
Chapter 9

Towards a Verified
Implementation of Software
Transactional Memory
Liyang HU1, Graham Hutton1

Category: Research

Abstract: In recent years there has been much interest in the idea of concur-
rent programming using transactional memory, for example as provided in STM
Haskell. While programmers are provided with a simple high-level model of
transactions in terms of a stop-the-world semantics, the low-level implementation
is rather more complex, using subtle optimisation techniques to execute multi-
ple concurrent transactions efficiently, which is essential to the viability of the
programming model.

In this article, we take the first steps towards a formally verified implementa-
tion of transactional memory. In particular, we present a stripped-down, idealised
concurrent language inspired by STM Haskell, and show how a low-level imple-
mentation of this language can be justified with respect to a high-level semantics,
by means of a compiler and its correctness theorem, mechanically tested using
QuickCheck and the HPC (Haskell Program Coverage) toolkit. The use of these
tools proved to be invaluable in the development of our formalisation.

9.1 INTRODUCTION

In recent years, traditional uniprocessors have reached a plateau in terms of raw
operating speed, and we now have entered the era of multi-core processors [18].
However, traditional techniques for concurrent programming, in particular the use
of explicit locks, are notoriously error-prone and hinder code reuse.

1School of CS, University of Nottingham, UK; {lyh,gmh}@cs.nott.ac.uk

IX–129

IX–130 CHAPTER 9. TOWARDS A VERIFIED STM

One approach to addressing this problem is to adopt a lock-free model of con-
currency and specify the desired behaviour of programs in a declarative manner,
without requiring the programmer to be concerned about how this is achieved in
practice. In the context of Haskell, this idea has been explored in the form of soft-
ware transactional memory [7], in which sequences of read and write operations
on memory can be specified to run atomically, in the sense that their intermediate
states are not observable to other concurrent computations.

While atomicity provides programmers with a simple yet powerful mechanism
to write concurrent programs, the actual implementation of this mechanism is
rather more complex, using the notion of transactions [4] to better exploit the
available multi-core hardware. In this article, we take the first steps towards a
formally verified implementation of software transactional memory, inspired by
STM Haskell. In particular, we make the following contributions:

• Identification of a simplified subset of STM Haskell and a semantics for this
language, suitable for exploring design issues.
• A low-level virtual machine for this language in which transactions are made

explicit, along with a semantics for this machine.
• A compiler from the language to the virtual machine, along with a correctness

theorem, tested using QuickCheck [3] and HPC [5].

To the best of our knowledge, this is the first time that the correctness of a com-
piler for a language with transactions has been considered in a formal setting.
This article is aimed at the functional programmers who are interested in the im-
plementation and formalisation of software transactional memory. We require
only a basic familiarity with Haskell, to the level of Bird’s textbook [2]. An im-
plementation of the model described in this paper may be found on the authors’
websites.

9.2 STM IN HASKELL

Harris et al. [7] first introduced transactional memory to Haskell as an extension
to the Glasgow Haskell Compiler. Notable is the fact that no modification to the
Haskell language specification was necessary: its higher-order constructs are suf-
ficient to implement the required control structures, whereas previous attempts [6]
made changes to the language syntax.

The standard Haskell approach to sequencing read and write operations on
memory is to use the IO monad to handle sequencing, and IORefs to represent
mutable variables. STM Haskell provides analogous operations on TVars (trans-
actional variables) within the STM monad:

(>>=) ::STM α → (α → STM β)→ STM β

return :: α → STM α

newTVar :: α → STM (TVar α)
readTVar ::TVar α → STM α

writeTVar ::TVar α → α → STM ()

9.3. A SIMPLE TRANSACTIONAL LANGUAGE IX–131

In this manner, the STM monad provides just the relevant operations within
transactions (a term we use synonymously with ‘STM action’), and precludes ar-
bitrary and potentially irreversible side-effects. Executing transactions involves
first converting them to IO actions using the atomically operation, and these ac-
tions can then be run concurrently using forkIO [16]:

atomically ::STM α → IO α

forkIO :: IO α → IO ThreadId

Finally, STM Haskell supports a novel form of transaction composition, using
a choice operator orElse that behaves as the first transaction if it succeeds and as
the second transaction if the first fails, together with a retry primitive that forces
failure:

orElse ::STM α → STM α → STM α

retry ::STM α

Example

Suppose we represent the current balance of a bank account by a transactional
variable account ::TVar Integer. Using the above operations, it is straightforward
to implement a function that deposits a given amount:

deposit :: Integer→ STM ()
deposit amount = do

balance← readTVar account
writeTVar account (balance+amount)

