Compiling Exceptions Correctly

Graham Hutton and Joel Wright

School of Computer Science and IT
University of Nottingham, United Kingdom

Abstract. Exceptions are an important feature of modern programming
languages, but their compilation has traditionally been viewed as an ad-
vanced topic. In this article we show that the basic method of compiling
exceptions using stack unwinding can be explained and verified both sim-
ply and precisely, using elementary functional programming techniques.
In particular, we develop a compiler for a small language with exceptions,
together with a proof of its correctness.

1 Introduction

Most modern programming languages support some form of programming with
exceptions, typically based upon a primitive that abandons the current com-
putation and throws an exception, together with a primitive that catches an
exception and continues with another computation [3,16,11,8]. In this article
we consider the problem of compiling such exception primitives.

Exceptions have traditionally been viewed as an advanced topic in compi-
lation, usually being discussed only briefly in courses, textbooks, and research
articles, and in many cases not at all. In this article, we show that the basic
method of compiling exceptions using stack unwinding can in fact be explained
and verified both simply and precisely, using elementary functional programming
techniques. In particular, we develop a compiler for a small language with excep-
tions, together with a proof of its correctness with respect to a formal semantics
for this language. Surprisingly, this appears to be the first time that a compiler
for exceptions has been proved to be correct.

In order to focus on the essence of the problem and avoid getting bogged
down in other details, we adopt a particularly simple language comprising just
four components, namely integer values, an addition operator, a single excep-
tional value called throw, and a catch operator for this value. This language
does not provide features that are necessary for actual programming, but it does
provide just what we need for our expository purposes in this article. In partic-
ular, integers and addition constitute a minimal language in which to consider
computation using a stack, and throw and catch constitute a minimal extension
in which such computations can involve exceptions.

Our development proceeds in three steps, starting with the language of in-
teger values and addition, then adding throw and catch to this language, and
finally adding explicit jumps to the virtual machine. Starting with a simpler
language allows us to introduce our approach to compilation and its correctness

without the extra complexity of exceptions. In turn, deferring the introduction
of jumps allows us to introduce our approach to the compilation of exceptions
without the extra complexity of dealing with jump addresses.

All the programs in the article are written in Haskell [11], but we only use the
basic concepts of recursive types, recursive functions, and inductive proofs, what
might be termed the “holy trinity” of functional programming. An extended
version of the article that includes the proofs omitted in this conference version
for reasons of space is available from the authors’ home pages.

2 Arithmetic expressions

Let us begin by considering a simple language of arithmetic expressions, built
up from integers using an addition operator. In Haskell, the language of such
expressions can be represented by the following type:

data Fxpr = Val Int| Add Ezpr Expr

The semantics of such expressions is most naturally given denotationally [14],
by defining a function that evaluates an expression to its integer value:

eval . Expr — Int
eval (Val n) = n
eval (Add zy) = eval + eval y

Now let us consider compiling arithmetic expressions into code for execution
using a stack machine, in which the stack is represented as a list of integers, and
code comprises a list of push and add operations on the stack:

type Stack = [Int]
type Code = [Op]
data Op = PUSH Int | ADD

For ease of identification, we always use upper-case names for machine opera-
tions. Functions that compile an expression into code, and execute code using
an initial stack to give a final stack, can now be defined as follows:

comp . Ezpr — Code

comp (Val n) = [PUSH n]

comp (Add z y) = comp x H comp y H [ADD]
exec it Stack — Code — Stack
exec s || = s

exec s (PUSH n : ops) = exec(n : s) ops

exec (m : n : 8) (ADD : ops) = exec(n+m : s) ops

For simplicity, the function exec does not consider the case of stack underflow,
which arises if the stack contains less than two integers when executing an add
operation. We will return to this issue in the next section.

3 Compiler correctness

The correctness of our compiler for expressions with respect to our semantics
can be expressed as the commutativity of the following diagram:

Expr el Int

comp [-]
Code ———— Stack
exec ||

That is, compiling an expression and then executing the resulting code using an
empty initial stack gives the same final stack as evaluating the expression and
then converting the resulting integer into a singleton stack:

exec [] (comp e) = [eval €]

In order to prove this result, however, it is necessary to generalise from the empty
initial stack to an arbitrary initial stack.

Theorem 1 (compiler correctness).

exec s (comp e) = evale: s

Proof. By induction on e :: Expr.

