
Beyond Trees: Calculating Graph-Based Compilers

PATRICK BAHR, IT University of Copenhagen, Denmark
GRAHAM HUTTON, University of Nottingham, UK

Bahr and Hutton recently developed an approach to compiler calculation that allows a wide range of compilers
to be derived from specifications of their correctness. However, a limitation of the approach is that it results in
compilers that produce tree-structured code. By contrast, realistic compilers produce code that is essentially
graph-structured, where the edges in the graph represent jumps that transfer the flow of control to other
locations in the code. In this article, we show how their approach can naturally be adapted to calculate
compilers that produce graph-structured code, without changing the underlying calculational methodology,
by using a higher-order abstract syntax representation of graphs.

CCS Concepts: • Software and its engineering→ Compilers; Formal software verification; • Theory
of computation→ Logic and verification; Program verification.

Additional Key Words and Phrases: program calculation, graphs, higher-order abstract syntax

1 INTRODUCTION
The aim of program calculation [Backhouse 2003] is to develop programs whose correctness is
guaranteed by the manner in which they are constructed. Typically, the process starts with a
formal specification for the desired behaviour of a program, from which we then seek to derive an
implementation that meets this specification using correctness-preserving reasoning.
In recent work, Bahr and Hutton have developed an approach to calculating compilers, which

translate high-level programs into lower-level code that machines can execute. Their approach
begins with an evaluation function that captures the semantics of the source language. For example,
for a simple expression language an evaluation function (eval) might map an expression to its value.
In contrast, a compilation function (compile) maps an expression into code to be executed by a
suitable machine (exec). Compiler correctness is then expressed by a simple equation,

exec ◦ compile = eval

which expresses that compilation followed by execution gives the same result as evaluation. Bahr
and Hutton’s approach shows how to derive the function compile by solving such a correctness
equation, just like we solve any equation in mathematics. In practice, the equation is usually
extended with further concepts such as a stack or an environment, depending on the nature of the
source and target languages, but the above captures the basic idea.

The methodology initially targeted stack-based machines [Bahr and Hutton 2015], and was used
to calculate compilers for a wide range of language features and their combinations, including
exceptions, state, lambda calculus, loops, non-determinism and interrupts. The approach was later
adapted to register-based machines [Bahr and Hutton 2020], together with well-typed [Pickard and
Hutton 2021], non-terminating [Bahr and Hutton 2022] and concurrent [Bahr and Hutton 2023]
languages. It also allowed McCarthy and Painter’s seminal compiler verification [McCarthy and
Painter 1967] to be reworked as a compiler calculation [Hutton and Bahr 2017].
However, a limitation of the above approach is that it results in compilers that produce

tree-structured code. For example, when compiling a conditional expression if cond then b1 else b2,
the code for the two branches become parameters for an instruction in the target language. In
contrast, a traditional compiler would produce linear code in this case, by concatenating the code
for the two branches, and inserting jumps to ensure the appropriate branch is executed. In this
manner, we can think of traditional compilers as producing graph-structured code, where the edges

Authors’ addresses: Patrick Bahr, IT University of Copenhagen, Denmark; Graham Hutton, University of Nottingham, UK.

2 Patrick Bahr and Graham Hutton

in the graph represent jumps that transfer the flow of control. Viewing code as graphs also allows a
number of other control flow concepts to be naturally considered, such as sharing (multiple jumps
to a single piece of code), and looping (backward jumps to repeat a piece of code.)

Unfortunately, graphs and program calculation are not usually regarded as being natural bedfel-
lows. In particular, programming with graphs often requires the generation and management of
some form of labels or names that are used to represent the edges in graphs, which can significantly
complicate the progress of reasoning about the resulting programs. For example, the verification of a
compiler for a simple language with exceptions in [Hutton andWright 2004] requires a considerable
number of lemmas regarding how jump labels are managed.
In this article, we avoid such issues by using a representation of graphs that does not require

explicit labels. In particular, we utilise the approach of Oliveira and Cook [2012], in which graphs
are represented using parametric higher-order abstract syntax [Chlipala 2008]. Using this approach,
we can leverage the binding and naming mechanism of the host language to avoid having to
explicitly deal with these concepts. As we shall see, this approach allows the compiler calculation
methodology developed by Bahr and Hutton to be naturally adapted to compilers that produce
graph-structured code, without changing the underlying calculational methodology.
Our approach is generally applicable and can be combined with other methods that derive

tree-based compilers, such as Meijer [1992], Wand [1995], and Ager et al. [2003]. It also removes
a restriction of previous work, by allowing the calculation of compilers that produce cyclic code,
which cannot be represented with finite tree-structured code. In this manner, the graph-based
approach that is presented does not invalidate previous work that produces tree-structured code,
but rather complements it and demonstrates its relevance for practical compilers.

We introduce and illustrate our approach using three examples of increasing complexity, starting
with a simple expression language with conditionals (Sections 2 and 3), then looping (Section 4),
and finally state (Section 5). All our programs and calculations are written in Haskell notation, but
for reasoning purposes we assume the language is total. All the calculations have been mechanically
verified in Agda [Norell 2007], and are available as supplementary material.

2 CALCULATING A TREE-BASED COMPILER
To illustrate the issue with Bahr and Hutton’s compiler calculation methodology, we begin in this
section by calculating a compiler for a simple expression language comprising integers, addition
and conditionals, whose syntax and semantics is defined as follows:

data Expr = Val Int | Add Expr Expr | If Expr Expr Expr

eval :: Expr → Int
eval (Val n) = n
eval (Add x y) = eval x + eval y
eval (If x y z) = if eval x == 0 then eval z else eval y

For the purpose of conditionals, we follow the standard C-like convention where the logical value
false is represented by the integer zero, and true is represented by any non-zero integer.

2.1 Compiler specification
Given the above definitions, we now aim to calculate a compilation function compile ::Expr → Code
that translates expressions of the source language into code for our target language. We assume
that the target language is a stack machine, whose semantics is given by a function exec :: Code→
Stack → Stack, where stacks are simply represented as lists of integers:

type Stack = [Int]

Beyond Trees: Calculating Graph-Based Compilers 3

Neither the target language Code nor its semantics exec are given up front, but will instead fall
out of the calculation of the compiler. To simplify the calculation [Bahr and Hutton 2015], we
generalise the compilation function compile to a function comp :: Expr → Code→ Code that takes
an additional code argument to be appended to the code produced for the expression. Correctness
of the generalised compiler can then be expressed by the following equation:

exec c (eval x : s) = exec (comp x c) s (1)

That is, executing the result of compiling an expression followed by additional code gives the same
result as executing the additional code with the value of the expression on top of the stack.

2.2 Compiler calculation
We now calculate the compiler by proving equation (1) by induction on the expression x. For each
case, we aim to transform the left side of the equation, exec c (eval x : s), into the form exec c′ s for
some code c′. We can then define comp x c = c′ for that case, which by construction satisfies the
correctness equation. The base case, x = Val n, proceeds as follows:

exec c (eval (Val n) : s)
= { definition of eval }
exec c (n : s)

= { define: exec (PUSH n c) s = exec c (n : s) }
exec (PUSH n c) s

To obtain a term of the required form, in the final step above we introduced a new constructor
PUSH :: Int → Code → Code for the Code type, along with a clause of the exec function, which
defines the semantics of PUSH . The final term of the calculation is then of the form exec c′ s with
c′ = PUSH n c, which gives the first clause for the definition of the compiler:

comp (Val n) c = PUSH n c

The inductive case for addition proceeds in a similar manner, in which we introduce a new code
constructor ADD that adds the top two values on the stack, this time motivated by the desire to
transform the term into a form to which the induction hypotheses can be applied:

exec c (eval (Add x y) : s)
= { definition of eval }
exec c (eval x + eval y : s)

= { define: exec (ADD c) (n :m : s) = exec c (m + n : s) }
exec (ADD c) (eval y : eval x : s)

= { induction hypothesis for y }
exec (comp y (ADD c)) (eval x : s)

= { induction hypothesis for x }
exec (comp x (comp y (ADD c))) s

The final term is now of the required form, which gives the next clause for the compiler:

comp (Add x y) c = comp x (comp y (ADD c))
Finally, the case for conditionals proceeds as follows, in which we use the fact that in a total

language we can freely distribute functions over conditional expressions:

exec c (eval (If x y z) : s)
= { definition of eval }

4 Patrick Bahr and Graham Hutton

exec c ((if eval x == 0 then eval z else eval y) : s)
= { distributivity }
exec c (if eval x == 0 then eval z : s else eval y : s)

= { distributivity }
if eval x == 0 then exec c (eval z : s) else exec c (eval y : s)

= { induction hypotheses for y and z }
if eval x == 0 then exec (comp z c) s else exec (comp y c) s

= { define: exec (JPZ c′ c) (n : s) = if n == 0 then exec c′ s else exec c s }
exec (JPZ (comp z c) (comp y c)) (eval x : s)

= { induction hypothesis for x }
exec (comp x (JPZ (comp z c) (comp y c))) s

To apply the induction hypothesis for the expression x, in the penultimate step above we introduced
a new code constructor JPZ that jumps to alternative code if the top of the stack is zero. The final
term of the calculation then gives the final clause for the compiler:

comp (If x y z) c = comp x (JPZ (comp z c) (comp y c))
We conclude this section by returning to the top-level compilation function compile :: Expr →

Code, whose correctness can be expressed by the following equation:

eval x : s = exec (compile x) s (2)

In a similar manner to equation (1) for comp, we aim to transform the left side of this equation,
eval x : s, into the form exec c s for some code c, so that we can then define compile x = c. In this
case we don’t need induction, as introducing a new code constructor HALT that returns the current
stack allows the correctness equation for comp to be used to obtain the required form:

eval x : s
= { define: exec HALT s = s }
exec HALT (eval x : s)

= { correctness of comp – (1) }
exec (comp x HALT) s

In summary, we have calculated the definitions shown in Figure 1. The definition of exec also
includes the catch-all clause exec = [], which we have added to make the definition total. The
choice for this catch-all clause is not important as it plays no role in the calculation.