Now if the following program is executed, the two deposits are guaranteed to take
place, in either order. In particular, a deposit cannot be lost due to unexpected
interleavings of readTVar and writeTVar in the definition of deposit.

do forkIO (atomically (deposit 10))
forkIO (atomically (deposit 20))

9.3 A SIMPLE TRANSACTIONAL LANGUAGE

Our goal in this article is to formalise the low-level implementation details of soft-
ware transactional memory. In order to focus on the essence of the problem, we
abstract from the details of a real language such as STM Haskell, and consider a
minimal language in which to explain and verify the basic implementation tech-
niques. This section presents the syntax and semantics of our minimal language.

IX–132 CHAPTER 9. TOWARDS A VERIFIED STM

9.3.1 Language Syntax

The syntax of the language we consider can be defined by the following Haskell
datatypes, where Tran represents transactions in the STM monad, Proc represents
the desired aspects of concurrent processes in the IO monad, and Var represents a
finite but unspecified collection of transactional variables:

data Tran = ValT Integer | Tran+T Tran | Read Var |Write Var Tran
data Proc = ValP Integer | Proc+P Proc | Atomic Tran | Fork Proc

This language of expressions provides the essential computational features of
STM Haskell, in a simplified form. On both levels, we replace sequencing (>>=)
and return with left-to-right addition (+·) and integers. This has the advantage
of avoiding the issues of name binding, yet still retains the fundamental monadic
idea of sequencing computations and combining their results [11]. More formally,
the use of integers and addition is justified by the fact that they form a monoid, a
degenerate form of monads.

Read and Write are intended to mimic readTVar and writeTVar. We omit
newTVar to once again avoid the issue of binding, and assume all variables are
initialised to zero. Atomic runs a transaction to completion, delivering a value,
while Fork spawns off its argument as a concurrent process, in the style of forkIO.

For simplicity, we do not consider orElse or retry, as they are not strictly nec-
essary to illustrate the basic implementation of a log-based transactional memory
system.

Example

Assuming a transactional variable account :: Var, our deposit function from the
previous section can now be defined using our language as follows:

deposit :: Integer→ Tran
deposit n = Write account (Read account +T ValT n)

In turn, our example program of two concurrent deposits becomes:

Fork (Atomic (deposit 10))+P Fork (Atomic (deposit 20))

9.3.2 Transactional Semantics

We specify the meaning of transactions in this language using a mostly small-step
operational semantics, following the approach of [7, 15]. Formally, we give a
reduction relation 7→T on pairs 〈h, e〉 consisting of a heap h (a total map of type
Var→ Integer from variable names to their values) and a transaction expression
e ::Tran. In this section we explain each of the inference rules defining 7→T.

First of all, reading a variable v looks up its value in the heap:

〈h, Read v〉 7→T 〈h, ValT h(v)〉 (READ)

9.3. A SIMPLE TRANSACTIONAL LANGUAGE IX–133

Writing to a variable is taken care of by two rules: (WRITEZ) updates the
heap with the new integer value for a variable in the same manner as the published
semantics of STM Haskell [7], while (WRITET) allows its argument expression
to be repeatedly reduced until it becomes a value:

〈h, Write v (ValT n)〉 7→T 〈h[v 7→ n], ValT n〉 (WRITEZ)

〈h, e〉 7→T

〈
h′, e′

〉
〈h, Write v e〉 7→T

〈
h′, Write v e′

〉 (WRITET)

Because we replace >>= with addition in our language, it is important to force
a sequential evaluation order. The following three rules define reduction for +T,
and ensure left-to-right evaluation:

〈h, ValT m+T ValT n〉 7→T 〈h, ValT (m+n)〉 (ADDZT)

〈h, b〉 7→T

〈
h′, b′

〉
〈h, ValT m+T b〉 7→T

〈
h′, ValT m+T b′

〉 (ADDRT)