Case: e = Val n

exec s (comp (Val n))
{ definition of comp }
exec s [PUSH n]
{ definition of ezxec }
n:s
= { definition of eval }
eval (Val n) : s

Case: e = Add = y

exec s (comp (Add z y))
= { definition of comp }
exec s (comp x H comp y + [ADD])
= { execution distributivity (lemma 1) }
exec (exec s (comp x)) (comp y + [ADD)])
= { induction hypothesis }
exec (eval z : s) (comp y H [ADD])
= { execution distributivity }
exec (exec (eval z : s) (comp y)) [ADD]
{ induction hypothesis }

exec (eval y : eval z : s) [ADD]
{ definition of exec }

eval x + eval y : s
{ definition of eval }

eval (Add = y) : s

a

Note that without first generalising the result, the second induction hypothesis
step above would be invalid. The distribution lemma is as follows.

Lemma 1 (execution distributivity).

exec s (xs H ys) = exec (exec s xs) ys

That is, executing two pieces of code appended together gives the same result
as executing the two pieces of code separately in sequence.

Proof. By induction on zs :: Code.

When performing an addition in this proof, the stack not containing at least two
integers corresponds to a stack underflow error. In this case, the equation to be
proved is trivially true, because the result of both sides is undefined (L), provided
that we assume that exec is strict in its stack argument (ezec L ops = L.)
This extra strictness assumption could be avoided by representing and managing
stack underflow explicitly, rather than implicitly using L. In fact, however, both
lemma 1 and its consequent underflow issue can be avoided altogether by further
generalising our correctness theorem to also consider additional code.

Theorem 2 (generalised compiler correctness).
exec s (comp e H ops) = exec (eval e : s) ops

That is, compiling an expression and then executing the resulting code appended
together with arbitrary additional code gives the same result as pushing the value
of the expression to give a new stack, which is then used to execute the additional
code. Note that with s = ops = [], theorem 2 simplifies to ezec [] (comp e) =
[eval e], our original statement of compiler correctness.

Proof. By induction on e :: Expr.

Case: e = Val n

exec s (comp (Val n) + ops)
{ definition of comp }

exec s ([PUSH n] + ops)

= { definition of ezxec }
exec (n : s) ops

= { definition of eval }
exec (eval (Val n) : s) ops

Case: e = Add = y

exec s (comp (Add = y) H ops)
= { definition of comp }

exec s (comp x H comp y + [ADD] + ops)
= { induction hypothesis }

exec (eval z : s) (comp y H [ADD] 4 ops)
= { induction hypothesis }

exec (eval y : eval z : s) ([ADD] + ops)
= { definition of ezxec }

exec (eval T + eval y : s) ops
= { definition of eval }

exec (eval (Add = y) : s) ops

O

In addition to avoiding the problem of stack underflow, the above proof also has
the important benefit of being approximately one third of the combined length
of our previous two proofs. As is often the case in mathematics, generalising a
theorem in the appropriate manner can considerably simplify its proof.

4 Adding exceptions

Now let us extend our language of arithmetic expressions with simple primitives
for throwing and catching an exception:

data Expr = ...| Throw | Catch Expr Expr

Informally, Throw abandons the current computation and throws an exception,
while Catch x h behaves as the expression x unless it throws an exception,
in which case the catch behaves as the handler expression h. To formalise the
meaning of these new primitives, we first recall the Maybe type:

data Maybe a = Nothing | Just a

That is, a value of type Maybe a is either Nothing, which we think of as an
exceptional value, or has the form Just x for some z of type a, which we think of
as normal value [15]. Using this type, our denotational semantics for expressions
can now be rewritten to take account of exceptions as follows:

eval . Ezpr — Maybe Int
eval (Val n) = Justn
eval (Add ©y) = case eval z of

Nothing — Nothing
Just n — case eval y of
Nothing — Nothing
Just m — Just (n + m)
Nothing
case eval x of
Nothing — eval h
Just n — Just n

eval (Throw)
eval (Catch z h)

Note that addition propagates an exception thrown in either argument. By ex-
ploiting the fact that Maybe forms a monad [17], the above definition can be
expressed more abstractly and concisely using monadic syntax [12]:

eval . Expr — Maybe Int
eval (Val n) = return n
eval (Add zy) = don«— eval x

m «— eval y
return (n 4+ m)
eval (Throw) = mzero
eval (Catch © h) = eval x ‘mplus’ eval h