3 CALCULATING A GRAPH-BASED COMPILER
Two characteristics of the code produced by the compiler calculated in the previous section make
it unrealistic in practice. First of all, code for a realistic machine is linear, i.e. each instruction is
followed by at most one other instruction to be executed next. This is true for the HALT , PUSH
and ADD instructions, but not the JPZ instruction, which is followed by two possible pieces of
code to be executed next, one for each branch of a conditional expression:

JPZ :: Code→ Code→ Code

In this manner, the compiler produces tree-structured code. In a realistic instruction set, we would
expect the JPZ instruction to have type Loc → Code → Code, i.e. the first argument is not code
itself but rather a location that points to a piece of code, to ensure that code is linear.
Secondly, when compiling a conditional expression, the compilation function comp duplicates

code by passing the additional code c to two recursive calls of the compiler:

Beyond Trees: Calculating Graph-Based Compilers 5

data Code = HALT | PUSH Int Code | ADD Code | JPZ Code Code

compile :: Expr → Code
compile x = comp x HALT

comp :: Expr → Code→ Code
comp (Val n) c = PUSH n c
comp (Add x y) c = comp x (comp y (ADD c))
comp (If x y z) c = comp x (JPZ (comp z c) (comp y c))
exec :: Code→ Stack → Stack
exec HALT s = s
exec (PUSH n c) s = exec c (n : s)
exec (ADD c) (n :m : s) = exec c (m + n : s)
exec (JPZ c′ c) (n : s) = if n == 0 then exec c′ s else exec c s
exec = []

Fig. 1. Tree-based compiler for conditional expressions.

comp (If x y z) c = comp x (JPZ (comp z c) (comp y c))

In a realistic compiler, we would instead expect to find an instruction JMP :: Loc → Code that
allows us to jump to the same piece of code multiple times, rather than duplicating code.

3.1 Graph-structured code
In light of the above observations, we could define a graph-based version of the code type,

data Code𝑔 = HALT𝑔 | PUSH𝑔 Int Code𝑔 | ADD𝑔 Code𝑔 | JPZ𝑔 Loc Code𝑔 | JMP𝑔 Loc

where jump locations are simply integer addresses within the code, i.e. the first instruction is
located at address zero, the second at address one, and so on:

type Loc = Int

However, the use of explicit jump locations complicates the compiler implementation, and makes
reasoning about it difficult. Address calculation is delicate on its own, and it would be beneficial
to separate this from the process of compiler calculation. To this end, we treat jump locations
abstractly by using parametric higher-order abstract syntax [Chlipala 2008] to provide symbolic
locations, which we call labels. We achieve this by abstracting the Loc type to a type variable l, and
adding a new instruction LAB𝑔

� that brings a fresh label into scope using a function parameter:

data Code𝑔 l = HALT𝑔 | PUSH𝑔 Int (Code𝑔 l) | ADD𝑔 (Code𝑔 l) | JPZ𝑔 l (Code𝑔 l) | JMP𝑔 l |
LAB𝑔

� (l → Code𝑔 l) (Code𝑔 l)

Intuitively, JMP𝑔 l jumps to the code with label l, while LAB𝑔
� (_l → c) c′ labels the code c′ with a

fresh label l and makes that label available in the code c so that it can jump to c′. For example, the
following piece of linear code, written in an assembly-like notation,

6 Patrick Bahr and Graham Hutton

PUSH 2
JPZ l
PUSH 3
JMP l

l : PUSH 4
HALT

can be represented by the following term of type Code𝑔 l:

LAB𝑔
� (_l → PUSH𝑔 2 (JPZ𝑔 l (PUSH𝑔 3 (JMP𝑔 l)))) (PUSH𝑔 4 HALT𝑔)

Graph-based code represented using the type Code𝑔 l has the desired linear structure. While the
constructor LAB𝑔

� may appear non-linear since it essentially takes two code arguments, code of the
form LAB𝑔

� (_l → c) c′ represents the sequential composition of two pieces of code as shown in the
example above. Note that only forward jumps are possible at present, because in LAB𝑔

� (_l → c) c′
the label l is only in scope in the first piece of code c, allowing jumps to be made to the second
piece of code c′. The forward arrow in LAB𝑔

� reflects this fact. We will introduce an instruction
LAB𝑔

� that permits backward jumps in Section 4 when we consider a language with looping.
The type Code𝑔 is an instance of the notion of a structured graph [Oliveira and Cook 2012]. Each

structured graph type comes equipped with a canonical function L·M that unravels a graph to its
corresponding tree, which in our case is defined as follows:

L·M :: Code𝑔 Code→ Code
LHALT𝑔M = HALT
LPUSH𝑔 n cM = PUSH n LcM
LADD𝑔 cM = ADD LcM
LJPZ𝑔 l cM = JPZ l LcM
LJMP𝑔 lM = l
LLAB𝑔

� f cM = Lf LcMM

That is, the function L·M takes a graph of type Code𝑔 Code in which the free occurrences of abstract
labels have already been replaced by concrete trees of type Code, and converts the graph into a
tree. Note that in the case of JMP𝑔 l we simply return the code l that is supplied as a parameter,
while for LAB𝑔

� f c we first unravel the graph c, then apply the function f to the resulting code,
and finally unravel the resulting graph. For instance, applying L·M to the example code graph above
gives the following code tree, in which the code PUSH 4 HALT at label l occurs twice:

PUSH 2 (JPZ (PUSH 4 HALT) (PUSH 3 (PUSH 4 HALT)))

Structured graphs rely on parametricity in the label type l to ensure that labels can only be
treated purely symbolically, i.e. they cannot be inspected. In our case, this means that we must
only construct graphs of the polymorphic type ∀ l.Code𝑔 l. The unravelling function L·M then
instantiates this polymorphic type to Code𝑔 Code, so that in the case of LLAB𝑔

� (_l → c′) cM it
can use function application to substitute the free occurrences of label l in c′ with the unravelled
code LcM. Parametricity ensures that the labels provided by LAB𝑔

� can only be used as names [Atkey
2009], but otherwise doesn’t play a role in our compiler calculations.

3.2 Compiler specification
Given the above definitions, our aim now is to calculate a compiler that produces graph-structured
code of type ∀ l.Code𝑔 l. First of all, the semantics exec𝑔 of such code can be defined by:

Beyond Trees: Calculating Graph-Based Compilers 7

exec𝑔 :: (∀ l.Code𝑔 l) → Stack → Stack
exec𝑔 c s = exec LcM s

In this manner, the execution of graph-structured code comprises two separate parts: the first
part, given by L·M, specifies how to execute jump instructions, while the second part, given by exec,
specifies how to execute all other instructions. Note that the parametric type ∀ l.Code𝑔 l of the
argument c is implicitly instantiated to Code𝑔 Code before it is passed to L·M.
The correctness of a graph-based compilation function comp𝑔 :: Expr → Code𝑔 l → Code𝑔 l can

now be expressed by the following equation, which has the same form as equation (1) for comp in
Section 2, except that it operates on code graphs rather than code trees:

exec𝑔 c (eval x : s) = exec𝑔 (comp𝑔 x c) s (3)

The above equation can then be simplified as follows:

exec𝑔 c (eval x : s) = exec𝑔 (comp𝑔 x c) s
⇔ { definition of exec𝑔 }
exec LcM (eval x : s) = exec Lcomp𝑔 x cM s
⇔ { correctness of comp }
exec (comp x LcM) s = exec Lcomp𝑔 x cM s
⇐ { congruence }
comp x LcM = Lcomp𝑔 x cM

In conclusion, to establish the correctness of the compilation function comp𝑔 it suffices to satisfy
the following simple equation, which provides a suitable specification from which we can calculate
the graph-based compiler comp𝑔 from the tree-based compiler comp:

comp x LcM = Lcomp𝑔 x cM (4)

