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Abstract

For more than twenty years now we have been using the language of integers and addition as a
minimal setting in which to explore different aspects of programming language semantics. However,
this language has never been the subject of an article in its own right. This article fills this gap, by
showing how a range of semantic ideas can be presented in a simple manner through the lens of
integers and addition. In this setting, it’s easy as 1,2,3.

1 Introduction

When studying a new concept, it is often beneficial to begin with a simple example to
understand the basic ideas, before moving on to a more general setting. This article is
about such an example that has become a central focus of our research on programming
languages and their semantics during the last twenty years: the language of simple arith-
metic expressions built up from integer values using an addition operator.

In the beginning, we used this language as a means to explain semantic ideas in a simple
manner, but over time it also developed into a mechanism to help discover new ideas. To
date it has been used in fifteen of our research articles, by five of our students in their
doctoral dissertations, and in two textbooks. The purpose of this article is to consolidate
the approach so that others may benefit from it too in their own work, whether they be
students learning about semantics, or researchers advancing the state-of-the-art.

Using a minimal language to explore semantic ideas is an example of applying Oc-
cam’s Razor (Duignan, 2018), a philosophical principle that gives precedence to simplicity
by removing unnecessary details. As a result, the language of integers and addition is
sometimes called Hutton’s Razor. While this language does not provide features that are
necessary for actual programming, it does provide just enough structure to explore many
concepts from semantics. In particular, the integers provide a simple notion of ‘value’,
and the addition operator provides a simple notion of ‘computation’. More technically, the
language is a degenerate example of a monad (integers and addition are the free group over
one generator, and free constructions are monadic), an approach to modelling effects that
is widely used in programming (Wadler, 1992) and semantics (Moggi, 1991).

Of course, one could consider an even simpler language, such as (Peano) natural num-
bers built up from the value zero using a successor operator. However, this language may
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be too simple for some semantic applications, because natural numbers have a list-like
structure (one-way branching), whereas expressions formed from integers and addition
are tree-like (two-way branching). Similarly, one might ask whether subtraction is a better
choice of basic operation than addition? However, we have found that in a number of appli-
cations associativity is an important property, and while addition is associative, subtraction
is not. More generally, using subtraction rather than addition would break the connection
with monads, which requires that the basic computation mechanism is associative.

One might also consider some notion of variable binding, as used for example in the
lambda calculus to define functions. Binding is an important topic, but its addition to a
language usually requires that we then consider a range of others concepts such as envi-
ronments, fresh names, alpha equivalence, and variable renaming. These are all important,
but our experience time and time again is that there is much to be gained by first focusing
on the simpler language that just comprises integers and addition. Once the basic ideas are
developed in this setting, one can then extend the language with other features of interest,
a stepwise approach that has proved useful in many aspects of our work.

Starting with a simple language first can allow us to focus on the essence of a problem,
and see things clearly that may be obscured in more complicated settings. For example,
different approaches to specifying the semantics of languages can readily be explained
in an elementary manner in this setting. Moreover, the simplicity of the language has
also been instrumental to a number of research advances that may have been difficult to
discover in more sophisticated settings. For example, it was key to our discovery of new
approaches to calculating implementations of semantics using elementary techniques. We
will see examples of both the explanatory and discovery aspects in this article.

The article is written in a tutorial style that does not assume prior knowledge of seman-
tics, but we hope that more experienced readers will also find new ideas and inspiration
for their own work. Note that we are not aiming to provide a comprehensive account of
semantics in either breadth or depth, or references to the literature, but rather to summarise
the basic ideas and benefits of our approach, and provide pointers to further reading. We
use Haskell throughout as a meta-language to implement semantic ideas, which helps to
make the ideas more concrete, and allows them to be executed and tested.

