heuristics presented in this paper
perform well in comparison to many previous approaches. The use of 106 fitness eval-
uations as a termination criteria allows direct comparison to previous metaheuristic
approaches (Raidl, 1998; Chu and Beasley, 1998; Özcan and Basaran, 2009; Hinterding,
1994). The %-gap of 0.70 obtained by the hyper-heuristic is better than the previous
metaheuristic methods of Özcan and Basaran (2009) and Hinterding (1994) and a num-
ber of existing heuristic methods. The best %-gap obtained by a metaheuristic is by the
Memetic Algorithm of Chu and Beasley (1998) and the variant of their work provided
by Raidl (1998).

The currently best known results in literature for the ORLib instances were ob-
tained by Vasquez and Vimont (2005). Results from this study are only available for the
largest instances of ORLib where n = 500. Results for these instances obtained using
Choice Function - Late Acceptance Strategy are compared with the results of Vasquez
and Vimont (2005) in Table 10.

The results of Choice Function - Late Acceptance Strategy are obtained in a fraction
of the time taken by Vasquez and Vimont (2005) and are less than 0.15% closer to the
LP-relaxed optimum in absolute terms. Using an independent student’s t-test within
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Table 9: Average %-gap of other (meta)heuristics and CPLEX over all instances in OR-
Lib

Type Reference %-gap
MIP CPLEX 12.5 0.52
MA Raidl (1998) 0.53
MA Chu and Beasley (1998) 0.54
Hyper-heuristic CF-LAS 0.70
MA Özcan and Basaran (2009) 0.92
Permutation GA Hinterding (1994); Raidl (1998) 1.30
Heuristic Pirkul (1987) 1.37
Heuristic Freville and Plateau (1994) 1.91
Heuristic Qian and Ding (2007) 2.28
MIP Chu and Beasley (1998) (CPLEX 4.0) 3.14
Heuristic Magazine and Oguz (1984) 7.69

Table 10: Performance comparison with best metaheuristic technique in the literature
over ORLib instances with n = 500 objects.

Vasquez and Vimont (2005) CF-LAS
Instance %-gap t[s]* %-gap t[s]
OR5x500-0.25 0.07 0.01 14651* 0.19 0.03 11
OR5x500-0.50 0.04 0.05 6133* 0.10 0.03 16
OR5x500-0.75 0.02 0.00 7680* 0.06 0.01 22
OR10x500-0.25 0.17 0.02 10791* 0.40 0.06 14
OR10x500-0.50 0.08 0.00 8128* 0.18 0.02 21
OR10x500-0.75 0.06 0.01 6530* 0.12 0.01 29
OR30x500-0.25 0.48 0.05 30010* 0.92 0.10 23
OR30x500-0.50 0.21 0.02 35006* 0.39 0.05 39
OR30x500-0.75 0.14 0.01 45240* 0.23 0.02 55
Average 0.14 0.02 18241* 0.29 0.03 26
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Table 11: Success rate of techniques from the literature over a subset SAC-94 instances

Technique Reference sento pet weing
MIP CPLEX 12.5 1.00 1.00 1.00
Memetic Algorithm Chu and Beasley (1998) 1.00 1.00 1.00
Memetic Algorithm Cotta and Troya (1998) 1.00 1.00 1.00
Multimeme Memetic Algorithm Özcan and Basaran (2009) 1.00 0.80 0.50
Hyper-heuristic CF-LAS 1.00 0.60 0.50
Attribute Grammar Cleary and O’Neill (2005) 0.50 0.80 0.50
Genetic Algorithm Khuri et al. (1994) 0.50 0.60 0.50
Particle Swarm Optimisation Hembecker et al. (2007) 0.00 - 0.50
Grammatical Evolution Cleary and O’Neill (2005) 0.00 0.20 0.00

a 95% confidence interval, there is no statistically significant difference in performance
between Choice Function - Late Acceptance Strategy and the method of Vasquez and
Vimont (2005) for each set of 10 instances in Table 10. A fundamental goal of hyper-
heuristic research is to provide solutions which are ‘good enough, soon enough, cheap
enough’ (Burke et al., 2003a). Although the work of Vasquez and Vimont (2005) was
performed using inferior hardware there is a stark contrast in execution times of each
technique1.

An indirect comparison between techniques can be made on a subset of the in-
stances in SAC-94 in terms of success rate as shown in Table 11. Three common prob-
lem instance sets from SAC-94 are used for comparison, the pet problem set (with pet2
omitted), the sento problem set and the last two instances of the weing problem set.
The Memetic Algorithm of Chu and Beasley (1998) performs particularly well with Par-
ticle Swarm Optimisation and Grammatical Evolution performing particularly badly.
Choice Function - Late Acceptance Strategy performs amicably in comparison to the
results in the literature. CPLEX 12.5 finds optimal solutions for entire SAC-94 dataset
using the hardware and settings outlined previously taking a maximum of 0.3 seconds
per instance.