3.3 Compiler calculation
In a similar manner to Section 2, the calculation proceeds from equation (4) by induction on the
expression x. For each case, we aim to transform the left side of the equation, comp x LcM, into the
form Lc′M for some code c′. We can then define comp𝑔 x c = c′ for that case, which by construction
satisfies the correctness equation. Unlike the calculation in Section 2, the function comp𝑔 is the only
unknown in equation (4), so no further definitions need to be discovered during the calculation.
The cases for values and addition are straightforward:

comp (Val n) LcM
= { definition of comp }
PUSH n LcM

= { definition of L·M }
LPUSH𝑔 n cM

and

comp (Add x y) LcM
= { definition of comp }
comp x (comp y (ADD LcM))

= { definition of L·M }
comp x (comp y LADD𝑔 cM)

= { induction hypothesis for y }
comp x Lcomp𝑔 y (ADD𝑔 c)M

8 Patrick Bahr and Graham Hutton

= { induction hypothesis for x }
Lcomp𝑔 x (comp𝑔 y (ADD𝑔 c))M

The case for conditionals is more involved, as this is where the move to graph-based code becomes
important. The calculation begins by applying comp, abstracting over the resulting duplicated
term LcM to avoid code duplication, and then using the definition of L·M to transform the term into a
form to which the induction hypothesis for the two branches y and z can be applied:

comp (If x y z) LcM
= { definition of comp }
comp x (JPZ (comp z LcM) (comp y LcM))

= { abstract over LcM }
comp x ((_l → JPZ (comp z l) (comp y l)) LcM)

= { definition of L·M }
comp x ((_l → JPZ (comp z LJMP𝑔 lM) (comp y LJMP𝑔 lM)) LcM)

= { induction hypothesis for y and z }
comp x ((_l → JPZ Lcomp𝑔 z (JMP𝑔 l)M Lcomp𝑔 y (JMP𝑔 l)M) LcM)

We then proceed by abstracting over the first argument of the JPZ instruction, which is motivated
by the desire for this argument to become an abstract jump label, and then transform the term into
a form to which the induction hypothesis for x can be applied:

comp x ((_l → JPZ Lcomp𝑔 z (JMP𝑔 l)M Lcomp𝑔 y (JMP𝑔 l)M) LcM)
= { abstract over Lcomp𝑔 z (JMP𝑔 l)M }
comp x ((_l → (_l′ → JPZ l′ Lcomp𝑔 y (JMP𝑔 l)M) Lcomp𝑔 z (JMP𝑔 l)M) LcM)

= { definition of L·M }
comp x ((_l → (_l′ → LJPZ𝑔 l′ (comp𝑔 y (JMP𝑔 l))M) Lcomp𝑔 z (JMP𝑔 l)M) LcM)

= { definition of L·M }
comp x ((_l → LLAB𝑔

� (_l′ → JPZ𝑔 l′ (comp𝑔 y (JMP𝑔 l))) (comp𝑔 z (JMP𝑔 l))M) LcM)
= { definition of L·M }
comp x LLAB𝑔

� (_l → LAB𝑔
� (_l′ → JPZ𝑔 l′ (comp𝑔 y (JMP𝑔 l))) (comp𝑔 z (JMP𝑔 l))) cM

= { induction hypothesis for x }
Lcomp𝑔 x (LAB𝑔

� (_l → LAB𝑔
� (_l′ → JPZ𝑔 l′ (comp𝑔 y (JMP𝑔 l))) (comp𝑔 z (JMP𝑔 l))) c)M

The final term above now has the required form, which completes the calculation for this case.
Note that in the two steps before the final step, we use the fact that the unravelling function L·M for
the case of labels can be beta-expanded to LLAB𝑔

� f cM = (_l → Lf lM) LcM.
The top-level compilation function compile𝑔 :: Expr → Code𝑔 l can be calculated in a similar

manner from the tree-based version compile :: Expr → Code using the specification compile x =

Lcompile𝑔 xM. Figure 2 summarises all calculated definitions. In conclusion, we have derived a
graph-based compiler that uses explicit labels and jumps to avoid the two issues with the previous
version, namely tree-structured code and code duplication. For example, applying compile𝑔 to the
expression If (Val 2) (Val 3) (Val 4) gives the code graph

PUSH𝑔 2 (LAB𝑔
� (_l → LAB𝑔

� (_l′ → JPZ𝑔 l′ (PUSH𝑔 3 (JMP𝑔 l))) (PUSH𝑔 4 (JMP𝑔 l))) HALT𝑔)

which corresponds to the following code in assembly-like notation:

Beyond Trees: Calculating Graph-Based Compilers 9

compile𝑔 :: Expr → Code𝑔 l
compile𝑔 x = comp𝑔 x HALT𝑔

comp𝑔 :: Expr → Code𝑔 l → Code𝑔 l
comp𝑔 (Val n) c = PUSH𝑔 n c
comp𝑔 (Add x y) c = comp𝑔 x (comp𝑔 y (ADD𝑔 c))
comp𝑔 (If x y z) c = comp𝑔 x (LAB𝑔

� (_l → LAB𝑔
� (_l′ →

JPZ𝑔 l′ (comp𝑔 y (JMP𝑔 l))) (comp𝑔 z (JMP𝑔 l))) c)

Fig. 2. Graph-based compiler for conditional expressions.

PUSH 2
JPZ l’
PUSH 3
JMP l

l’ : PUSH 4
JMP l

l : HALT

This code is both linear, i.e. each instruction is followed by at most one instruction, and avoids
duplication, i.e. there are two jumps to the code at label l rather than this code being duplicated.
For this simple example the code at label l is just HALT , but in general it could be an arbitrarily
large piece of code, which would be duplicated in the original tree-based function compile.

3.4 Reflection
We conclude this section with some reflective remarks on our new methodology.

Explicit versus generic definitions. The first step in calculating a graph-based compiler is the
definition of the type Code𝑔 of code graphs, and the function L·M that unravels a code graph to
the corresponding code tree. Both follow in a generic manner from the type Code of code trees.
This can be made explicit by defining a generic tree type Tree i and a corresponding graph type
Graph i l, parameterised by a type i of instructions. For example, given the instruction type

data Inst l = PUSH Int | ADD | JPZ l

we can show that Code is isomorphic to Tree Inst and that Code𝑔 l is isomorphic to Graph Inst l. The
unravelling function L·M can be defined as a generic function of type ∀ l.Graph i l → Tree i, indepen-
dent of the instruction type i. In turn, we can implement a generic function seqn :: ∀ l.Graph i l →
Seqn i that turns a graph into a sequence of instructions with explicit code pointers. By composing
a graph-based compiler with the generic function seqn, we can obtain a compiler that produces
linear code with explicit jumps. Details can be found in the accompanying Agda code. For simplicity
of exposition, in this article we follow the approach of [Bahr and Hutton 2015] and use explicit
definitions for the basic types and functions, rather than generic definitions.

Two-step calculation. The methodology [Bahr and Hutton 2015] that we used to calculate the
tree-based compiler comp can be viewed as a fusion of three separate calculation steps: introducing
a stack, introducing continuations, and defunctionalisation. It is thus natural to ask whether the
calculation of the graph-based compiler comp𝑔 from the tree-based version comp can be fused
with the calculation of comp from the source language semantics eval, such that we can calculate
comp𝑔 directly from eval. However, our calculation technique for producing graph-based compilers

10 Patrick Bahr and Graham Hutton

depends crucially on a two-step process, which prevents us from fusing the two steps together. We
can see this by considering the correctness specification for comp𝑔:

exec𝑔 c (eval x : s) = exec𝑔 (comp𝑔 x c) s
On its own, this equation does not express the desire for comp𝑔 to produce graph-structured code.
Indeed, the above equation is equivalent to the correctness specification for comp,

exec c (eval x : s) = exec (comp x c) s
if the type Code𝑔 and function exec𝑔 are considered as unknowns, in the same way that Code and
exec are unknowns for the latter equation. Instead, the desire for comp𝑔 to produced graph-shaped
code is expressed explicitly in the definition of Code𝑔 and exec𝑔, which are given prior to calculation
and are thus part of the specification. Moreover, as we have seen, these definitions follow in a
systematic manner from the calculation of the tree-based compiler comp.

Branching control flow. In essence, the method that we presented here allows us to calculate
compilers that produce code with branching control flow. This branching control flow manifests
itself as the tree-structured code produced by the original compiler comp. However, the tree-
structure itself is not necessarily the issue, but rather the underlying branching control flow. The
syntax of the source language is also tree-structured, but its semantics is not necessarily branching.
In particular, the semantics of addition in the source language is not branching and indeed comp
produces linear code for it. Wand [1982] and Gibbons [2021] have used this insight to derive a
compiler for a simple expression language without branching control flow by linearising the tree
structure of expressions using the associativity of function composition. However, this linearisation
crucially depends on the fact that the control flow of the language is not branching.