2 Arithmetic Expressions

We begin by defining our language of interest, namely simple arithmetic expressions built
up from the set Z of integer values using the addition operator +. Formally, the language E
of such expressions is defined by the following context-free grammar:

E ::= Z | E +E

That is, an expression is either an integer value or the addition of two sub-expressions. We
assume that parentheses can be used to disambiguate expressions if required. The grammar
for expressions can also be directly translated into a Haskell datatype declaration:

data Expr = Val Int | Add Expr Expr

For example, the expression 1+2 can be represented by the term Add (Val 1) (Val 2). From
now on, we mainly consider expressions represented in Haskell.
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3 Denotational Semantics

In the first part of the article we show how our simple expression language can be used
to explain and compare a number of different approaches to specifying the semantics of
languages. In this section we consider the denotational approach to semantics (Schmidt,
1986), in which the meaning of terms in a language is defined using a valuation function
that maps terms into values in an appropriate semantic domain.

Formally, a denotational semantics for a language T of syntactic terms comprises two
components: a set V of semantic values, and a valuation function J K : T → V that maps
terms to their meaning as values. Moreover, the valuation function must be compositional,
in the sense that the meaning of a compound term is defined purely in terms of the meaning
of its subterms, which property supports the use of structural induction to reason about
the semantics. When the set of semantic values is clear, a denotational semantics is often
identified with the underlying valuation function.

Arithmetic expressions of type Expr have a particularly simple denotational semantics,
given by taking V as the Haskell type Int of integers, and J K : Expr→ Int as the evaluation
function for expressions defined recursively as follows:

JVal nK = n
JAdd x yK = JxK+ JyK

The first equation states that the value of an integer is simply the integer itself, while the
second states that the value of an addition is given by adding together the values of its
two sub-expressions. This definition manifestly satisfies the compositionality requirement,
because the meaning of a compound expression Add x y is defined purely by applying the +
operator to the meanings of the two sub-expressions x and y.

The evaluation function can also be translated directly into a Haskell function definition,
by simply rewriting the mathematical definition in Haskell notation:

eval :: Expr→ Int
eval (Val n) = n
eval (Add x y) = eval x+ eval y

More generally, a denotational semantics can be viewed as an evaluator (or interpreter)
that is written in a functional language. For example, using this definition we now have
eval (Add (Val 1) (Add (Val 2) (Val 3))) = 1+(2+3) = 6, or pictorially:

eval



Add

�� ��
Val 1 Add

�� ��
Val 2 Val 3


=

+

�� ��
1 +

�� ��
2 3

= 6

From this example, we see that an expression is evaluated by replacing each Add con-
structor by the addition function + on integers, and by removing each Val constructor, or
equivalently, by replacing each Val by the identity function id on integers. That is, even
though eval is defined recursively, because the semantics is compositional its behaviour
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can be understood non-recursively as simply replacing the constructors for expressions by
other functions. In this manner, a denotational semantics can be viewed as an evaluation
function that is defined by folding over the syntax of the source language.

Note that if the grammar E ::= Z | E +E was used as our source language, as opposed
to the type Expr, then the semantics would have the following form:

JnK = n
Jx+ yK = JxK+ JyK

However, in this version the same symbol + is now used for two different purposes: on
the left side it is a syntactic constructor for building terms, while on the right side it is a
semantic operator for adding integers. We avoid such issues and keep a clear distinction
between syntax and semantics by using the type Expr as our source language, which
provides special-purpose constructors Val and Add for building expressions.

Finally, we remark that the above semantics for arithmetic expressions does not specify
the order of evaluation, that is, the order in which the two arguments of addition should
be evaluated. Making this explicit requires the introduction of additional structure into the
evaluation function, which we will consider later on in the article.

Further reading Generalising fold operators (Meijer & Hutton, 1995); expressing deno-
tational semantics using folds (Hutton, 1998); extending the language with features such as
exceptions (Hutton & Wright, 2004), interrupts (Hutton & Wright, 2007), transactions (Hu
& Hutton, 2009) and lambda calculus (Bahr & Hutton, 2015); defining modular denota-
tional semantics (Day & Hutton, 2012; Day & Hutton, 2013).

4 Operational Semantics

Another popular approach to semantics is the operational approach (Plotkin, 1981), in
which the meaning of terms is defined using an execution relation that specifies how
terms can be executed in an appropriate semantic setting. There are two basic forms of
operational semantics: small-step, which describes the individual steps of execution, and
big-step semantics, which describes the overall results of execution.

