Introduction

A function is called higher-order if it takes a function as an argument or returns a function as a result.

twice :: (a -> a) -> a -> a

\[\text{twice } f \ x = f (f \ x) \]

twice is higher-order because it takes a function as its first argument.
Why Are They Useful?

- Common programming idioms can be encoded as functions within the language itself.
- Domain specific languages can be defined as collections of higher-order functions.
- Algebraic properties of higher-order functions can be used to reason about programs.
The Map Function

The higher-order library function called `map` applies a function to every element of a list.

\[\text{map} :: (a \rightarrow b) \rightarrow [a] \rightarrow [b] \]

For example:

\[\text{> map (+1) [1,3,5,7]} \]
\[[2,4,6,8] \]
The map function can be defined in a particularly simple manner using a list comprehension:

\[
\text{map } f \text{ } xs = [f \text{ } x \mid x \leftarrow xs]
\]

Alternatively, for the purposes of proofs, the map function can also be defined using recursion:

\[
\begin{align*}
\text{map } f \text{ } [] & = [] \\
\text{map } f \text{ } (x:xs) & = f \text{ } x : \text{map } f \text{ } xs
\end{align*}
\]
The Filter Function

The higher-order library function `filter` selects every element from a list that satisfies a predicate.

```
filter :: (a -> Bool) -> [a] -> [a]
```

For example:

```
> filter even [1..10]
[2,4,6,8,10]
```
Filter can be defined using a list comprehension:

\[
\text{filter } p \ x s = [x \mid x \leftarrow x s, \ p \ x]
\]

Alternatively, it can be defined using recursion:

\[
\begin{align*}
\text{filter } p \ [\] & = [\] \\
\text{filter } p \ (x:xs) & = \begin{cases} \\
p \ x & = x : \text{filter } p \ xs \\
otherwise & = \text{filter } p \ xs \\
\end{cases}
\end{align*}
\]
The Foldr Function

A number of functions on lists can be defined using the following simple pattern of recursion:

\[
\begin{align*}
 f \; [] & = v \\
 f \; (x:xs) & = x \; \oplus \; f \; xs
\end{align*}
\]

f maps the empty list to some value v, and any non-empty list to some function \(\oplus \) applied to its head and f of its tail.
For example:

\[
\text{sum } \[] = 0 \\
\text{sum } (x:xs) = x + \text{sum } xs
\]

\[
\text{product } \[] = 1 \\
\text{product } (x:xs) = x * \text{product } xs
\]

\[
\text{and } \[] = \text{True} \\
\text{and } (x:xs) = x \&\& \text{and } xs
\]
The higher-order library function \texttt{foldr} (fold right) encapsulates this simple pattern of recursion, with the function \texttt{⊕} and the value \texttt{v} as arguments.

For example:

\begin{verbatim}
sum = foldr (+) 0
product = foldr (*) 1
or = foldr (||) False
and = foldr (&&) True
\end{verbatim}
Foldr itself can be defined using recursion:

\[
\text{foldr} :: (a \rightarrow b \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b
\]

\[
\text{foldr } f \ v \ [] \quad = \ v
\]

\[
\text{foldr } f \ v \ (x:xs) \quad = \ f \ x \ (\text{foldr } f \ v \ xs)
\]

However, it is best to think of foldr \textit{non-recursively}, as simultaneously replacing each (:) in a list by a given function, and [] by a given value.
For example:

```
sum [1,2,3] = foldr (+) 0 [1,2,3] = foldr (+) 0 (1:(2:(3:[]))) = 1+(2+(3+0)) = 6
```

Replace each `(:)` by `(+)` and `[]` by `0`.
For example:

\[
\text{product } [1,2,3] = \text{foldr } (*) \ 1 \ [1,2,3] = \text{foldr } (*) \ 1 \ (1:(2:(3:[])) = 1*(2*(3*1)) = 6
\]

Replace each (:) by (*) and [] by 1.
Other Foldr Examples

Even though foldr encapsulates a simple pattern of recursion, it can be used to define many more functions than might first be expected.