4 COMPILING TO CYCLIC CODE
Code produced by the compiler in the previous section can jump forward to other code locations.
However, for source languages that feature cyclic control flow, e.g. in the form of loops, we also
need to produce code that can jump backward. For example, the following piece of code in an
assembly-like notation repeatedly adds two to the top of the stack:

PUSH 0
l : PUSH 2

ADD
JMP l

To illustrate such looping, we consider a simple expression language with an infinite repetition
primitive, whose syntax and semantics can be defined as follows:

data Expr = Val Int | Add Expr Expr | Repeat Expr
eval :: Expr → Int
eval (Val n) = n
eval (Add x y) = eval x + eval y
eval (Repeat x) = let n = eval x in (eval (Repeat x))
This language provides a degenerate form of looping, but suffices to illustrate the core reasoning
principles prior to considering a more realistic example in Section 5. However, there is a problem
with the above definition for the eval function: we assume that our meta-language is total, but the
above definition may not terminate and is hence partial.

To express non-terminating computations, we require a means to explicitly represent them. The
partiality monad [Capretta 2005; Danielsson 2012] provides this functionality:

Beyond Trees: Calculating Graph-Based Compilers 11

codata Partial a = Now a | Later (Partial a)

Intuitively, Now v represents a computation that immediately returns the value v, while Later p
delays the computation p by one time step. The partiality type is defined coinductively, which
we indicate above by writing codata. In particular, this means that we can delay a computation
infinitely often to represent a non-terminating computation, such as:

never :: Partial a
never = Later never

While the definition for never is non-terminating, it is well-defined as the recursive call is guarded
by the coinductive constructor Later . The partiality type forms a monad under the following
definitions, which allows the do notation to be used with this type:

return :: a→ Partial a
return = Now

(>>=) :: Partial a→ (a→ Partial b) → Partial b
(Now x) >>= f = f x
(Later p) >>= f = Later (p >>= f)

We can now rewrite our semantics for expressions as a function of type Expr → Partial Int. We
ensure the definition is well-defined by making every recursive call either structurally recursive, as
in the case for addition, or guarding it by Later , as in the case for repetition:

eval :: Expr → Partial Int
eval (Val n) = return n
eval (Add x y) = do m← eval x; n← eval y; return (m + n)
eval (Repeat x) = do eval x; Later (eval (Repeat x))

4.1 Compiler specification
The compiler calculation methodology extends in a natural manner to a monadic setting [Bahr and
Hutton 2022]. First of all, because the source language semantics eval uses the partiality monad to
account for non-termination, so too does the target language semantics:

exec :: Code→ Stack → Partial Stack

Our aim now is to calculate a compiler comp :: Expr → Code→ Code that satisfies the correctness
property, which we formulate in a monadic style as follows:

do n← eval x; exec c (n : s) � exec (comp x c) s (5)

Both sides of the equation are computations of type Partial Stack, and we express their equivalence
using the (strong) bisimilarity relation �. Intuitively, p � q means that either p and q both diverge,
or p and q both produce the same value in the same number of steps. To formalise this idea, we
define a relation 𝑝 ⇓𝑖 𝑣 which expresses that 𝑝 terminates after at most 𝑖 steps with result 𝑣 :

Now v ⇓𝑖 v
p ⇓𝑖 v

Later p ⇓𝑖+1 v

We can think of ⇓𝑖 as capturing the idea of convergence using i units of ‘fuel’. The base case
for Now v uses index i rather than zero because we don’t need to use all the fuel. Given two

12 Patrick Bahr and Graham Hutton

computations p, q :: Partial a, we say that p and q are bisimilar, written p � q, if they coincide in
terms of their step-counting convergence behaviours, that is:

𝑝 ⇓𝑖 𝑣 iff 𝑞 ⇓𝑖 𝑣 for all v and i

The semantics of the source language is defined bymixed induction and coinduction: the recursive
calls for Add are structurally recursive, while the second recursive call for Repeat is guarded by
Later . Correspondingly, in addition to structural induction over Expr , compiler calculation requires
a coinductive reasoning principle for Partial a that is compatible with transitive reasoning. To this
end, we define a step-indexed notion of bisimilarity. Given two computations p, q :: Partial a and a
natural number i, we say that p and q are 𝑖-bisimilar, written p �𝑖 q, if the following holds:

𝑝 ⇓𝑗 𝑣 iff 𝑞 ⇓𝑗 𝑣 for all 𝑣 and 𝑗 < 𝑖

Step-indexed bisimilarity is by definition downwards closed, i.e. 𝑝 �𝑖 𝑞 implies 𝑝 �𝑗 𝑞 for all 𝑗 ≤ 𝑖 ,
which ensures that �𝑖 is a congruence for the monadic bind operator. Moreover, by definition, we
have p � q iff p �𝑖 q for all step counts 𝑖 . Hence, our compiler correctness equation (5) can be
expressed in the following equivalent form using step-indexed bisimilarity:

do n← eval x; exec c (n : s) �𝑖 exec (comp x c) s for all 𝑖 (6)

Compiler correctness can then be established by proving this equation by simultaneous induction
on x and i. During the proof, we can assume that for all step counts 𝑗 < 𝑖 , we have:

do n← eval x′; exec c′ (n : s′) �𝑗 exec (comp x′ c′) s′

This inductive hypothesis can then be used by applying the following proof rule, which allows the
induction hypothesis to be applied to any term that is guarded by a Later :

p �𝑗 q for all 𝑗 < 𝑖

Later p �𝑖 Later q (7)

During the calculation, we also use the fact that Partial satisfies the monad laws up to bisimilarity,
and hence the laws also hold for our notion of step-indexed bisimilarity:

return x >>= f � f x

p >>= return � p

(p >>= f) >>= g � p >>= (_x → (f x >>= g))

4.2 Compiler calculation
The calculation aims to transform the left side do n← eval x; exec c (n : s) of equation (6) into the
form exec c′ s for some code c′, from which we can then define comp x c = c′ for this case. The
cases for values and addition proceed in a similar manner to Section 2, except that we are now
working in a monadic setting and use step-indexed bisimilarity. The Val calculation is given below
by way of example, while the Add calculation can be found in Bahr and Hutton [2022]:

do v ← eval (Val n); exec c (v : s)
= { definition of eval }
do v ← return n; exec c (v : s)
�𝑖 { monad laws }
exec c (n : s)

= { define: exec (PUSH n c) s = exec c (n : s) }
exec (PUSH n c) s

Beyond Trees: Calculating Graph-Based Compilers 13

The case for Repeat begins by applying definitions and the monad laws, which then allows proof
rule (7) to be used to apply the induction hypothesis for all step counts j < i:

do n← eval (Repeat x); exec c (n : s)
= { definition of eval }
do n← (do eval x; Later (eval (Repeat x))); exec c (n : s)
�𝑖 { monad laws }
do eval x; n← Later (eval (Repeat x)); exec c (n : s)

= { defintion of >>= }
do eval x; Later (do n← eval (Repeat x); exec c (n : s))
�𝑖 { proof rule (7) and induction hypothesis for j < i }
do eval x; Later (exec (comp (Repeat x) c) s)

We could now continue the calculation to obtain a term of the desired form exec c′ s, from which we
can then define comp (Repeat x) c = c′. However, the resulting code c′ would include a recursive
call to comp (Repeat x) c itself, which means that the compiler does not terminate in this case and
is hence partial. To ensure that the compiler is total, we introduce a coinductive code constructor
REC :: ∞ Code → Code that can be used to guard non-terminating recursive calls, similarly to
the use of Later in the definition of eval. Here we use∞ to indicate that the argument of REC is
coinductive, whereas arguments of the other code constructors are inductive. This is similar to
the∞ notation for mixed inductive-coinductive types in Agda [Danielsson and Altenkirch 2010],
but to reduce clutter we assume conversions Delay :: Code→∞ Code and Force ::∞ Code→ Code
are inserted implicitly in the appropriate places as in Idris [Brady 2017].

We now resume our calculation. To ensure that the call to comp (Repeat x) c in the current term
of the calculation is guarded by REC, we can try to solve the following equation:

exec (REC (comp (Repeat x) c)) s = exec (comp (Repeat x) c) s
This can be solved by generalising from the specific term comp (Repeat x) c to give

exec (REC c) s = exec c s

which can then be taken as a defining clause for exec. However, because REC is a coinductive
constructor, c is not structurally smaller than REC c. To ensure well-definedness, the recursive
call must be guarded by the coinductive constructor Later . This constructor already appears in the
current term in our calculation, so we can make progress by instead solving the equation

exec (REC (comp (Repeat x) c)) s = Later (exec (comp (Repeat x) c) s)
which can be achieved by once again generalising from the specific term comp (Repeat x) c, and
then taking the resulting equation as a defining clause for the function exec:

exec (REC c) s = Later (exec c s)
Using this idea, we can now continue the calculation, during which we introduce a new code
constructor POP that simply removes the top value from the stack, motivated by the desire to
transform the term into a form to which the induction hypothesis for x can be applied:

do eval x; Later (exec (comp (Repeat x) c) s)
= { define: exec (REC c) s = Later (exec c s) }
do eval x; exec (REC (comp (Repeat x) c)) s

= { define: exec (POP c) (: s) = exec c s }
do n← eval x; exec (POP (REC (comp (Repeat x) c))) (n : s)

14 Patrick Bahr and Graham Hutton

data Code = HALT | PUSH Int Code | ADD Code | REC (∞ Code) | POP Code

compile :: Expr → Code
compile e = comp e HALT

comp :: Expr → Code→ Code
comp (Val n) c = PUSH n c
comp (Add x y) c = comp x (comp y (ADD c))
comp (Repeat x) c = comp x (POP (REC (comp (Repeat x) c)))
exec :: Code→ Stack → Partial Stack
exec HALT s = return s
exec (PUSH n c) s = exec c (n : s)
exec (ADD c) (m : n : s) = exec c ((n +m) : s)
exec (REC c) s = Later (exec c s)
exec (POP c) (: s) = exec c s
exec = return []

Fig. 3. Initial compiler for the repetition language.