In this section we consider the small-step approach. Formally, a small-step operational
semantics for a language T of syntactic terms comprises two components: a set S of states,
and a transition relation→⊆ S×S that relates each state to all states that can be reached
by performing a single execution step. (More general notions of transition relation are
sometimes used, but this simple notion suffices here.) If (s,s′) ∈→ we say that there is a
transition from state s to state s′, and write this as s→ s′. When the set of states is clear, an
operational semantics is often identified with the underlying transition relation.

Arithmetic expressions also have a simple small-step operational semantics, given by
taking S as the Haskell type Expr of expressions, and→⊆ Expr×Expr as the transition
relation defined by the following three inference rules:

Add (Val n) (Val m) → Val (n+m)

x → x′

Add x y → Add x′ y

y → y′

Add x y → Add x y′
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This first rule states that two values can be added together to give a single value, and the
last two rules permit the first to be applied to either argument of an addition. For example,
the expression (1+ 2) + (3+ 4), written in normal syntax for brevity, has two possible
transitions, because the first rule can be applied to either argument of the addition:

(1+2)+(3+4) → 3+(3+4)

(1+2)+(3+4) → (1+2)+7

By repeated application of the transition relation, we can generate a transition tree that
captures all possible execution paths for an expression. For example, the expression above
gives rise to the following tree, which captures the two possible execution paths:

(1+2)+(3+4)

|| ""
3+(3+4)

��

(1+2)+7

��
3+7

��

3+7

��
10 10

The transition relation can also be translated directly into a Haskell function definition,
by using the comprehension notation to return the list of all expressions that can be reached
from a given expression by performing a single execution step:

trans :: Expr→ [Expr ]
trans (Val n) = [ ]

trans (Add (Val n) (Val m)) = [Val (n+m)]

trans (Add x y) = [Add x′ y | x′← trans x ]++[Add x y′ | y′← trans y ]

In turn, we can define a Haskell datatype for transition trees, and an execution function that
converts expressions into trees by repeated application of the transition function:

data Tree a = Node a [Tree a ]

exec :: Expr→ Tree Expr
exec e = Node e [exec e′ | e′← trans e ]

From this definition, we see that an expression is executed by taking the expression itself as
the root of the tree, or equivalently, by applying the identity function id to the expression,
and generating a list of residual expressions to be processed to give the subtrees by applying
the trans function. That is, even though exec is defined recursively, its behaviour can be
understood non-recursively as simply applying the identity function to give the root of the
tree, and the transition function to generate a list of residual expressions to be processed
to give the subtrees. In this manner, a small-step operational semantics can be viewed as
giving rise to an execution function that is defined by unfolding to transition trees.

Note that if the grammar E was used as our source language rather than the type Expr,
then the first inference rule for the semantics would have the form

n+m → n+m
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which would be rather confusing unless we introduced some additional notation to dis-
tinguish the syntactic + on the left side from the semantic + on the right side, which is
precisely what is achieved by the use of the Expr type.

Finally, we remark that the above semantics for expressions does not specify the order
of evaluation. However, if we wish to do so, it is straightforward to modify the inference
rules to achieve this. For example, replacing the second Add rule by the following would
ensure the first argument to addition is always evaluated before the second:

y → y′

Add (Val n) y → Add (Val n) y′

Further reading Generalising unfold operators (Meijer & Hutton, 1995); expressing op-
erational semantics using unfolds (Hutton, 1998); extending the language with features
such as transactions (Hu & Hutton, 2009) and non-determinism (Hu & Hutton, 2010);
defining modular operational semantics (Jaskelioff et al., 2008).

5 Contextual Semantics

When defining a small-step semantics there are usually a number of basic rules that capture
the core behaviour of the language features, with the remainder being so-called structural
rules that express how the basic rules can be applied in larger terms. Separating these two
forms of rules gives rise to a contextual semantics (Felleisen & Hieb, 1992).

