

principles.’ Earlier forms of improvement
theory went back to basics, looking at how
programs are executed on an operational
level, whereas Handley says: ‘We are taking
a different approach, using mathematical
models of what programs mean.’ In this
approach, known as denotational semantics,
mathematical objects are used to represent
or denote the different parts of the program.

To apply denotational semantics to questions
of efficiency, an abstract way of measuring
resource usage is needed. Hutton’s team
has chosen to use metric spaces, which
are a flexible concept that can be applied to
multiple dimensions of resource usage, such
as disk space and time to run. He says: ‘We
have also developed a resource-aware notion
of parametricity, which is a way of looking at
the relationships between programs based
on the type of data they manipulate.’ The
team has also already shown that their metric
space-based framework enables simpler
and easier reasoning about correctness and
efficiency. However, there is much more to
do. For instance, Hackett explains: ‘It is not
enough to consider resource usage in one
particular situation, we must have a theory
that works for all the possible contexts in
which a program will be used.’ In addition,
while the group has developed a generic
theory that shows when one program is better
than another, the next step is to quantify the
improvement by showing how much better
one program is over another version.

AUTOMATED TOOLS
As well as developing and refining a unified
and generic theory of improvement, an
important objective of the project is to
create tools to help practitioners apply the
theory to their own programs. These will take
the form of automated optimisation tools
and educational materials in the form of a
comprehensive ‘Handbook of Improvement’,

a series of educational videos and a workshop.
Handley also hopes the work will: ‘prompt
further research in this area, and filter through
to educators who can include concepts of
efficiency in their teaching materials’.

Two important tools have already been
produced. The University of Nottingham
Improvement Engine (UNIE) is a
transformation tool based on existing theory,
which helps programmers to determine if their
transformations are actually improvements.
As Hutton explains: ‘The UNIE system has
shown that a semi-automated reasoning
assistant can help with the detail of proofs,
freeing the user to focus on high-level issues.’
The AutoBench system is an empirical-based
tool, which compares different versions or
transformations of programs in terms of
their running times. Hutton says: ‘To display
graphical representations of our comparisons,
we had to use statistical techniques and it was
surprising to us that there was no standard
approach for solving these problems.’

AutoBench is a useful tool, which as well as
assisting programmers, is helping the project
team study the resource usage profiles of
different programming techniques and
components. Although memory usage is
a much harder concept to generalise, the
project aims to produce tools that compare
memory usage and processing needs, as well
as running times between programs. These
tools will also quantify the improvements
made in each area and graphically illustrate
these through the user interface. Hackett
concludes: ‘Our ultimate goal is to fully
automate our improvement theory, allowing
proofs of improvements to be derived by the
computer without any help from the user.’ The
team’s work promises to not only open up
channels to more reliable, secure and efficient
programs, but to also make programming
more accessible to non-experts.

Project Insights
FUNDING
This project is funded by the Engineering
and Physical Sciences Research Council
(EPSRC) under grant reference EP/
P00587X/1.

COLLABORATORS
Jennifer Hackett and Martin Handley –
University of Nottingham, UK

CONTACT
Graham Hutton
Project Coordinator

T: +44 1159514220
E: graham.hutton@nottingham.ac.uk
W: www.cs.nott.ac.uk/~pszgmh/

PROJECT COORDINATOR BIO
Graham Hutton is Professor of Computer
Science at the University of Nottingham,
UK, where he co-leads the Functional
Programming Lab. His research interests
are in developing simple but powerful
techniques for writing and reasoning
about programs, by recognising and
exploiting their underlying mathematical
structure. He has served as an editor of
the Journal of Functional Programming, as
Chair of the International Conference on
Functional Programming, as Vice-Chair
of the ACM Special Interest Group on
Programming Languages, and he is an
ACM Distinguished Scientist. The second
edition of his book Programming in Haskell
was published by Cambridge University
Press in 2016.

Our ultimate goal is to fully automate our improvement
theory, allowing proofs of improvements to be derived by
the computer without any help from the user

What problem are you aiming to solve with
this project?

GH: Our focus is on reasoning about the
performance of computer programs written
in high-level functional languages. Most
optimisations for functional languages
take the form of program transformations,
where a program that fits a particular
pattern is automatically transformed into
an equivalent but more efficient form.
However, existing research on program
transformation is mostly focused on proving
the correctness of transformed programs.
Efficiency, by which we mean resource
usage, is usually treated in an empirical
manner rather than in accordance with an
underlying theory.

JH: Our primary objectives are to demonstrate
that high-level formal reasoning about
program efficiency is both feasible and
practical, and to provide educational and
practical tools to assist programmers and
researchers in these tasks. One of the key
benefits of functional languages is their close
link with mathematics, giving us the ability
to apply reasoning about programs in a

formal manner. However, while the high-level
nature of functional programming simplifies
reasoning about program correctness, it
makes it more difficult to evaluate program
efficiency. This reasoning gap is particularly
pronounced in ‘lazy’ languages, where the
on-demand nature of computations makes
this issue particularly challenging.

MH: In a sense, this is a problem of the
programming community’s own making.
By design, high-level languages abstract
from low-level details, but efficiency is
fundamentally related to this low-level detail.
Whereas experienced programmers may
circumvent this issue by reasoning about
efficiency at the low level, our approach is
to enable programmers to address efficiency
at a high level, in the same way that
correctness is assessed. We are applying the
mathematical framework of improvement
theory to develop a unified approach to
reasoning that allows both correctness
and efficiency to be considered within the
same general setting.

What is your background and how did you
become involved in this particular project?

GH: I became interested in programming
at an early age when I began writing
computer games for the Sinclair Spectrum.
At university I began working on high-level
programming languages, which eventually

led me to functional languages such as
Haskell, which I have worked on ever since.
My research work has mainly focused on
formal reasoning surrounding program
correctness, but I have always maintained
an interest in program efficiency. This
project combines these two interests.

JH: I fell in love with functional programming
as an undergraduate, inspired by how it can
enable real brevity and clarity of thought
in programs. For me, programming is a
collaborative effort between human and
computer, and this project came directly
out of that idea. A strong theoretical
understanding of program optimisation
means we can use the computer to do the
hard work of making things efficient, freeing
up the programmer to consider high-level
architectural issues. By reducing the amount
of technical knowledge needed to write
programs, we can make programming more
widely accessible.

MH: When I started programming, I was
writing a lot of erroneous code, which
was frustrating. Later, when I was taught
a mathematical approach to reasoning
about program correctness and shown how
program efficiency could also be formally
tackled using a comparable method, it was
a revelation to me! This project offers me
the opportunity to further research and
develop such reasoning approaches. ●

Optimising computer programs
Graham Hutton, Jennifer Hackett and Martin Handley are addressing the long-standing problem of
assessing the efficiency of computer programs written in high-level functional languages

Impact Objectives
• Demonstrate to the programming world that high-level formal reasoning about

program efficiency is a feasible and practical approach

• Develop unified theories and techniques that allow both correctness and efficiency
to be considered within the same general high-level framework

• Provide educational and practical tools to assist programmers and researchers in
these tasks

Graham Hutton Jennifer Hackett Martin Handley