�𝑖 { induction hypothesis for x }
exec (comp x (POP (REC (comp (Repeat x) c)))) s

The final term above now has the required form, which completes the calculation for this case.
Finally, the top-level compilation function compile :: Expr → Code can be calculated in a similar
manner to Section 2, starting from the following specification:

do n← eval x; return (n : s) � exec (compile x) s (8)

Figure 3 summarises all the definitions we have calculated, along with a catch-all clause to make
exec total, which as previously can be chosen arbitrarily as it plays no role in the calculation.

4.3 Cyclic graphs
The compiler we have calculated for the repetition language produces linear code, but suffers from
another problem that makes it unrealistic. In particular, the coinductive constructor REC allows
code sequences to be infinite, which is utilised when compiling repetition:

comp (Repeat x) c = comp x (POP (REC (comp (Repeat x) c)))

However, all is not last as the compiler only produces cyclic sequences of code, which can be
represented finitely if we allow cyclic jumps. To this end, we define a graph-based version of the
code type with explicit labels and jumps, as we did in Section 3. However, that code type only
permitted acyclic control flow, i.e. code could jump forward, but not backward.
To allow backward jumps, we include a new instruction LAB𝑔

� that takes a function parameter
of type l → Code𝑔 l, such that a term of the form LAB𝑔

� (_l → c) labels the code c with a fresh
label l and makes that label available in c so that it can jump backward to itself. As we now only
need to represent finite code sequences, the coinductive constructor REC is no longer required.
Taken together, our graph-based code type is defined as follows:

data Code𝑔 l = HALT𝑔 | PUSH𝑔 Int (Code𝑔 l) | ADD𝑔 (Code𝑔 l) | POP𝑔 (Code𝑔 l) | JMP𝑔 l |
LAB𝑔

� (l → Code𝑔 l) (Code𝑔 l) | LAB𝑔
� (l → Code𝑔 l)

Beyond Trees: Calculating Graph-Based Compilers 15

For example, the code fragment from the beginning of this section,

PUSH 0
l : PUSH 2

ADD
JMP l

can be represented by the following term of type Code𝑔 l:

PUSH𝑔 0 (LAB𝑔
� (_l → PUSH𝑔 2 (ADD𝑔 (JMP𝑔 l))))

The function L·M that unravels a code graph to a code sequence is then defined as follows:

L·M :: Code𝑔 Code→ Code
LHALT𝑔M = HALT
LPUSH𝑔 n cM = PUSH n LcM
LADD𝑔 cM = ADD LcM
LPOP𝑔 cM = POP LcM
LJMP𝑔 lM = l
LLAB𝑔

� f cM = Lf LcMM
LLAB𝑔

� f M = Lf (REC LLAB𝑔
� f M)M

Note that for a backward jump LAB𝑔
� one of the recursive calls is not structurally recursive, and

hence we need to guard it by the coinductive constructor REC. For instance, applying L·M to the
example code graph above gives the following infinite, but cyclic, code sequence:

PUSH 0 c where c = PUSH 2 (ADD (REC c))

4.4 Compiler calculation
We can now calculate a graph-based compiler for the repetition language in a similar manner to
Section 3. As previously, we begin by defining the semantics of code graphs by unravelling:

exec𝑔 :: (∀ l.Code𝑔 l) → Stack → Partial Stack
exec𝑔 c s = exec LcM s

The correctness of a graph-based compilation function comp𝑔 :: Expr → Code𝑔 l → Code𝑔 l can
then be expressed by the following bisimilarity equation:

do n← eval x; exec𝑔 c (n : s) � exec𝑔 (comp𝑔 x c) s (9)

Similarly to the approach in Section 3, we can use the definition of exec𝑔 and the correctness
equation (5) for the original compiler comp to strengthen this equation to:

comp x LcM � Lcomp𝑔 x cM (10)

This equation uses a bisimilarity relation � on the Code type. Similarly to bisimilarity on the
coinductive type Partial, bisimilarity on code can be expressed equivalently by a step-indexed
relation �𝑖 , where for two pieces of code c, d ::Code, writing c �𝑖 d intuitively means that we cannot
distinguish between c and d if we traverse both code sequences but may only look under at most i
nested occurrences of the coinductive constructor REC. Hence, equation (10) can be expressed in
the following equivalent form using step-indexed bisimilarity:

comp x LcM �𝑖 Lcomp𝑔 x cM for all 𝑖 (11)

16 Patrick Bahr and Graham Hutton

The step-indexed relation �𝑖 is a congruence for all inductive constructors of the Code type. In
addition, in a similar manner to the coinductive constructor Later of the Partial monad, we have
the following proof rule for the coinductive constructor REC:

𝑐 �𝑗 𝑑 for all 𝑗 < 𝑖

REC c �𝑖 REC d
(12)

From the above congruence properties, we also obtain the following congruence property for comp,
which can be proved by a straightforward induction on the expression x:

c �𝑖 d

comp x c �𝑖 comp x d (13)

Calculation of the compiler comp𝑔 now proceeds from equation (11) by simultaneous induction
on x and i. For each case, we aim to transform the left side of the equation, comp x LcM, into the
form Lc′M for some code c′, so that we can then define comp𝑔 x c = c′. The calculations for values
and addition are exactly as in Section 3. The calculation for repetition is given below. Its key step is
abstracting over the term starting with REC that is motivated by the desire to apply the definition
clause of L·M in which such a term appears as argument to a function.

comp (Repeat x) LcM
= { definition of comp }
comp x (POP (REC (comp (Repeat x) LcM)))
�𝑖 { proof rule (11) and induction hypothesis for 𝑗 < 𝑖 }
comp x (POP (REC Lcomp𝑔 (Repeat x) cM))

= { abstract over REC Lcomp𝑔 (Repeat x) cM }
(_l → comp x (POP l)) (REC Lcomp𝑔 (Repeat x) cM)

= { definition of L·M }
(_l → comp x (POP LJMP𝑔 lM)) (REC Lcomp𝑔 (Repeat x) cM)

= { definition of L·M }
(_l → comp x LPOP𝑔 (JMP𝑔 l)M) (REC Lcomp𝑔 (Repeat x) cM)
�𝑖 { induction hypothesis for x }
(_l → Lcomp𝑔 x (POP𝑔 (JMP𝑔 l))M) (REC Lcomp𝑔 (Repeat x) cM)

= { definition of L·M }
LLAB𝑔

� (_l → comp𝑔 x (POP𝑔 (JMP𝑔 l)))M

The final term is now of the required form, which gives the following clause for comp𝑔:

comp𝑔 (Repeat x) c = LAB𝑔
� (_l → comp𝑔 x (POP𝑔 (JMP𝑔 l)))

To understand the final step of the calculation, it is helpful to expand out the term comp𝑔 (Repeat x) c
using this clause, from which it is then clear that the final step uses the definition of L·M for backward
labels, in the beta-expanded form LLAB𝑔

� f M = (_l → Lf lM) (REC LLAB𝑔
� f M):

(_l → Lcomp𝑔 x (POP𝑔 (JMP𝑔 l))M) (REC LLAB𝑔
� (_l → comp𝑔 x (POP𝑔 (JMP𝑔 l)))M)

= { definition of L·M }
LLAB𝑔

� (_l → comp𝑔 x (POP𝑔 (JMP𝑔 l)))M

Figure 4 gives the full definition for comp𝑔 that we have calculated, along with the top-level
compilation function compile𝑔 that can be calculated in a similar manner to previously.

Beyond Trees: Calculating Graph-Based Compilers 17

compile𝑔 :: Expr → Code𝑔 l
compile𝑔 x = comp𝑔 x HALT𝑔

comp𝑔 :: Expr → Code𝑔 l → Code𝑔 l
comp𝑔 (Val n) c = PUSH𝑔 n c
comp𝑔 (Add x y) c = comp𝑔 x (comp𝑔 y (ADD𝑔 c))
comp𝑔 (Repeat x) c = LAB𝑔

� (_l → comp𝑔 x (POP𝑔 (JMP𝑔 l)))

Fig. 4. Graph-based compiler for the repetition language.

In conclusion, we have derived a graph-based compiler that produces finite code by representing
the infinite code sequences produced by compile using backward jumps. For example, applying
compile𝑔 to the expression Repeat (Add (Val 2) (Val 3)) gives the code graph
LAB𝑔

� (_l → PUSH𝑔 2 (PUSH𝑔 3 (ADD𝑔 (POP𝑔 (JMP𝑔 l)))))
which corresponds to the following code in assembly-like notation:

l: PUSH 2
PUSH 3
ADD
POP
JMP l

In particular, this code avoids the need for infinite code by using a label and jump to capture the
cyclic behaviour of the repetition primitive in the source language.