Informally, a context in this setting is a term with a ‘hole’, usually written as [−], which
can be ‘filled in’ with another term later on. In a contextual semantics, the hole represents
the location where a single basic step of execution may take place within a term. For
example, consider the following transition from the previous section:

(1+2)+(3+4) → 3+(3+4)

In this example, an addition is performed on the left side of the term. This idea can be made
precise by saying that we can perform the basic step 1+2→ 3 in the context [−]+(3+4),
in which the hole indicates where the addition takes place. For arithmetic expressions, the
language C of contexts can formally be defined by the following grammar:

C ::= [−] | C+E | E +C

That is, a context is either a hole, or a context on either side of the addition of an expression.
As previously, however, to keep a clear distinction between syntax and semantics we
translate the grammar into a Haskell datatype declaration:

data Con = Hole | AddL Con Expr | AddR Expr Con

Using this type, it is then straightforward to define what it means to fill in, or substitute,
the hole in a context c with a given expression x, which we write as c[x ]:

Hole [x ] = x
(AddL c e)[x ] = Add (c [x ]) e
(AddR e c)[x ] = Add e (c [x ])
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That is, if the context is a hole we simply substitute the hole by the given expression,
otherwise we recurse on the left or right side of an addition as appropriate. Using this nota-
tion, we can now redefine the small-step semantics for arithmetic expressions in contextual
style, by means of the following two inference rules:

Add (Val n) (Val m) → Val (n+m)

x → x′

c[x ] → c[x′ ]

The first rule captures the basic behaviour of addition, as previously. In turn, second rule
allows the first to be applied in any context, that is, to either argument of an addition. In
this manner, we have now refactored the small-step semantics into a single basic rule and
a single structural rule. Moreover, if we subsequently wish to extend the language with
extra features, this usually only requires adding new basic rules and extending the type for
contexts, but typically does not require adding new structural rules.

The contextual semantics can readily be translated into Haskell. Defining substitution is
just a matter of rewriting the mathematical definition in Haskell syntax:

subst :: Con→ Expr→ Expr
subst Hole x = x
subst (AddL c e) x = Add (subst c x) e
subst (AddR e c) x = Add e (subst c x)

In turn, the dual operation, which decomposes an expression into all possible pairs of
contexts and expressions, can be defined using the comprehension notation:

decompose :: Expr→ [(Con,Expr)]
decompose e = (Hole,e) : case e of

Val n → [ ]

Add x y→ [(AddL c y,e) | (c,e)← decompose x ]++
[(AddR x c,e) | (c,e)← decompose y ]

More formally, the behaviour of this definition can be captured as follows: a pair (c,x)
comprising a context c and an expression x is an element of the list decompose e precisely
when subst c x = e. Using these two functions, the contextual transition relation → can
also then be translated into a Haskell function definition:

trans :: Expr→ [Expr ]
trans (Add (Val n) (Val m)) = [Val (n+m)]

trans e = [subst c x′ | (c,x)← tail (decompose e),x′← trans x ]

The first equation implements the basic rule for addition, while the second implements
the contextual rule by first decomposing the expression into all possible pairs of contexts
and expressions, then recursively considering the transitions that can be made by each
component expression, and finally, substituting the resulting expressions back into the
context. Note that to avoid the trans function simply looping on the input expression e,
the first decomposition (Hole,e) is discarded by taking the tail of the list.

Further reading Contexts are related to a number of other important ideas in program-
ming and semantics, including the use of zippers to navigate around recursive data struc-
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tures (Huet, 1997), the notion of differentiation for datatypes (Abbott et al., 2005), the use
of continuations to express control flow (Reynolds, 1972), and implementing programming
languages using abstract machines (Ager et al., 2003).

6 Big-Step Semantics

Whereas small-step semantics focus on single steps of execution, big-step semantics spec-
ify how terms can be executed to completion in one large step. Formally, a big-step oper-
ational semantics, also known as a natural semantics (Kahn, 1987), for a language T of
syntactic terms comprises two components: a set V of values, and an evaluation relation
⇓ ⊆ T ×V that relates each term to all values that can be reached by fully executing the
term. If (t,v) ∈ ⇓ we say that t can evaluate to v, and write this as t ⇓ v.