〈h, a〉 7→T

〈
h′, a′

〉
〈h, a+T b〉 7→T

〈
h′, a′+T b

〉 (ADDLT)

9.3.3 Process Semantics

The reduction relation 7→P for processes acts on pairs 〈h, s〉 consisting of a heap
h as before, and a ‘soup’ s of running processes [15]. The soup itself is a multi-
set, which we represent as a list of type [Proc] for implementation reasons. The
process rules are in general defined by matching on the first process in the soup.
However, we begin by giving the (PREEMPT) rule, which allows the rest of the
soup to make progress, giving rise to non-determinism in the language:

〈h, s〉 7→P

〈
h′, s′

〉
〈h, p : s〉 7→P

〈
h′, p : s′

〉 (PREEMPT)

Executing Fork p adds p to the process soup, and evaluates to ValP 0 (which
corresponds to return () in Haskell) as the result of this action:

〈h, Fork p : s〉 7→P 〈h, ValP 0 : p : s〉 (FORK)

Next, the (ATOMIC) rule has a premise which evaluates the given expression
until it reaches a value (where 7→*

T denotes the reflexive / transitive closure of
7→T), and a conclusion which encapsulates this as a single transition on the process
level:

〈h, e〉 7→*
T

〈
h′, ValT n

〉
〈h, Atomic e : s〉 7→P

〈
h′, ValP n : s

〉 (ATOMIC)

IX–134 CHAPTER 9. TOWARDS A VERIFIED STM

In this manner we obtain a stop-the-world semantics for atomic transactions, pre-
venting interference from other concurrently executing processes. Note that while
the use of 7→*

T may seem odd in an otherwise small-step semantics, it expresses
the intended semantics in a clear and concise manner [7].

Finally, it is straightforward to handle +P on the process level using three
rules, in an analogous manner to +T on the transaction level:

〈h, ValP m+P ValP n : s〉 7→P 〈h, ValP (m+n) : s〉 (ADDZP)

〈h, b : s〉 7→P

〈
h′, b′ : s′

〉
〈h, ValP m+P b : s〉 7→P

〈
h′, ValP m+P b′ : s′

〉 (ADDRP)

〈h, a : s〉 7→P

〈
h′, a′ : s′

〉
〈h, a+P b : s〉 7→P

〈
h′, a′+P b : s′

〉 (ADDLP)

In summary, the above semantics for transactions and processes mirror those
for STM Haskell, but for a simplified language. Moreover, while the original
semantics uses evaluation contexts to identify the point at which transition rules
such as (ADDZP) can be applied, our language is sufficiently simple to allow the
use of explicit structural rules such as (ADDLP) and (ADDRP), which for our
purposes have the advantage of being directly implementable.

9.4 A SIMPLE TRANSACTIONAL MACHINE

The (ATOMIC) rule of the previous section simply states that the evaluation se-
quence for a transaction may be seen as a single indivisible transition with respect
to other concurrent processes. However, to better exploit the available multi-core
hardware, an actual implementation of this rule would have to allow multiple
transactions to run concurrently, while still maintaining the illusion of atomic-
ity. In this section we consider how this notion of concurrent transactions can be
implemented, and present a compiler and virtual machine for our language.

9.4.1 Instruction Set

Let us consider compiling expressions into code for execution on a stack machine,
in which Code comprises a sequence of Instructions:

type Code = [Instruction]
data Instruction = PUSH Integer | ADD | READ Var |WRITE Var

| BEGIN | COMMIT | FORK Code

The PUSH instruction leaves its argument on top of the stack, while ADD replaces
the top two numbers with their sum. The behaviour of the remaining instructions
is more complex in order to maintain atomicity, but conceptually, READ pushes
the value of the named variable onto the stack, while WRITE updates the variable
with the topmost value. In turn, BEGIN and COMMIT mark the start and finish
of a transactions, and FORK executes the given code concurrently.