5 WHILE LOOPS AND STATE
For our final example, we consider a more realistic language that features while loops, along with
primitives for reading and writing a mutable reference cell that stores an integer value. In particular,
the reference cell allows loops to be constructed that have any desired number of iterations, both
finite and infinite. The syntax of the language is defined as follows:

data Expr = Val Int | Add Expr Expr | Get | Put Expr Expr | While Expr Expr

Informally, Get returns the current value of the reference cell, Put x y sets the cell to the value of
the expression x and then behaves as the expression y, and While x y repeatedly evaluates y as
long as x has a non-zero value. For example, the following expression sets the reference cell to ten
and then repeatedly decrements the reference until it becomes zero:

Put (Val 10) (While Get (Put (Add Get (Val (−1))) Get))
Because while loops may not always terminate, we again use the partiality monad to define the

semantics of the language. In addition, we also need to keep track of the state of the reference cell,
so the semantics of an expression becomes a state transformer:

type State = Int

eval :: Expr → State→ Partial (Int, State)
eval (Val n) q = return (n, q)
eval (Add x y) q = do (m, q1) ← eval x q; (n, q2) ← eval y q1; return (m + n, q2)
eval Get q = return (q, q)
eval (Put x y) q = do (n,) ← eval x q; eval y n

18 Patrick Bahr and Graham Hutton

eval (While x y) q = do (n, q1) ← eval x q
if n == 0 then return (0, q1)
else do (, q2) ← eval y q1; Later (eval (While x y) q2)

As we already use the symbol s for stacks, in this section we use the symbol q for states. Note that
the above semantics combines the partiality monad with the state monad. However, for calculation
purposes we don’t treat the state monad abstractly, but instead explicitly manipulate the state as
shown above. This approach allows us to discover an appropriate mechanism to compile the state
monad effect to a lower-level implementation in the target machine.

5.1 Tree-based compiler
For the tree-based compiler, we follow the methodology of Bahr and Hutton [2015], in which the
target machine is specified as a function exec :: Code→ Conf → Conf , where Conf is the type of
machine configurations that comprise a stack and a stack. However, as in the previous section, to
account for non-termination we amend the type of exec to use the partiality monad:
type Conf = (Stack, State)
exec :: Code→ Conf → Partial Conf

The type of the compiler remains the same as previously, comp :: Expr → Code→ Code, while
the compiler correctness property can be adapted for the presence of state as follows:

do (n, q′) ← eval x q; exec c (n : s, q′) � exec (comp x c) (s, q) (14)
As before, however, for the purposes of calculating the compiler we utilise the following equivalent
version that is expressed using step-indexed bisimilarity:

do (n, q′) ← eval x q; exec c (n : s, q′) �𝑖 exec (comp x c) (s, q) for all 𝑖 (15)
We now proceed with the calculation, by induction on x and i. In a similar manner to previously,

we start with the left side of equation (15) and aim to transform it into the form exec c′ (s, q) for
some code c′, so that we can then define comp x c = c′. We give the calculations for Get and While
below. The other cases are similar and can be found in the accompanying Agda formalisation.
The case for Get applies the definition of eval, simplifies the resulting term using the monad

laws, and finally introduces a new code constructor LOAD to obtain a term of the desired form:
do (n, q′) ← eval Get q; exec c (n : s, q′)

= { definition of eval }
do (n, q′) ← return (q, q); exec c (n : s, q′)
�𝑖 { monad laws }
exec c (q : s, q)

= { define exec (LOAD c) (s, q) = exec c (q : s, q) }
exec (LOAD c) (s, q)

The case forWhile begins in a manner similar to Repeat from Section 4.2:
do (m, q′) ← eval (While x y) q; exec c (m : s, q′)

= { definition of eval }
do (m, q′) ← (do (n, q1) ← eval x q; if n == 0 then return (0, q1)

else do (, q2) ← eval y q1
Later (eval (While x y) q2))

exec c (m : s, q′)
�𝑖 { monad laws }

Beyond Trees: Calculating Graph-Based Compilers 19

do (n, q1) ← eval x q; if n == 0 then exec c (0 : s, q1)
else do (, q2) ← eval y q1

(n, q3) ← Later (eval (While x y) q2)
exec c (n : s, q3)

= { defintion of >>= }
do (n, q1) ← eval x q; if n == 0 then exec c (0 : s, q1)

else do (, q2) ← eval y q1
Later (do (n, q3) ← eval (While x y) q2; exec c (n : s, q3))

�𝑖 { proof rule (7) and induction hypothesis for j < i }
do (n, q1) ← eval x q; if n == 0 then exec c (0 : s, q1)

else do (, q2) ← eval y q1
Later (exec (comp (While x y) c) (s, q2))

Similarly to the calculation for Repeat, to ensure that the resulting compiler is total, we now seek
to guard the call comp (While x y) c in the final term above by a coinductive code constructor
REC ::∞ Code→ Code. That is, we seek to solve the following equation:

exec (REC (comp (While x y) c)) (s, q2) = Later (exec (comp (While x y) c) (s, q2))

This can be solved by generalising from the specific term comp (While x y) c to give

exec (REC c) (s, q2) = Later (exec c (s, q2))

which can then be taken as defining clause for exec. Using this idea, we can now continue the
calculation, during which we introduce new code constructors POP and JPZ in a similar manner to
previously, to allow the induction hypotheses for the argument expressions to be applied:

do (n, q1) ← eval x q; if n == 0 then exec c (0 : s, q1)
else do (, q2) ← eval y q1; Later (exec (comp (While x y) c) (s, q2))

= { define: exec (REC c) (s, q) = Later (exec c (s, q)) }
do (n, q1) ← eval x q; if n == 0 then exec c (0 : s, q1)

else do (, q2) ← eval y q1; exec (REC (comp (While x y) c)) (s, q2)
= { define: exec (POP c) (: s, q) = exec c (s, q) }
do (n, q1) ← eval x q; if n == 0 then exec c (0 : s, q1)

else do (m, q2) ← eval y q1
exec (POP (REC (comp (While x y) c))) (m : s, q2)

�𝑖 { induction hypothesis for y }
do (n, q1) ← eval x q; if n == 0 then exec c (0 : s, q1)

else exec (comp y (POP (REC (comp (While x y) c)))) (s, q1)
= { define: exec (JPZ c′ c) (n : s, q) = if n == 0 then exec c′ (0 : s, q) else exec c (s, q) }
do (n, q1) ← eval x q; exec JPZ c (comp y (POP (REC (comp (While x y) c)))) (n : s, q1)
�𝑖 { induction hypothesis for x }
exec (comp x (JPZ c (comp y (POP (REC (comp (While x y) c)))))) (s, q)

The final term now has the required form, from which we obtain the definition:

comp (While x y) c = comp x (JPZ c (comp y (POP (REC (comp (While x y) c)))))

Figure 5 presents all definitions that are calculated in this manner, along with the top-level compi-
lation function compile, and a catch-all clause for exec to make it total.

20 Patrick Bahr and Graham Hutton

data Code = HALT | PUSH Int Code | ADD Code | LOAD Code | STORE Code |
REC (∞ Code) | POP Code | JPZ Code Code

compile :: Expr → Code
compile e = comp e HALT

comp :: Expr → Code→ Code
comp (Val n) c = PUSH n c
comp (Add x y) c = comp x (comp y (ADD c))
comp Get c = LOAD c
comp (Put x y) c = comp x (STORE (comp y c))
comp (While x y) c = comp x (JPZ c (comp y (POP (REC (comp (While x y) c)))))
exec :: Code→ Conf → Partial Conf
exec HALT conf = return conf
exec (PUSH n c) (s, q) = exec c (n : s, q)
exec (ADD c) (m : n : s, q) = exec c ((n +m) : s, q)
exec (LOAD c) (s, q) = exec c (q : s, q)
exec (STORE c) (n : s,) = exec c (s, n)
exec (REC c) conf = Later (exec c conf)
exec (POP c) (: s, q) = exec c (s, q)
exec (JPZ c′ c) (n : s, q) = if n == 0 then exec c′ (0 : s, q) else exec c (s, q)
exec = return ([], 0)

Fig. 5. Tree-based compiler for the while language.

5.2 Graph-based compiler
The compiler we have calculated for the repetition language is unrealistic for three reasons, all
concerning while loops. First of all, the compiler produces tree-shaped code because the JPZ
instruction takes two pieces of code as arguments. Secondly, it duplicates the additional code c
when compiling while loops. And finally, it produces infinite code because while loops are compiled
by unrolling the loop. However, the compiler in fact only produces regular trees, i.e. trees with only
finitely many subtrees, which may be represented finitely if we allow cyclic jumps.

To calculate a graph-based compiler from the tree-based version in Figure 5, we proceed in the
same manner as the repetition language in the previous section. First of all, we turn the Code type
into a corresponding structured graph type Code𝑔 l that supports forward and backward jumps,
and define its canonical unravelling function L·M, as shown in Figure 6.