Arithmetic expressions of type Expr have a simple big-step operational semantics, given
by taking the set V as the Haskell type Int of integers, and ⇓⊆ Expr× Int as the evaluation
relation defined by the following two inference rules:

Val n ⇓ n

x ⇓ n y ⇓ m

Add x y ⇓ n+m

The first rule states that a value evaluates to the underlying integer, and the second that
if two expressions x and y evaluate respectively to the integer values n and m, then the
addition of these expressions evaluates to the integer n+m.

The evaluation relation can be translated into a Haskell function definition in a similar
manner to the small-step semantics, by using the comprehension notation to return the list
of all values that can be reached by executing a given term to completion:

eval :: Expr→ [Int ]
eval (Val n) = [n ]
eval (Add x y) = [n+m | n← eval x,m← eval y ]

For our simple expression language, the big-step semantics above is essentially the same
as the denotational semantics we presented earlier, but specified in a relational manner
using inference rules rather than a functional manner using equations. Note, however, that
there is no need for a big-step semantics to be compositional, whereas this is a key aspect
of the denotational approach. This difference becomes evident when more sophisticated
languages are considered, such as the lambda calculus (Bahr & Hutton, 2015). Moreover,
whereas a denotational semantics can only return a single value, a big-step semantics can
return multiple values if desired. This additional flexibility can sometimes be useful, such
as when considering non-deterministic languages (Hutton & Wright, 2007).

Further reading Big-step operational semantics tends to be more widely used than small-
step, because in many applications we are only interested in the result of execution. How-
ever, the small-step approach can be useful when the fine structure of execution is impor-
tant, such as when considering efficiency (Hope & Hutton, 2006), abstract machines (Hut-
ton & Wright, 2006) or concurrent languages (Hu & Hutton, 2009).
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7 Rule Induction

Once a semantics for a language has been defined, it can then be used as the basis for
proving properties of the language. Given that terms and their semantics are built up
inductively, such proofs usually proceed using some form of induction. In the case of deno-
tational semantics, the basic proof technique is structural induction, which most computer
scientists are familiar with. For operational semantics, the basic technique is rule induction,
but unfortunately many textbooks and courses on semantics gloss over the details. In this
section we present the details for our simple expression language.

We introduce the idea of rule induction by first considering the special case when a set X
is inductively defined by two rules of the following form:

a ∈ X

x ∈ X

f (x) ∈ X

The first rule, the base case for the definition, states that some given value a is in the
set X. The second rule, the inductive case, states that for any value x in X, then we have
f (x) in X for some given function f . Note that unlike the special case when the set X is
a recursively defined datatype, which is known as a free datatype, there is no requirement
that the function f must be injective, or that the value a is not in the range of f . This is a
key difference between rule induction and structural induction.

Given such an inductively defined set X, the principle of rule induction states that in
order to prove that some property P holds for all elements of X, it suffices to show that P
holds for the value a in X, the base case, and that if P holds for any element x in X then it
also holds for f (x), the inductive case. That is, we have the following proof rule:

P(a) ∀x ∈ X . P(x) ⇒ P( f (x))

∀x ∈ X . P(x)

This basic scheme can easily be generalised multiple base and inductive cases, to rules to
multiple preconditions, and so on. For example, in the case of our small-step semantics for
expressions, we have one base case and two inductive cases:

Add (Val n) (Val m) → Val (n+m)

x → x′

Add x y → Add x′ y

y → y′

Add x y → Add x y′

Hence, if we want to show that some property P holds for all transitions x → x′, we can
use the principle of rule induction, which in this case takes the following form:

P (Add (Val n) (Val m),Val (n+m))

∀x→ x′. P (x,x′) ⇒ P (Add x y,Add x′ y)
∀y→ y′. P (y,y′) ⇒ P (Add x y,Add x y′)

∀x→ x′. P (x,x′)

That is, we must show that the property P holds for the transition defined by base rule, that
if P holds for the precondition transition for the first inductive rule then it also holds for
the resulting transition, and similarly for the second inductive rule.
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By way of example, we can use rule induction to verify a simple relationship between
our small-step and denotational semantics for expressions, namely that making a transition
does not change the denotation of an expression:

∀x→ x′. JxK = Jx′K

In order to prove this result, we first define the underlying predicate P, then apply rule
induction, and finally expand out the definition of P to leave three conditions:

∀x → x′ . JxK = Jx′K
⇔ { define P (x,x′) ⇔ JxK = Jx′K }
∀x → x′ . P (x,x′)
⇐ { rule induction for→ }

P (Add (Val n) (Val m),Val (n+m))

∀x → x′ . P (x,x′) ⇒ P (Add x y,Add x′ y)
∀y → y′ . P (y,y′) ⇒ P (Add x y,Add x y′)
⇔ { definition of P }

JAdd (Val n) (Val m)K = JVal (n+m)K
∀x → x′ . JxK = Jx′K ⇒ JAdd x yK = JAdd x′ yK
∀y → y′ . JyK = Jy′K ⇒ JAdd x yK = JAdd x y′ K

Each condition can then be verified by a simple calculation:

JAdd (Val n) (Val m)K
= { definition of J K }

JVal nK+ JVal mK
= { definition of J K }

n+m
= { definition of J K }

JVal (n+m)K

and

JAdd x yK
= { definition of J K }

JxK+ JyK
= { assumption that JxK = Jx′K }

Jx′K+ JyK
= { definition of J K }

JAdd x′ yK

and

JAdd x yK
= { definition of [-] }

JxK+ JyK
= { assumption that JyK = Jy′K }

JxK+ Jy′K
= { definition of J K }

JAdd x y′ K
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We conclude with three remarks. First of all, this result can also be proved using struc-
tural induction, but the proof is simpler and more direct using rule induction. In particular,
it is based on the structure of the definition of the transition relation, which is the key
structure here, rather than the syntactic structure of expressions, which is secondary.

Secondly, just as proofs using structural induction do not normally proceed in full detail
by explicitly defining a predicate and stating the induction principle being used, so the
same is true with rule induction. For example, the above proof would often be abbreviated
by simply stating that it proceeds by rule induction on the transition x → x′, and then
immediately stating and verifying the three sufficient conditions.

And finally, because all of our semantics are also implemented in Haskell, we can
use QuickCheck (Claessen & Hughes, 2000) to perform random testing of properties.
For example, the property that making a transition does not change the denotation of an
expression can be expressed in Haskell using a list comprehension:

prop :: Expr→ Bool
prop x = and [eval x == eval x′ | x′← trans x ]

If we now use the Quickcheck library to write a random generator for expressions, it can
then be used to automatically test the property on a range of examples:

> quickCheck prop
+++ OK, passed 100 tests .

The idea of testing semantic properties in this lightweight manner has proved invaluable
in our research work. For example, in our work on compiler correctness, we routinely use
QuickCheck to debug our definitions and theorems prior to formal proofs, and this has
often revealed subtle errors and omissions in our definitions.

Further reading Using rule induction to verify the equivalence of small and big-step op-
erational semantics for versions of the lambda calculus that count evaluation steps (Hope,
2008) or support a form of non-deterministic choice (Moran, 1998); validating compiler
correctness results using QuickCheck (Hu & Hutton, 2009).

8 Abstract Machines

All of the examples that we have considered so far have been focused on explaining
semantic ideas. In this section, we show how the language of integers and addition can
also be used to help discover semantic ideas. In particular, we show how it can be used as
the basis for discovering how to implement an abstract machine (Diehl et al., 2000) for
evaluating expressions in a manner that precisely defines the order of evaluation.

We begin by recalling the following simple evaluation function:

eval :: Expr→ Int
eval (Val n) = n
eval (Add x y) = eval x+ eval y

As noted previously, this definition does not specify the order in which the two arguments
of addition are evaluated. Rather, this is determined by the language in which the evaluator
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is written, in this case Haskell. If desired, the order of evaluation can be made explicit by
defining an an abstract machine for evaluating expressions, which uses a control stack to
specify how the machine should behave after evaluating the current expression. In other
words, the control stack is used to keep track of what should be done next.