9.4. A SIMPLE TRANSACTIONAL MACHINE IX–135

9.4.2 Compiler

We define the compileT and compileP functions to provide translations from Tran
and Proc to Code, both functions taking an additional Code argument to be ap-
pended to the instructions produced by the compilation process; using such a code
continuation both simplifies reasoning and results in more efficient compilers [10,
§13.7]. In both cases, integers and addition are compiled into PUSH and ADD
instructions, while the remaining language constructs map directly to their analo-
gous machine instructions. The intention is that executing a compiled transaction
or process always leaves a single result value on top of the stack.

compileT ::Tran→ Code→ Code
compileT e cc = case e of

ValT i → PUSH i : cc
x+T y → compileT x (compileT y (ADD : cc))
Read v → READ v : cc
Write v e′→ compileT e′ (WRITE v : cc)

compileP ::Proc→ Code→ Code
compileP e cc = case e of

ValP i → PUSH i : cc
x+P y → compileP x (compileP y (ADD : cc))
Atomic e′→ BEGIN : compileT e′ (COMMIT : cc)
Fork x → FORK (compileP x []) : cc

For example, applying compileP to our earlier program

compileP (Fork (Atomic (deposit 10))+P Fork (Atomic (deposit 20))) []

gives the following result:

[FORK [BEGIN,READ account,PUSH 10,ADD,WRITE account,COMMIT]
,FORK [BEGIN,READ account,PUSH 20,ADD,WRITE account,COMMIT]
,ADD]

9.4.3 Implementing Transactions

The simplest method of implementing transactions would be to suspend execution
of all other concurrent processes on encountering a BEGIN, and carry on with
the current process until we reach the following COMMIT. In essence, this is
the approach used in the high-level semantics presented in the previous section.
Unfortunately, this does not allow transactions to execute concurrently, one of
the key aspects of transactional memory. This section introduces the log-based
approach to implementing transactions, and discusses a number of design issues.

Transaction Logs

In order to allow transactions to execute concurrently, we utilise the notion of
a transaction log. Informally such a log behaves as a cache for read and write

IX–136 CHAPTER 9. TOWARDS A VERIFIED STM

operations on transactional variables. Only the first read from any given variable
accesses the heap, and only the last value written can potentially modify the heap;
all intermediate reads and writes operate solely on the log. Upon reaching the
end of the transaction, and provided that that no other concurrent process has
‘interfered’ with the current transaction, the modified variables in the log can then
be committed to the heap. Otherwise, the log is discarded and the transaction is
restarted afresh.

Note that restarting a transaction relies on the fact that it executes in complete
isolation, in the sense that all its side-effects are encapsulated within the log, and
hence can be revoked by simply discarding the log. For example, it would not be
appropriate to ‘launch missiles’ [7] during a transaction.

Interference

But what constitutes interference? When a transaction succeeds and commits its
log to the heap, all of its side-effects are then made visible in a single atomic
step, as if it had been executed in its entirety at that point with a stop-the-world
semantics. Thus when a variable is read for the first time and its value logged, the
transaction is essentially making the following bet: at the end of the transaction,
the value of the variable in the heap will still be the same as that in the log.

In this manner, interference arises when any such bet fails, as the result of other
concurrent processes changing the heap in a way that invalidates the assumptions
about the values of variables made in the log. In this case, the transaction fails and
is restarted. Conversely, the transaction succeeds if the logged values of all the
variables read are ‘equal’ to their values in the heap at the end of the transaction.

Equality

But what constitutes equality? To see why this is an important question, and what
the design choices are, let us return to our earlier example of a transaction that
deposits a given amount into an account. Consider the following timeline:

deposit 10
1 BEGIN READ account . . . COMMIT

deposit 20
2 . . .

withdraw 20
3 . . .

→
Time

Suppose that account starts with a balance of zero, which is read by the first
transaction and logged. Prior to its final COMMIT, a second concurrent trans-
action successfully makes a deposit, which is subsequently withdrawn by a third
transaction. When the first finally attempts to commit, the balance is back to zero
as originally logged, even though it has changed in the interim. Is this acceptable?