Recall the length function:

```
length :: [a] → Int
length [] = 0
length (_:xs) = 1 + length xs
```
For example:

\[
\text{length } [1,2,3] = \text{length } (1:(2:(3:[]))) = 1+(1+(1+0)) = 3
\]

Hence, we have:

\[
\text{length} = \text{foldr } (\lambda__ \text{ n} \rightarrow 1+\text{n}) \ 0
\]

Replace each \((:)\) by \(\lambda__ \text{ n} \rightarrow 1+\text{n}\) and \([]\) by 0.
Now recall the reverse function:

\[
\text{reverse} \; \; [] \; \; = \; \; [] \\
\text{reverse} \; \; (x:xs) \; \; = \; \; \text{reverse} \; \; xs \; \; ++ \; \; [x]
\]

For example:

\[
\text{reverse} \; \; [1,2,3] \\
= \\
\text{reverse} \; \; (1:(2:(3:[])))) \\
= \\
(([] \; \; ++ \; \; [3]) \; \; ++ \; \; [2]) \; \; ++ \; \; [1] \\
= \\
[3,2,1]
\]

Replace each (:) by \(\lambda x \; \; xs \rightarrow xs \; \; ++ \; \; [x] \) and [] by [].
Hence, we have:

\[
\text{reverse} = \text{foldr} (\lambda x \ xs \rightarrow xs \ ++ \ [x]) \ []
\]

Finally, we note that the append function (\++) has a particularly compact definition using foldr:

\[
(\++ \ ys) = \text{foldr} (:) \ ys
\]

Replace each (:) by (:) and [] by ys.
Why Is Foldr Useful?

■ Some recursive functions on lists, such as sum, are simpler to define using foldr.

■ Properties of functions defined using foldr can be proved using algebraic properties of foldr, such as fusion and the banana split rule.

■ Advanced program optimisations can be simpler if foldr is used in place of explicit recursion.
Other Library Functions

The library function (.) returns the composition of two functions as a single function.

\[
(\cdot) :: (b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow (a \rightarrow c)
\]

\[
f \cdot g = \lambda x \rightarrow f (g x)
\]

For example:

\[
\text{odd :: Int \rightarrow Bool}
\]

\[
\text{odd = not . even}
\]
The library function \texttt{all} decides if every element of a list satisfies a given predicate.

\[
\texttt{all} :: (a \rightarrow \text{Bool}) \rightarrow [a] \rightarrow \text{Bool}
\]

\[
\texttt{all}\ p\ \texttt{xs} = \text{and} \ [p\ x\ |\ x\ \leftarrow\ \texttt{xs}]
\]

For example:

\[
> \texttt{all}\ \texttt{even}\ [2,4,6,8,10]
\]

True
Dually, the library function \texttt{any} decides if at least one element of a list satisfies a predicate.

\[
\texttt{any} :: (a \rightarrow \text{Bool}) \rightarrow [a] \rightarrow \text{Bool}
\]

\[
\texttt{any} \ p \ \texttt{xs} = \text{or} \ [p \ x \mid x \leftarrow \texttt{xs}]
\]

For example:

\[
> \ \texttt{any} \ (== \ ' \) \ "abc \ def"
\]

\[
\text{True}
\]
The library function `takeWhile` selects elements from a list while a predicate holds of all the elements.

\[
\text{takeWhile} :: (\text{a} \rightarrow \text{Bool}) \rightarrow [\text{a}] \rightarrow [\text{a}]
\]

\[
\text{takeWhile} \ p \ [] = []
\]

\[
\text{takeWhile} \ p \ (\text{x} : \text{xs})
\]

\[
\begin{cases}
 \text{p x} & = \text{x : takeWhile} \ p \ \text{xs} \\
 \text{otherwise} & = []
\end{cases}
\]

For example:

\[
> \text{takeWhile} \ (\text{/= ' '}) \ "abc def"
\]

"abc"
Dually, the function \texttt{dropWhile} removes elements while a predicate holds of all the elements.

\begin{verbatim}
dropWhile :: (a \rightarrow \text{Bool}) \rightarrow [a] \rightarrow [a]
dropWhile p [] = []
dropWhile p (x:xs)
 | p x = dropWhile p xs
 | otherwise = x:xs
\end{verbatim}

For example:

\begin{verbatim}
> dropWhile (== ' ') " abc"
"abc"
\end{verbatim}
Exercises

(1) What are higher-order functions that return functions as results better known as?

(2) Express the comprehension \([f \ x \mid x \leftarrow xs, \ p \ x]\) using the functions map and filter.

(3) Redefine map \(f\) and filter \(p\) using foldr.