For the purposes of proofs, however, we use our non-monadic definition for eval.
To illustrate our new semantics, here are a few simple examples:

eval (Add (Val 2) (Val 3)) = Justb — no exceptions

eval (Add Throw (Val 3)) = Nothing — uncaught exception
eval (Catch (Val 2) (Val 3)) = Just 2 — unused handler
eval (Catch Throw (Val 3)) = Just 3 — caught exception

Now let us consider how the exception primitives can be compiled. First of
all, we introduce three new machine operations:

data Op = ...| THROW | MARK Code | UNMARK

Informally, THROW throws an exception, MARK pushes a piece of code onto
the stack, while UNMARK pops such code from the stack. Using these opera-
tions, our compiler for expressions can now be extended as follows:

comp (Throw) = [THROW]
comp (Catch x h) [MARK (comp h)] + comp x + [UNMARK]

That is, Throw is compiled directly to the corresponding machine operation,
while Catch x h is compiled by first marking the stack with the compiled code
for the handler h, then compiling the expression to be evaluated z, and finally
unmarking the stack by removing the handler. In this way, the mark and unmark
operations delimit the scope of the handler A to the expression z, in the sense that
the handler is only present on the stack during execution of the expression. Note
that the stack is marked with the actual compiled code for the handler, rather
than some form of pointer to the code as would be used in a real implementation.
We will return to this issue later on in the article.

Because the stack can now contain handler code as well as integer values, the
type for stacks must itself be rewritten:

type Stack = [Item]
data Item VAL Int | HAN Code

In turn, our function that executes code is now rewritten as follows:

exec . Stack — Code — Stack
exec s [] = s
exec s (PUSH n : ops) = exec (VAL n : s) ops
exec s (ADD : ops) = case s of

(VAL m : VALn : s') — exec (VAL (n+m) : s') ops
exec s (THROW : ops) = unwind s (skip ops)
exec s (MARK ops’ : ops) = exec (HAN ops’ : s) ops
exec s (UNMARK : ops) = case s of

(z : HAN _: s') — exec (z : s') ops

That is, push and add are executed as previously, except that we must now take
account of the fact that values on the stack are tagged. For execution of a throw,
there are a number of issues to consider. First of all, the current computation
needs to be abandoned, which means removing any intermediate values that
have been pushed onto the stack by this computation, as well as skipping any
remaining code for this computation. And secondly, the current handler code
needs to be executed, if there is any, followed by any code that remains after
the abandoned computation. The function exec implements these ideas using
an auxiliary function unwind that pops items from the stack until a handler is
found, at which point the handler is executed followed by the remaining code,
which is itself produced using a function skip that skips to the next unmark:

unwind :» Stack — Code — Stack
unwind [] =]

unwind (VAL _ : s) ops = wunwind s ops

unwind (HAN ops’ : s) ops = exec s (ops’ + ops)
skip 2 Code — Code

skip [] =]

skip (UNMARK : ops) = ops

skip (MARK _ : ops) = skip (skip ops)

skip (— : ops) = skip ops

Note that unwind has the same type as ezec, and can be viewed as an alternative
mode of this function for the case when the virtual machine is in the process
of handling an exception. For simplicity, unwind returns the empty stack in the
case of an uncaught exception. For a language in which the empty stack was
a valid result, a separate representation for an uncaught exception would be
required. Note also the double recursion when skipping a mark, which reflects
the fact that there may be nested mark/unmark pairs in the remaining code.

Returning to the remaining cases in the definition of erec above, a mark is
executed simply by pushing the given handler code onto the stack, and dually,
an unmark by popping this code from the stack. Between executing a mark and
its corresponding unmark, however, the code delimited by these two operations
will have pushed its result value onto the stack, and hence when the handler
code is popped it will actually be the second-top item.