Next, we define the semantics of the graph-based target language by unravelling:

exec𝑔 :: (∀ l.Code𝑔 l) → Conf → Partial Conf
exec𝑔 c s = exec LcM s

The correctness of our graph-based compilation function comp𝑔 :: Expr → Code𝑔 l → Code𝑔 l can
then be expressed by the following bisimilarity relation in the partiality monad:

exec𝑔 c (eval x : s, q) � exec𝑔 (comp𝑔 x c) (s, q) (16)

Beyond Trees: Calculating Graph-Based Compilers 21

data Code𝑔 l
= HALT𝑔

| PUSH𝑔 Int (Code𝑔 l)
| ADD𝑔 (Code𝑔 l)
| LOAD𝑔 (Code𝑔 l)
| STORE𝑔 (Code𝑔 l)
| POP𝑔 (Code𝑔 l)
| JPZ𝑔 l (Code𝑔 l)
| JMP𝑔 l
| LAB𝑔

� (l → Code𝑔 l) (Code𝑔 l)
| LAB𝑔

� (l → Code𝑔 l)

L·M :: Code𝑔 Code→ Code
LHALT𝑔M = HALT
LPUSH𝑔 n cM = PUSH n LcM
LADD𝑔 cM = ADD LcM
LLOAD𝑔 cM = LOAD LcM
LSTORE𝑔 cM = STORE LcM
LPOP𝑔 cM = POP LcM
LJPZ𝑔 l cM = JPZ l LcM
LJMP𝑔 lM = l
LLAB𝑔

� f cM = Lf LcMM
LLAB𝑔

� f M = Lf (REC LLAB𝑔
� f M)M

Fig. 6. Graph-based code and its unravelling for the while language.

Using the definition of exec𝑔 and the correctness equation (14) for the tree-based compiler comp,
this equation can be strengthened to a bisimilarity relation on the Code type,

comp x LcM � Lcomp𝑔 x cM (17)

which can then be formulated equivalently using a step-indexed bisimilarity relation on Code:

comp x LcM �𝑖 Lcomp𝑔 x cM for all 𝑖 (18)

The calculation of comp𝑔 proceeds from equation (18) by induction on x and i. The cases for
Val, Add, Get and Put are straightforward: first apply the definition of comp, then turn all tree-
based terms into graph-based versions in a syntax-directed manner by applying the definition of
unravelling, or an induction hypothesis. The interesting case is the calculation for While, which is
shown in Figure 7. This calculation combines the ideas that were used for conditionals in Section 3
and repetition in Section 4. In particular, the key steps in the calculation are abstracting over the
REC term to introduce a backward jump that avoids infinite code, and abstracting over the term LcM
to introduce a forward jump that avoids tree-shaped code and code duplication. The result of the
calculation is the graph-based compiler implementation shown in Figure 8.

6 RELATEDWORK
We have discussed related work on deriving correct-by-construction compilers throughout the
paper. We supplement that discussion with related work in other relevant areas below.

Graphs. There are many approaches to representing graph in functional languages. Most use
explicit names to identify vertices in a graph, often represented as integers [Kashiwagi and Wise
1991; King and Launchbury 1995; Martin Erwig 2001]. Such representations are often motivated
by efficiency considerations. However, efficient graph representations can still admit powerful
high-level reasoning principles as King and Launchbury [1995] have shown. More recently, Mokhov
[2017] introduced a high-level combinator library to construct graphs, and the structured graphs of
[Oliveira and Cook 2012] make use of higher-order abstract syntax to avoid explicit names.

Reasoning. To the best of our knowledge, there is little work on the use of structured graphs
for formal reasoning. Oliveira and Cook [2012] present some equational laws for map and fold
for a simple type of structured graphs, namely cyclic streams. Bahr [2014] uses structured graphs
to implement a graph-based compiler and prove it correct in two stages: first, prove a tree-based

22 Patrick Bahr and Graham Hutton

comp (While x y) LcM
= { definition of comp }
comp x (JPZ LcM (comp y (POP (REC (comp (While x y) LcM)))))
�𝑖 { induction hypothesis for 𝑗 < 𝑖 }
comp x (JPZ LcM (comp y (POP (REC Lcomp𝑔 (While x y) cM))))

= { abstract over REC Lcomp𝑔 (While x y) cM }
(_l → comp x (JPZ LcM (comp y (POP l)))) (REC Lcomp𝑔 (While x y) cM)

= { definition of L·M }
(_l → comp x (JPZ LcM (comp y (POP LJMP𝑔 lM)))) (REC Lcomp𝑔 (While x y) cM)

= { definition of L·M }
(_l → comp x (JPZ LcM (comp y LPOP𝑔 (JMP𝑔 l)M))) (REC Lcomp𝑔 (While x y) cM)
�𝑖 { induction hypothesis for y }
(_l → comp x (JPZ LcM Lcomp𝑔 y (POP𝑔 (JMP𝑔 l))M)) (REC Lcomp𝑔 (While x y) cM)

= { abstract over LcM }
(_l → comp x ((_l′ → JPZ l′ Lcomp𝑔 y (POP𝑔 (JMP𝑔 l))M) LcM)) (REC Lcomp𝑔 (While x y) cM)

= { definition of L·M }
(_l → comp x ((_l′ → LJPZ𝑔 l′ (comp𝑔 y (POP𝑔 (JMP𝑔 l)))M) LcM)) (REC Lcomp𝑔 (While x y) cM)

= { definition of L·M }
(_l → comp x LLAB𝑔

� (_l′ → JPZ𝑔 l′ (comp𝑔 y (POP𝑔 (JMP𝑔 l)))) cM) (REC Lcomp𝑔 (While x y) cM)
�𝑖 { induction hypothesis for x }
(_l → Lcomp𝑔 x (LAB𝑔

� (_l′ → JPZ𝑔 l′ (comp𝑔 y (POP𝑔 (JMP𝑔 l)))) c)M) (REC Lcomp𝑔 (While x y) cM)
= { definition of L·M }
LLAB𝑔

� (_l → comp𝑔 x (LAB𝑔
� (_l′ → JPZ𝑔 l′ (comp𝑔 y (POP𝑔 (JMP𝑔 l)))) c))M

Fig. 7. Calculation of comp𝑔 for while loops.

compile𝑔 :: Expr → Code𝑔 l
compile𝑔 e = comp𝑔 e HALT𝑔

comp𝑔 :: Expr → Code𝑔 l → Code𝑔 l
comp𝑔 (Val n) c = PUSH𝑔 n c
comp𝑔 (Add x y) c = comp𝑔 x (comp𝑔 y (ADD𝑔 c))
comp𝑔 Get c = LOAD𝑔 c
comp𝑔 (Put x y) c = comp𝑔 x (STORE𝑔 (comp𝑔 y c))
comp𝑔 (While x y) c = LAB𝑔

� (_l → comp𝑔 x (LAB𝑔
� (_l′ → JPZ𝑔 l′ (comp𝑔 y (POP𝑔 (JMP𝑔 l)))) c))

Fig. 8. Graph-based compiler for the while language.

compiler correct, essentially the correctness property (1) of comp; and secondly, prove that the
graph-based compiler is equivalent to the tree-based compiler, essentially the correctness property
(4) of comp𝑔. The main differences to the present work is that Bahr proves correctness post hoc,
whereas we calculate compilers from their specification, and his work is limited to acyclic graphs
and terminating languages, whereas we considered cyclic graphs and non-termination.

Cyclic control-flow. Cyclic graphs mark a qualitative difference in the expressive power of the
target language compared to acyclic graphs, as graphs can no longer be represented by finite trees
if they contain cycles. Some previous work does consider languages with cyclic control-flow, e.g.
Bahr and Hutton [2022] calculate a compiler for a language with while loops. However, as the

Beyond Trees: Calculating Graph-Based Compilers 23

target language is limited to finite trees, the looping behaviour is instead imitated by repeatedly
copying the code for a while loop to the stack and retrieving it later when it has to be executed
again. Meijer [1992] also calculates a compiler for a language with while loops, starting with a
least fixed-point semantics of such loops. In Meijer’s approach, the syntax of the target language is
not formally defined but is instead simply made up of the calculated combinators that are used to
describe the source language semantics. Depending on the semantics of the meta language, one
could interpret the target code as infinite trees. But it is not clear how the least fixed-points of the
semantics give rise to a co-inductive syntax for the target language.

Control-flow graphs. The code produced by the graph-based compiler compile𝑔 corresponds to
a control-flow graph. In compiler implementations, such graphs typically use concrete labels, i.e.
unique identifiers, to specify targets of branching control flow [Ramsey and Dias 2006; Ramsey
et al. 2010]. We also find this representation of control-flow using concrete labels in large-scale
compiler verification efforts, e.g. CompCert [Leroy 2009] and CakeML [Kumar et al. 2014].