Formally, an abstract machine for evaluating expressions of type Expr can be given by
three components: a type Cont of control stacks, a function eval′ ::Expr→ Cont→ Int that
evaluates an expression and then continues by executing the given control stack, and finally,
a function exec :: Cont → Int → Int that executes a control stack given the integer that
resulted from evaluating an expression. The desired relationship between the component
functions is captured by the following simple equation:

eval′ e c = exec c (eval e) (1)

That is, evaluating an expression and then executing a control stack should give the same
result as executing the control stack using the value of the expression.

At this point in most presentations, definitions for Cont, eval′ and exec would now be
given, from which the above equation could then be proved. However, we can also view
the equation as a specification for these three components, from which we then aim to
discover, or calculate definitions that satisfy the specification. Given that the specification
has two knowns (Expr and eval) and three unknowns (Cont, eval′ and exec), this may seem
like an impossible task. However, with the benefit of experience gained from studying the
simple expression language for many years, it turns out to be straightforward.

To calculate the abstract machine we proceed from specification (1) by structural induc-
tion on the expression e. In each case, we start with the right-hand side exec c (eval e) of
the specification and gradually transform it by equational reasoning, aiming to end up with
a term t that does not refer to the original evaluation function eval, such that we can then
take eval′ e c = t as a defining equation for eval′ in this case. In order to do this we will
find that we need to introduce new constructors into the control stack type Cont, along with
their interpretation by the execution function exec.

For the base case, e = Val n, the calculation has just one step:

exec c (eval (Val n))
= { applying eval }

exec c n

The resulting term exec c n already has the required form (does not refer to eval), from
which conclude that the following definition satisfies (1) in the base case:

eval′ (Val n) c = exec c n

That is, if the expression is an integer value it is already fully evaluated, and we simply
execute the control stack using this integer as an argument. For the inductive case, e =

Add x y, we begin in the same way as above by applying the evaluation function:

exec c (eval (Add x y))
= { applying eval }

exec c (eval x+ eval y)
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No further definitions can be applied at this point. However, as we are performing an
inductive calculation, we can make use of the induction hypotheses for the expressions
x and y. In order to use the induction hypothesis for y, which is eval′ y c′ = exec c′ (eval y),
we must rewrite the term exec c (eval x+ eval y) that is being manipulated into the form
exec c′ (eval y) for some control stack c′. That is, we need to solve the equation:

exec c′ (eval y) = exec c (eval x+ eval y)

First of all, we generalise from the specific values eval x and eval y to give:

exec c′ m = exec c (n+m)

Note that we can’t simply use this equation as a definition for exec, because the integer n
and control stack c would be unbound in the body of the definition as they do not appear
on the left-hand side. The solution is to package these two variables up in the control stack
argument c′ (which can freely be instantiated as it is existentially quantified) by adding a
new constructor to the Cont type that takes these two variables as arguments,

ADD :: Int→ Cont→ Cont

and defining a new equation for exec as follows:

exec (ADD n c) m = exec c (n+m)

That is, executing a control stack of the form ADD n c given an integer argument m
proceeds by simply adding the two integers n and m and then executing the remaining
control stack c, hence the choice of the name for the new constructor.

Using the above ideas, we now continue the calculation:

exec c (eval x+ eval y)
= { define: exec (ADD n c) m = exec c (n+m) }

exec (ADD (eval x) c) (eval y)
= { induction hypothesis for y }

eval′ y (ADD (eval x) c)

No further definitions can now be applied, so we seek to use the induction hypothesis for
x, which is eval′ x c′ = exec c′ (eval x). In order to use this, we must rewrite the term
eval′ y (ADD (eval x) c) that is being manipulated into the form exec c′ (eval x) for some
control stack c′. That is, we need to solve the following equation:

exec c′ (eval x) = eval′ y (ADD (eval x) c)

As with the case for y, we first generalise from eval x to give

exec c′ n = eval′ y (ADD (eval x) c)

and then package up the free variables y and c into the argument c′ by adding a new
constructor to Cont that takes these variables as arguments