To illustrate our new compiler and virtual machine, their behaviour on the
four example expressions from earlier in this section is shown below, in which
the symbol $$ denotes the result of the last compilation:

comp (Add (Val 2) (Val 3)) = [PUSH 2, PUSH 3, ADD]

[
exec [] 9 = [VAL5]
comp (Add Throw (Val 3)) = [THROW,PUSH 3, ADD]
ezec [] $$ =]
comp (Catch (Val 2) (Val 3)) = [MARK [PUSH 3], PUSH 2, UNMARK]
exec [] $% = [VAL?2]
comp (Catch Throw (Val 3)) = [MARK [PUSH 3], THROW, UNMARK |
exec [] 9 = [VAL3]

5 Compiler correctness

Generalising from the examples in the previous section, the correctness of our
new compiler is expressed by the commutativity of the following diagram:

Ezxpr el Maybe Int

comp conv

Code ——— > Stack
exec []
That is, compiling an expression and then executing the resulting code using an
empty initial stack gives the same final stack as evaluating the expression and
then converting the resulting semantic value into the corresponding stack, using
an auxiliary function conv that is defined as follows:

conv . Maybe Int — Stack
conv Nothing =[]
conv (Just n) = [VALn]

As previously, however, in order to prove this result we generalise to an arbitrary
initial stack and also consider additional code, and in turn rewrite the function
conv to take account of these two extra arguments.

Theorem 3 (compiler correctness).

exec s (comp e H ops) = conv s (eval e) ops
where
conv i Stack — Maybe Int — Code — Stack
conv s Nothing ops = unwind s (skip ops)

conv s (Just n) ops = exec (VALn : s) ops

Note that with s = ops = [], this theorem simplifies to our original statement
of correctness above. The right-hand side of theorem 3 could also be written

as exec s (conv (eval e)

ops) using a simpler version of conv with type

Maybe Int — Op, but the above formulation leads to simpler proofs.

Proof. By induction on e :: Expr.

Case: e = Val n

exec s (comp (Val n) H ops)
= { definition of comp }
exec s ([PUSH n] + ops)
= { definition of ezec }

exec (VAL n : s) ops

= { definition of conv }

conv s (Just n) ops

= { definition of eval }
conv s (eval (Val n)) ops

Case: e = Throw

exec s (comp Throw H ops)
= { definition of comp }

exec s ([THROW] 4 ops)
= { definition of ezec }

unwind s (skip ops)

= { definition of conv }

conv s Nothing ops

= { definition of eval }
conv s (eval Throw) ops

Case: e = Add = y

exec s (comp (Add = y) H ops)
= { definition of comp }
exec s (comp x H comp y H [ADD] + ops)

{ induction hypothesis }

conv s (eval z) (comp y + [ADD] 4 ops)

case eval = of

{ definition of conv }

Nothing — unwind s (skip (comp y + [ADD] H ops))
Just n — exec (VAL n : s) (comp y +H [ADD] 4 ops)

The two possible results from this expression are simplified below.

1:

unwind s (skip (comp y H# [ADD] + ops))
{ skipping compiled code (lemma 2) }
unwind s (skip ([ADD] 4 ops))
{ definition of skip }
unwind s (skip ops)

exec (VAL n : s) (comp y +H [ADD] + ops)
{ induction hypothesis }
conv (VAL n : s) (eval y) ([ADD] + ops)
{ definition of conv }
case eval y of
Nothing — unwind (VAL n : s) (skip (
Just m — exec (VAL m : VALn : s) (
{ definition of unwind, skip and ezxec }
case eval y of
Nothing — unwind s (skip ops)
Just m — exec (VAL (n+m) : s) ops

We now continue the calculation using the two simplified results.

case eval x of
Nothing — unwind s (skip ops)
Just n — case eval y of
Nothing — unwind s (skip ops)
Just m — exec (VAL (n+ m) : s) ops
{ definition of conv }
case eval x of
Nothing — conv s Nothing ops
Just n — case eval y of
Nothing — conv s Nothing ops
Just m — conv s (Just (n+m)) ops
{ distribution over case }
conv s (case eval x of
Nothing — Nothing
Just n — case eval y of
Nothing — Nothing
Just m — Just (n + m)) ops
{ definition of eval }
conv s (eval (Add x y)) ops