7 CONCLUSION AND FURTHERWORK
We have shown how existing work on deriving correct-by-construction compilers that produce
tree-structured code can be extended to instead produce graph-structured code. While our method
is calculational and hence naturally complements a calculational approach such as Meijer [1992]
and Bahr and Hutton [2015], it also readily applies to other methods such as Wand [1995] and
Ager et al. [2003]. By combining our method with existing tree-based calculation methods, we can
calculate graph-based compilers for lambda calculi [Bahr and Hutton 2022], concurrent source
languages [Bahr and Hutton 2023] and register-based target languages [Bahr and Hutton 2020].
The key issue when calculating graph-based compilers is dealing with names, i.e. labels that

denote code pointers. We used parametric higher-order abstract syntax [Chlipala 2008] because
it requires little additional machinery, both for manual pen and paper proofs, and when using a
mechanical proof assistant. A drawback of parametric higher-order abstract syntax is that reasoning
about parametricity is underdeveloped, and often not possible in proof assistants. For example,
such reasoning is necessary if we wished to calculate a direct implementation of the graph-based
machine exec𝑔 by fusing together the exec and L·M functions in the definition exec𝑔 c s = exec LcM s. In
the accompanying Agda formalisation, we give an example of such a calculation. The formalisation
also gives an alternative representation of Code𝑔, which uses de Bruijn indices [de Bruijn 1972]
rather than parametric higher-order abstract syntax. It may also be useful to consider other name
representations, particularly if good support for them is available in a proof assistant.

Our graph-based code type Code𝑔 has two labelling constructors LAB𝑔
� and LAB𝑔

� for forward and
for backward jumps, respectively. Some graphs are not expressible using only these constructors,
such as those with overlapping jumps, but so far we have not found the need for more general
graph constructors in our compiler calculations. However, LAB𝑔

� and LAB𝑔
� can be combined into

a more general constructor LAB𝑔 :: (Vec l n→ Vec (Code𝑔 l) n) → Code𝑔 l similarly to the original
work on structured graphs [Oliveira and Cook 2012] to extend expressiveness if needed.

Our use of step-indexing for equational reasoning about coinductive types, namely Partial and
Code, is also motivated by the fact that it requires relatively little formal machinery, and can be
readily used in many proof assistants. More advanced methods for coinductive definitions and
reasoning, such as guarded recursion [Nakano 2000] and sized types [Hughes et al. 1996], could
allow compiler calculations to be streamlined in a proof assistant that supports these features.
In particular if combined with cubical type theory [Birkedal et al. 2016], guarded types support
powerful equational reasoning principles for coinductive types [Møgelberg and Veltri 2019].

24 Patrick Bahr and Graham Hutton

REFERENCES
Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. 2003. From Interpreter to Compiler and Virtual Machine:

A Functional Derivation. Technical Report RS-03-14. Department of Computer Science, University of Aarhus.
Robert Atkey. 2009. Syntax for Free: Representing Syntax with Binding Using Parametricity. In Typed Lambda Calculi and

Applications. Lecture Notes in Computer Science, Vol. 5608.
Roland Backhouse. 2003. Program Construction: Calculating Implementations from Specifications. John Wiley and Sons, Inc.
Patrick Bahr. 2014. Proving Correctness of Compilers Using Structured Graphs. In Functional and Logic Programming

(Lecture Notes in Computer Science, Vol. 8475).
Patrick Bahr and Graham Hutton. 2015. Calculating Correct Compilers. Journal of Functional Programming 25 (2015).
Patrick Bahr and Graham Hutton. 2020. Calculating Correct Compilers II: Return of the Register Machines. Journal of

Functional Programming 30 (2020).
Patrick Bahr and Graham Hutton. 2022. Monadic Compiler Calculation. Proceedings of the ACM on Programming Languages

6, ICFP, Article 93 (2022).
Patrick Bahr and Graham Hutton. 2023. Calculating Compilers for Concurrency. Proceedings of the ACM on Programming

Languages 7, ICFP, Article 213 (2023).
Lars Birkedal, Aleš Bizjak, Ranald Clouston, Hans Bugge Grathwohl, Bas Spitters, and Andrea Vezzosi. 2016. Guarded

Cubical Type Theory: Path Equality for Guarded Recursion. Schloss-Dagstuhl - Leibniz Zentrum für Informatik.
Edwin Brady. 2017. Type-Driven Development with Idris. Manning Publications.
Venanzio Capretta. 2005. General Recursion via Coinductive Types. Logical Methods in Computer Science 1, 2 (2005).
Adam Chlipala. 2008. Parametric Higher-Order Abstract Syntax for Mechanized Semantics. In Proceedings of the International

Conference on Functional Programming.
Nils Anders Danielsson. 2012. Operational Semantics Using the Partiality Monad. In Proceedings of the International

Conference on Functional Programming.
Nils Anders Danielsson and Thorsten Altenkirch. 2010. Subtyping, Declaratively. In Proceedings of the International

Conference on Mathematics of Program Construction. Vol. 6120. Lecture Notes in Computer Science.
N.G de Bruijn. 1972. Lambda Calculus Notation with Nameless Dummies, A Tool for Automatic Formula Manipulation,

with Application to the Church-Rosser Theorem. Indagationes Mathematicae 75, 5 (1972).
Jeremy Gibbons. 2021. Continuation-Passing Style, Defunctionalization, Accumulations, and Associativity. The Art, Science,

and Engineering of Programming 6, 2 (2021).
John Hughes, Lars Pareto, and Amr Sabry. 1996. Proving the Correctness of Reactive Systems Using Sized Types. In

Proceedings of the 23rd Symposium on Principles of Programming Languages.
Graham Hutton and Patrick Bahr. 2017. Compiling a 50-Year Journey. Journal of Functional Programming 27 (2017).
Graham Hutton and Joel Wright. 2004. Compiling Exceptions Correctly. In Proceedings of the International Conference on

Mathematics of Program Construction (Lecture Notes in Computer Science, Vol. 3125).
Yugo Kashiwagi and David Wise. 1991. Graph Algorithms in a Lazy Functional Programming Language.
David King and John Launchbury. 1995. Structuring Depth-First Search Algorithms in Haskell. In Proceedings of the 22nd

Symposium on Principles of Programming Languages.
Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. 2014. CakeML: A Verified Implementation of ML.

ACM SIGPLAN Notices 49, 1 (2014).
Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. Commun. ACM 52, 7 (2009).
Martin Erwig. 2001. Inductive graphs and functional graph algorithms. Journal of Functional Programming 11, 5 (2001).
John McCarthy and James Painter. 1967. Correctness of a compiler for arithmetic expressions. In Mathematical Aspects of

Computer Science (Proceedings of Symposia in Applied Mathematics, Vol. 19). American Mathematical Society, 33–41.
Erik Meijer. 1992. Calculating Compilers. PhD Thesis. Katholieke Universiteit Nijmegen.
Andrey Mokhov. 2017. Algebraic Graphs with Class (Functional Pearl). In Proceedings of the 10th Symposium on Haskell.
Rasmus Ejlers Møgelberg and Niccolò Veltri. 2019. Bisimulation As Path Type for Guarded Recursive Types. Proceedings of

the ACM on Programming Languages 3, POPL (2019).
Hiroshi Nakano. 2000. A Modality for Recursion. In Proceedings of the 15th Annual IEEE Symposium on Logic in Computer

Science.
Ulf Norell. 2007. Towards a Practical Programming Language Based on Dependent Type Theory. PhD Thesis. Chalmers

University of Technology.
Bruno Oliveira and William Cook. 2012. Functional Programming with Structured Graphs. In Proceedings of the International

Conference on Functional Programming.
Mitchell Pickard and Graham Hutton. 2021. Calculating Dependently-Typed Compilers. Proceedings of the ACM on

Programming Languages 5, ICFP, Article 82 (2021).
Norman Ramsey and João Dias. 2006. An Applicative Control-Flow Graph Based on Huet’s Zipper. In Proceedings of the

Workshop on ML.

Beyond Trees: Calculating Graph-Based Compilers 25

Norman Ramsey, João Dias, and Simon Peyton Jones. 2010. Hoopl: A Modular, Reusable Library for Dataflow Analysis and
Transformation. In Proceedings of the Third Symposium on Haskell.

Mitchell Wand. 1982. Deriving Target Code as a Representation of Continuation Semantics. ACM Transactions on
Programming Languanges and Systems 4, 3 (1982).

Mitchell Wand. 1995. Compiler Correctness for Parallel Languages. In Proceedings of the Seventh International Conference on
Functional Programming Languages and Computer Architecture.

	Abstract
	1 Introduction
	2 Calculating a tree-based compiler
	2.1 Compiler specification
	2.2 Compiler calculation

	3 Calculating a graph-based compiler
	3.1 Graph-structured code
	3.2 Compiler specification
	3.3 Compiler calculation
	3.4 Reflection

	4 Compiling to cyclic code
	4.1 Compiler specification
	4.2 Compiler calculation
	4.3 Cyclic graphs
	4.4 Compiler calculation

	5 While loops and state
	5.1 Tree-based compiler
	5.2 Graph-based compiler

	6 Related work
	7 Conclusion and further work
	References