EVAL :: Expr→ Cont→ Cont

and defining a new equation for exec as follows:

exec (EVAL y c) n = eval′ y (ADD n c)
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That is, executing a control stack of the form EVAL y c given an integer argument n
proceeds by evaluating the expression y and then executing the control stack ADD n c.
Using these ideas, the calculation can now be completed:

eval′ y (ADD (eval x) c)
= { define: exec (EVAL y c) n = eval′ y (ADD n c) }

exec (EVAL y c) (eval x)
= { induction hypothesis for x }

eval′ x (EVAL y c)

The final term now has the required form (does not refer to eval), from which we conclude
that the following definition satisfies specification (1) in the inductive case:

eval′ (Add x y) c = eval′ x (EVAL y c)

That is, if the expression is an addition, we proceed by evaluating the first argument
expression x, with the term EVAL y placed on the control stack to indicate that the second
argument expression y should be evaluated once that of first is completed. In this manner,
the definition makes explicit that addition is evaluated in left-to-right order.

Finally, we conclude the development of the abstract machine by redefining the orig-
inal evaluation function eval :: Expr → Int in terms of the new function eval′ :: Expr →
Cont→ Int. In this case there is no need to use induction, as simple calculation suffices,
during which we introduce a new constructor HALT :: Cont to transform the term being
manipulated into the required form in order that specification (1) can be applied:

eval e
= { define: exec HALT n = n }

exec HALT (eval e)
= { specification (1) }

eval′ e HALT

In conclusion, we have calculated the following definitions, which together implement
an abstract machine for evaluating simple arithmetic expressions:

data Cont = HALT | EVAL Expr Cont | ADD Int Cont

eval :: Expr→ Int
eval e = eval′ e HALT

eval′ :: Expr→ Cont→ Int
eval′ (Val n) c = exec c n
eval′ (Add x y) c = eval′ x (EVAL y c)

exec :: Cont→ Int→ Int
exec HALT n = n
exec (EVAL y c) n = eval′ y (ADD n c)
exec (ADD n c) m = exec c (n+m)

Note that eval′ and exec are mutually recursive, which corresponds to the machine having
two modes of operation, depending on whether it is currently being driven by the structure
of the expression or the control stack. For example, for (2+3)+4 we have:
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eval (Add (Add (Val 2) (Val 3)) (Val 4))
= eval′ (Add (Add (Val 2) (Val 3)) (Val 4)) HALT
= eval′ (Add (Val 2) (Val 3)) (EVAL (Val 4) HALT)
= eval′ (Val 2) (EVAL (Val 3) (EVAL (Val 4) HALT))
= exec (EVAL (Val 3) (EVAL (Val 4) HALT)) 2
= eval′ (Val 3) (ADD 2 (EVAL (Val 4) HALT))
= exec (ADD 2 (EVAL (Val 4) HALT)) 3
= exec (EVAL (Val 4) HALT) 5
= eval′ (Val 4) (ADD 5 HALT)
= exec (ADD 5 HALT) 4
= exec HALT 9
= 9

In summary, we have shown how to calculate an abstract machine for evaluating arith-
metic expressions, with all of the implementation machinery falling naturally out of the
calculation process. In particular, we required no prior knowledge of the implementation
ideas, as these were systematically discovered during the calculation. Moreover, our ap-
proach only required elementary equational reasoning techniques, and avoided the need
for more sophisticated concepts such as continuations and defunctionalisation that are
traditionally used. Focusing on the simple language of integers and addition was key to
our discovery of this simpler approach. In this setting, it’s easy as 1,2,3.

Further reading Calculating abstract machines (Hutton & Wright, 2006; Hutton & Bahr,
2016); verifying compiler correctness for languages with exceptions (Hutton & Wright,
2004), interrupts (Hutton & Wright, 2007), transactions (Hu & Hutton, 2009) and concur-
rency (Hu & Hutton, 2010); calculating compilers for stack (Bahr & Hutton, 2015; Hutton,
2016) and register machines (Hutton & Bahr, 2017; Bahr & Hutton, 2020).
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