Case: e = Catch x h

exec s (comp (Catch x h) H ops)
{ definition of comp }

exec s ([MARK (comp h)| H comp x + [UNMARK |+ ops)
{ definition of ezec }

exec (HAN (comp h) : s) (comp © H [UNMARK | 4 ops)
= { induction hypothesis }
conv (HAN (comp h) : s) (eval) ((UNMARK | + ops)
= { definition of conv }
case eval = of
Nothing — unwind (HAN (comp h) : s) (skip ((UNMARK] + ops))
Just n — exec (VAL n : HAN (comp h) : s) ((UNMARK] + ops)
= { definition of unwind, skip and ezxec }
case eval = of
Nothing — exec s (comp h H ops)
Just n — exec (VAL n : s) ops
= { induction hypothesis }
case eval z of
Nothing — conv s (eval h) ops
Just n — exec (VAL n : s) ops
= { definition of conv }
case eval z of
Nothing — conv s (eval h) ops
Just n — conv s (Just n) ops
= { distribution over case }
conv s (case eval x of
Nothing — eval h
Just n — Just n) ops
= { definition of eval }
conv s (eval (Catch x h)) ops
O

The two distribution over case steps in the above proof rely on the fact that
conv is strict in its semantic value argument (conv s L ops = 1), which is
indeed the case because conv is defined by pattern matching on this argument.
The skipping lemma used in the above proof is as follows.

Lemma 2 (skipping compiled code).
skip (comp e H ops) = skip ops

That is, skipping to the next unmark in compiled code followed by arbitrary
additional code gives the same result as simply skipping the additional code.
Intuitively, this is the case because the compiler ensures that all unmarks in
compiled code are matched by preceding marks.

Proof. By induction on e :: Expr.

6 Adding jumps

Now let us extend our virtual machine with primitives that allow exceptions to
be compiled using explicit jumps, rather than by pushing handler code onto the

stack. First of all, we introduce three new machine operations:

data Op = ...| MARK Addr | LABEL Addr | JUMP Addr

Informally, MARK pushes the address of a piece of code onto the stack (replacing
our previous mark operator that pushed code itself), LABEL declares an address,
and JUMP transfers control to an address. Addresses themselves are represented
simply as integers, and we ensure that each address is declared at most once by
generating addresses in sequential order using a function fresh:

type Addr = Int
fresh ;. Addr — Addr
fresh a = a+1

Our compiler for expressions is now extended to take the next fresh address as
an additional argument, and is rewritten in terms of another function compile
that also returns the next fresh address as an additional result:

comp . Addr — Expr — Code
comp ae = fst(compile ae)
compile . Addr — FExpr — (Code, Addr)

compile a (Val n)
compile a (Add z y)

([PUSH n],a)
(zs H ys + [ADD], ¢)
where
(zs,b) = compile a x
(ys, c) = compile b y
(ITHROW], a)
((MARK a)] + s + [UNMARK, JUMP b,
LABEL a) + hs + [LABEL b}, ¢)

compile a (Throw)
compile a (Catch x h)

where
b = fresh a
¢ = fresh b

(zs,d) = compile c
(hs, e) = compile d h

Note that integer values, addition, and throw are compiled as previously, except
that the next fresh address is threaded through, while Catch x h is now compiled
to the following sequence, in which a: abbreviates LABEL a:

MARK a
compiled code for x
UNMARK
JUMP b
a: compiled code for h
b: rest of the code

That is, Catch x h is now compiled by first marking the stack with the address of
the compiled code for the handler A, compiling the expression to be evaluated z,
then unmarking the stack by removing the address of the handler, and finally
jumping over the handler code to the rest of the code.

By exploiting the fact that the type for compile can be expressed using a
state monad [17], the above definition can also be expressed more abstractly
and concisely using monadic syntax. As with the function eval, however, for the
purposes of proofs we use our non-monadic definition for compile.

Because the stack can now contain handler addresses rather than handler
code, the type for stack items must be rewritten:

data Item = VAL Int | HAN Addr

In turn, our function that executes code requires four modifications:

exec s (THROW : ops) = wnwind s ops

exec s (MARK a : ops) = exec(HAN a : s) ops
exec s (LABEL _ : ops) = exec s ops

exec s (JUMP a : ops) = exec s (jump a ops)

For execution of a throw, the use of explicit jumps means that the function skip
is no longer required, and there are now only two issues to consider. First of all,
the current computation needs to be abandoned, by removing any intermediate
values that have been pushed onto the stack by this computation. And secondly,
the current handler needs to be executed, if there is any. Implementing these
ideas requires modifying one line in the definition of unwind:

unwind (HAN a : s) ops = exec s (jump a ops)

That is, once the address of a handler is found, the handler is executed using a
function jump that transfers control to a given address:

jump . Addr — Code — Code

Jump _ [] =]

jump a (LABEL b : ops) = if a == b then ops else jump a ops
Jump a (= : ops) = jump a ops

Note that our language only requires forward jumps. If backward jumps were
also possible, a slightly generalised virtual machine would be required.