Table 12 compares the performance of Choice Function - Late Acceptance Strategy
with the methods of Raidl and Gottlieb (2005) and CPLEX 12.5 using the benchmarks
provided by Glover and Kochenberger (nd). Raidl and Gottlieb (2005) experimented
with a number of different representations in evolutionary algorithms for the MKP.
The three best results were obtained from direct representation (DI), weight-biased
representation (WB) and permutation representation (PE). The results of their study
are taken as averages over 30 runs and were allowed 106 non-duplicate individuals.
Standard deviations for the 30 runs of each instance by Raidl and Gottlieb are pro-
vided as subscript. Our hyper-heuristics were also allowed 106 evaluations however

1Note on CPU times based on Dongarra (2013):

• Intel P4 1700 MHz = 796 MFLOP/s

• Intel P4 2 GHz (estimated) 796 * 2 / 1.7 = 936.47 (scaled from 1.7 GHz to 2GHz)

• Intel Core 2 Q6600 Kensfield (1 core) 2.4 GHz = 2426 MFLOP/s

• Intel Core 2 Duo 3 GHz (estimated) 2426 * 3 / 2.4 = 3032.5 MFLOP/s (scaled from 2.4 to 3 GHz)

Based on the above Intel Core 2 Duo 3 GHz is estimated 3032.5 / 936.47 = 3.24 times faster. t[s]* for Vasquez
and Vimont (2005) in Table 10 are scaled using these CPU times.
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Table 12: Performance comparison of Choice Function - Late Acceptance Strategy
hyper-heuristic, evolutionary algorithms of Raidl and Gottlieb (2005) and CPLEX 12.5
on Glover and Kochenberger instances in terms of %-gap

Instance CPLEX 12.5 DI CF-LAS WB PE
GK01 0.26 0.27 0.03 0.57 0.04 0.31 0.08 0.38 0.07

GK02 0.45 0.46 0.01 0.81 0.10 0.48 0.05 0.50 0.06

GK03 0.26 0.37 0.01 0.63 0.05 0.45 0.04 0.52 0.06

GK04 0.47 0.53 0.02 0.91 0.07 0.67 0.08 0.71 0.09

GK05 0.21 0.29 0.00 0.45 0.04 0.40 0.05 0.46 0.07

GK06 0.32 0.43 0.02 0.76 0.07 0.61 0.06 0.70 0.09

GK07 0.06 0.09 0.00 0.19 0.03 0.38 0.08 0.52 0.09

GK08 0.14 0.17 0.01 0.33 0.03 0.53 0.07 0.75 0.09

GK09 0.02 0.03 0.00 0.07 0.01 0.56 0.04 0.89 0.08

GK10 0.04 0.05 0.00 0.14 0.02 0.73 0.07 1.10 0.07

GK11 0.05 0.05 0.00 0.13 0.01 0.87 0.06 1.24 0.06

Average 0.21 0.250.01 0.450.04 0.540.06 0.710.08

duplicate individuals are counted. The direct encoding from Raidl and Gottlieb (2005)
outperforms our hyper-heuristic however the hyper-heuristic compares favourably to
the other two encoding methods shown. Although only an indirect comparison can
be made due to the differing nature of each techniques termination criteria and subse-
quently running times, CPLEX 12.5 performs particularly well on these instances with
an average %-gap of 0.21 compared to the 0.45 %-gap of the Choice Function - Late
Acceptance Strategy hyper-heuristic.

7 Conclusions

Two frameworks for controlling crossover in single-point selection hyper-heuristics
have been presented using a common NP-hard combinatorial optimisation problem
as a testbed. Crossover has been included at two levels, firstly it is controlled at the
hyper-heuristic level where no domain-specific information is used, secondly it is con-
trolled below the domain barrier and given domain-specific information. In each case
a list of potential second solutions to be used in crossover is maintained. In this prob-
lem domain, crossover performs better when it is controlled below the domain barrier
and problem-specific information is used. In the case where crossover control is below
the domain barrier, the best hyper-heuristic tested (Choice Function - Late Acceptance
Strategy) has shown to be able to provide comparable performance to the state-of-the-
art metaheuristics over a number of benchmark libraries. Although the management
of crossover is desirable at the domain level in this case, unfortunately it is not always
possible to access domain level information in other hyper-heuristic frameworks. This
raises questions regarding the definition of hyper-heuristics and exactly where the re-
sponsibility of managing the arguments for low-level heuristics should lie.

When crossover is controlled at the hyper-heuristic level, dynamic acceptance cri-
teria such as Simulated Annealing and Late Acceptance Strategy are out performed by
simple Only Improving acceptance in this domain. This difference is particularly pro-
nounced when an intelligent scheme for managing crossover is not used. In this study
the selection mechanism used does not seem to affect the quality of solutions obtained,
the choice of acceptance criteria and crossover control scheme has a far greater effect on
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solution quality. In the case of domain level crossover control the performance of ac-
ceptance criteria is reversed, with Simulated Annealing and Late Acceptance Strategy
outperforming Only Improving.

We have introduced a new initialisation scheme for population-based approaches
for the MKP which allows the generation of infeasible individuals. This initialisation
method was able to outperform two existing initialisation schemes as a methods for
providing crossover arguments within a selection hyper-heuristic on a subset of ORLib
instances. As the best solutions for the MKP are known to be on the boundary between
feasible and infeasible solutions, there is benefit to allowing infeasible solutions to be
used as input for crossover operators. This highlights a fundamental issue in evolu-
tionary computation design, the ability of a fitness function to accurately reflect the
quality of a solution with respect to some unknown optimum. Results using CPLEX
12.5 have also been included over the three benchmark libraries for the use of future
researchers in this area. Although the generality of the hyper-heuristics in this paper is
demonstrated by using different benchmarks, it would be interesting to analyse the per-
formance of these frameworks over a number different problem domains. Generality
does not necessarily need to be shown over the problem domains used. It is possible
to classify low-level heuristics with different characteristics, i.e. mutation heuristics,
and group multiple low-level heuristics into sets. The performance of hyper-heuristics
using different sets of low-level heuristics representing different possible experimental
conditions can demonstrate a different flavour of generality.
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Khuri, S., Bäck, T., and Heitkötter, J. (1994). The zero/one multiple knapsack problem
and genetic algorithms. In Proceedings of the ACM Symposium on Applied Computing
(SAC ’94), pages 188–193, Phoenix, AZ, USA. ACM.

28 Evolutionary Computation Volume x, Number x



Crossover in Selection Hyper-heuristics
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