Returning to the remaining modified cases in the definition of exec above, a
mark is executed simply by pushing the given address onto the stack, a label is
executed by skipping the label, and a jump is executed by transferring control
to the given address using the function jump defined above.

The behaviour of our new compiler and virtual machine on the four example
expressions from earlier in the article is shown below:

comp 0 (Add (Val 2) (Val 3)) = [PUSH 2, PUSH 3, ADD)|

exec [] $% = [VAL5]

comp 0 (Add Throw (Val 3)) = [THROW,PUSH 3, ADD]

exec [] $% =]

comp 0 (Catch (Val 2) (Val 3)) = [MARK 0, PUSH 2, UNMARK, JUMP 1,

LABEL 0, PUSH 3, LABEL 1]
exec [] $% = [VAL2]
(

comp 0 (Catch Throw (Val 3)) = [MARK 0, THROW,UNMARK,JUMP 1,
LABEL 0, PUSH 3, LABEL 1]
exec [] $$ = [VAL3]

Note that our compiler now once again produces “flat” code, in contrast to our
previous version, which produced tree-structured code.

7 Compiler correctness

The correctness of our new compiler is expressed by the same diagram as the
previous version, except that new compiler takes the next fresh address as an
additional argument, for which we supply zero as the initial value:

Ezxpr cval Maybe Int

comp Ol [conv

Code T Stack

ec]

For the purposes of proofs we once again generalise this result to an arbitrary
initial stack and additional code, and extend the function conv accordingly. In
turn, we also generalise to an arbitrary initial address that is fresh with respect
to the initial stack, using a predicate isFresh that decides if a given address is
greater than every address that occurs in a stack.

Theorem 4 (compiler correctness).

If isFresh a s then exec s (comp a e + ops) = conv s (eval e) ops
where

isFresh . Addr — Stack — Bool

isFresh _ [] = True

isFresh a (VAL _ : s) = isFresh as

isFresh a (HAN b :s) = a>b A isFreshas

conv i Stack — Maybe Int — Code — Stack

conv s Nothing ops = wunwind s ops

conv s (Just n) ops exec (VAL n : s) ops

Proof. By induction on e :: Expr in a similar manner to theorem 3, except that
five lemmas concerning fresh addresses are required:

Lemma 3 (unwinding operators).

If op = LABEL a = isFresh a s then
unwind s (op : ops) = wunwind s ops

That is, when unwinding the stack the first operator in the code can be discarded,
provided that it is not an address that may occur in the stack.

Proof. By induction on s :: Stack.
Lemma 4 (unwinding compiled code).
If isFresh a s then unwind s (comp a e H ops) = unwind s ops

That is, unwinding the stack on compiled code followed by arbitrary additional
code gives the same result as simply unwinding the stack on the additional code,
provided that the initial address for the compiler is fresh for the stack.

Proof. By induction on e :: Expr, using lemma 3 above.
Lemma 5 (isFresh is monotonic).
If a < bAisFresh a s then isFresh b s

That is, if one address is at most another, and the first is fresh with respect to
a stack, then the second is also fresh with respect to this stack.

Proof. By induction on s :: Stack.
Lemma 6 (compile is non-decreasing).
snd (compile a e) > a

That is, the next address returned by the compiler will always be greater than
or equal to the address supplied as an argument.

Proof. By induction on e :: Expr.
Lemma 7 (jumping compiled code).
If a<b then jump a (comp b e+ ops) = jump a ops

That is, jumping to an address in compiled code followed by arbitrary additional
code gives the same result as simply jumping in the additional code, provided
that the jump address is less than the initial address for the compiler.

Proof. By induction on e :: Expr, using lemma 6 above.

8 Further work

We have shown how the compilation of exceptions using stack unwinding can
be explained and verified in a simple manner. In this final section we briefly
describe a number of possible directions for further work.

— Mechanical verification. The correctness of our two compilers for exceptions
has also been verified mechanically. In particular, theorem 3 was verified in
Lego by McBride [6], and theorem 4 in Isabelle by Nipkow [10]. A novel
aspect of the Lego verification that merits further investigation is the use
of dependent types to precisely capture the stack demands of the virtual
machine operations (e.g. add requires a stack with two integers on the top),
which leads to a further simplification of our correctness proof, at the ex-
pense of requiring a more powerful type system.

— Modular compilers. Inspired by the success of using monads to define the
denotational semantics of languages in terms of the semantics of individual
features [9], similar techniques are now being applied to build compilers in
a modular manner [4]. To date, however, this work has not considered the
compilation of exceptions, so there is scope for trying to incorporate the
present work into this modular framework.

— Calculating the compiler. Rather than first defining the compiler and virtual
machine and then proving their correctness with respect to the semantics,
another approach would be to try and calculate the definition of these func-
tions starting from the compiler correctness theorem itself [7,1], with the
aim of giving a systematic discovery of the idea of compiling exceptions us-
ing stack unwinding, as opposed to a post-hoc verification.

— Generalising the language. Arithmetic expressions with exceptions served as
a suitable language for the purposes of this article, but it is important to
explore how our approach can be scaled to more expressive languages, such
as a simple functional or imperative language, to languages with more than
one kind of exception and user-defined exceptions, and to other notions of
exception, such as imprecise [13] and asynchronous [5] exceptions.

— Compiler optimisations. The basic compilation method presented in this ar-
ticle can be optimised in a number of ways. For example, we might rearrange
the compiled code to avoid the need to jump over handlers in the case of
no exceptions being thrown, use a separate stack of handler addresses to
make the process of stack unwinding more efficient, or use a separate table
of handler scopes to avoid an execution-time cost for installing a handler. It
would be interesting to consider how such optimisations can be incorporated
into our compiler and its correctness proof.

Acknowledgements

This work was jointly funded by the University of Nottingham and Microsoft
Research Ltd in Cambridge. Thanks to Simon Peyton Jones and Simon Marlow
at Microsoft for answering many questions about exceptions and their semantics,
to Thorsten Altenkirch, Olivier Danvy, Conor McBride, Simon Peyton Jones and
the anonymous referees for useful comments and suggestions, and to Ralf Hinze
for the 1hs2TeX system for typesetting Haskell code.

QuickCheck [2] was used extensively in the production of this article, and
proved invaluable as an aid to getting the definitions and results correct be-
fore proceeding to formal proofs. A number of (often subtle) mistakes in our
definitions and results were discovered in this way.

References

1. R. Backhouse. Program Construction: Calculating Implementations from Specifi-
cations. John Wiley, 2003.
2. K. Claessen and J. Hughes. QuickCheck: A Lightweight Tool for Random Testing
of Haskell Programs. In Proceedings of the Fifth ACM SIGPLAN International
Conference on Functional Programming, Montreal, Canada, Sept. 2000.
3. J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification,
Second Edition. Addison-Wesley, 2000.
4. W. Harrison. Modular Compilers and Their Correctness Proofs. PhD thesis, Uni-
versity of Illinois, 2001.
5. S. Marlow, S. Peyton Jones, A. Moran, and J. Reppy. Asynchronous Exceptions
In Haskell. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, Snowbird, Utah, June 2001.
C. McBride. Personal communication, 2003.
E. Meijer. Calculating Compilers. PhD thesis, Nijmegen University, 1992.
8. R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard
ML (Revised). MIT Press, 1997.
9. E. Moggi. An Abstract View of Programming Languages. Technical Report ECS-
LFCS-90-113, Laboratory for Foundations of Computer Science, University of Ed-
inburgh, 1990.
10. T. Nipkow. Personal communication, 2004.
11. S. Peyton Jones. Haskell 98 Language and Libraries: The Revised Report. Cam-
bridge University Press, 2003.

12. S. Peyton Jones and J. Launchbury. State in Haskell. University of Glasgow, 1994.

13. S. Peyton Jones, A. Reid, T. Hoare, S. Marlow, and F. Henderson. A Semantics
For Imprecise Exceptions. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, Atlanta, Georgia, May 1999.

14. D. A. Schmidt. Denotational Semantics: A Methodology for Language Develop-
ment. Allyn and Bacon, Inc., 1986.

15. M. Spivey. A Functional Theory of Exceptions. Science of Computer Programming,
14(1):25-43, 1990.

16. B. Stroustrup. The C++ Programming Language, Third Edition. Addison-Wesley,
1997.

17. P. Wadler. The Essence of Functional Programming. In Proc. Principles of Pro-
gramming Languages, 1992.

e