9.4. A SIMPLE TRANSACTIONAL MACHINE IX–137

i.e. Are the two zeros ‘equal’? We can consider a hierarchy of notions of equality,
in increasing order of permissiveness:

• The most conservative choice is to increment a global counter every time the
heap is updated. Under this scheme, a transaction fails if the heap is modified
at any point during its execution, reflected by a change in the counter, even if
this does not actually interfere with the transaction itself.
• A more refined approach is provided by the notion of version equality, where

a separate counter is associated with each variable, and is incremented each
time the variable is updated. In this case, our example transaction would still
fail to commit, since the two zeros would be have different version numbers,
and hence considered different.
• For a pure language such as Haskell, in which values are represented as point-

ers to immutable structures, pointer equality can be used as an efficient but
weaker form of version equality. In this case, whether the two zeros are con-
sidered equal or not depends on whether the implementation created a new
instance of zero, or reused the old zero by sharing.
• We can also consider value equality, in which two values are considered the

same if they have the same representation. In this case, the two zeros are equal
and the transaction succeeds.
• The most permissive choice would be a user-defined equality, beyond that

built-in to the programming language itself, in order to handle abstract data
structures in which a single value may have several representations, e.g. sets
encoded as lists. Haskell provides this capability via the Eq typeclass.

Which of the above is the appropriate notion of equality when committing trans-
actions? Recall that under a stop-the-world semantics, a transaction can be con-
sidered to be executed in its entirely at the point when it successfully commits,
and any prior reads are bets on the state of the heap at this point. Any intermedi-
ate writes that may have been committed by other transactions do not matter, as
long as the final heap is consistent with the bets made in the log. Hence, there is
no need at commit time to distinguish between the two zeroes in our example, as
they are equal in the high-level expression language.

From a semantics point of view, therefore, value or user-defined equality are
the best choice. Practical implementations may wish to adopt a more efficient no-
tion of equality (e.g. STM Haskell utilises pointer equality), but for the purposes
of this article, we will use value equality.

9.4.4 Virtual Machine

The state of the virtual machine is given by a pair 〈h, s〉, comprising a heap h
mapping variables to integers, and a soup s of concurrent threads. Each Thread
consists of a tuple of the form (c,σ , f ,r,w), where c is the code to be executed,
σ is the local stack, f gives the code to be rerun if a transaction fails to commit,
and finally, r and w are two logs (partial maps from variables to integers) acting
as read and write caches between a transaction and the heap.

IX–138 CHAPTER 9. TOWARDS A VERIFIED STM

type Thread = (Code,Stack,Code,Log,Log)
type Stack = [Integer]
type Log = Var ↪→ Integer

We specify the behaviour of the machine using a transition relation 7→M be-
tween machine states, defined via a collection of transition rules that proceed by
case analysis on the first thread in the soup. As with the previous semantics,
we begin by defining a (PREEMPT) rule to allow the rest of the soup to make
progress, giving rise to non-determinism in the machine:

〈h, s〉 7→M

〈
h′, s′

〉
〈h, t : s〉 7→M

〈
h′, t : s′

〉 (PREEMPT)

This rule corresponds to an idealised scheduler that permits context switching at
every instruction, as our focus is on the implementation of transactions rather than
scheduling policies. We return to this issue when we consider the correctness of
our compiler in §9.5.1.

Executing FORK adds a new thread t to the soup, comprising the given code
c′ with an initially empty stack, restart code and read and write logs:〈

h, (FORK c′ : c, σ , f , r, w) : s
〉
7→M 〈h, (c, 0 : σ , f , r, w) : t : s〉 (FORK)

where t = (c′, [], [], /0, /0)

The PUSH instruction places the integer n on top of the stack, while ADD
takes the top two integer from the stack and replaces them with their sum:

〈h,(PUSH n : c, σ , f ,r,w) : s〉 7→M 〈h,(c, n : σ , f ,r,w) : s〉
〈h,(ADD : c,n : m : σ , f ,r,w) : s〉 7→M 〈h,(c,m+n : σ , f ,r,w) : s〉

(PUSH)
(ADD)

Executing BEGIN starts a transaction, which involves clearing the read and
write logs, while making a note of the code to be executed if the transaction fails:

〈h, (BEGIN : c, σ , f , r, w) : s〉 7→M 〈h, (c, σ , BEGIN : c, /0, /0) : s〉 (BEGIN)

Next, READ places the appropriate value for the variable v on top of the stack.
The instruction first consults the write log. If the variable has not been written to,
the read log is then consulted. Otherwise, if the variable has also not been read,
its value is looked up from the heap and the read log updated accordingly:

〈h, (READ v : c, σ , f , r, w) : s〉 7→M

〈
h, (c, n : σ , f , r′, w) : s

〉
(READ)

where
〈
n, r′

〉
=


〈w(v), r〉 if v ∈ dom(w)
〈r(v), r〉 if v ∈ dom(r)
〈h(v), r[v 7→ h(v)]〉 otherwise

In turn, WRITE simply updates the write log for the variable v with the value
on the top of the stack, without changing the heap or the stack:

〈h, (WRITE v : c, n : σ , f , r, w) : s〉 7→M

〈
h, (c, n : σ , f , r, w′) : s

〉
(WRITE)

where w′ = w[v 7→ n]

9.5. CORRECTNESS OF IMPLEMENTATION IX–139

Finally, COMMIT first checks the read log r for consistency with the current
heap h, namely that the logged value for each variable read is equal to its value
in the heap. Note that the write log may contain variables not in the read log,
for which no check is necessary. Using our representation of logs and heaps,
this condition can be concisely stated as r ⊆ h. If they are consistent, then the
transaction has succeeded, so it may commit its write log to the heap. This update
is expressed in terms of the overriding operator on maps as h⊕w. Otherwise the
transaction has failed, in which case the heap is not changed, the result on the top
of the stack is discarded, and the transaction is restarted at f :

〈h, (COMMIT : c, n : σ , f , r, w) : s〉 7→M

〈
h′, (c′, σ

′, f , r, w) : s
〉

where
〈
h′, c′, σ

′〉=

{
〈h⊕w, c, n : σ〉 if r ⊆ h
〈h, f , σ〉 otherwise

(COMMIT)

There is no need to explicitly clear the logs in the above rule, since this is taken
care of by the first instruction of f always being a BEGIN.

9.5 CORRECTNESS OF IMPLEMENTATION

As we have seen, the high-level semantics of atomicity is both clear and concise,
comprising a single inference rule (ATOMIC) that wraps up a complete evaluation
sequence as a single transition. On the other hand, the low-level implementation
of atomicity using transactions is rather more complex and subtle, involving the
management of read and write logs, and careful consideration of the conditions
that are necessary in order for a transaction to commit. How can we be sure that
these two different views of atomicity are consistent? Our approach to establish-
ing the correctness of the low-level implementation is to formally relate it to the
high-level semantics via a compiler correctness theorem.

9.5.1 Statement of Correctness

In order to formulate our correctness result, we utilise a number of auxiliary defi-
nitions. First of all, since our semantics is non-deterministic, we define a relation
eval that encapsulates the idea of completely evaluating a process using our high-
level semantics:

p eval 〈h, s〉 ⇔ 〈 /0, [p]〉 7→*
P 〈h, s〉 67→P

That is, a process p :: Proc can evaluate to any heap h and process soup s that
results from starting with the empty heap and completely reducing p using our
high-level semantics, where 6 7→ expresses that no further transitions are possible.
Similarly, we define a relation exec that encapsulates complete execution of a
thread t :: Thread using our virtual machine, resulting in a heap h and a thread
soup s:

t exec 〈h, s〉 ⇔ 〈 /0, [t]〉 7→*
M 〈h, s〉 67→M

IX–140 CHAPTER 9. TOWARDS A VERIFIED STM

Next, we define a function load ::Proc→ Thread that converts a process into
a corresponding thread for execution, which comprises the compiled code for the
process, together with an empty stack, restart code and read and write logs:

load p = (compileP p [], [], [], /0, /0)

Dually, we define a partial function unload :: Thread ↪→ Proc that extracts the
resulting integer from a completely executed thread into our process language:

unload ([], [n], f ,r,w) = ValP n

Using these definitions, the correctness of our compiler can now be expressed
by the following relational equation, in which ; denotes composition of relations,
and the functions load and unload are viewed as relations by taking their graph:

Theorem 9.1 (Compiler Correctness).

eval = load ; exec ; (id×map unload)

That is, evaluating a process using our high-level semantics is equivalent to com-
piling and loading the process, executing the resulting thread using the virtual
machine, and unloading each of the final values.

The above theorem can also be split into two inclusions, where⊇ corresponds
to soundness, and states that the compiled code will always produce a result that
is permitted by the semantics. Dually, ⊆ corresponds to completeness, and states
that the compiled code can produce every result permitted by the semantics.

In practice, some language implementations are not complete with respect to
the semantics for the language by design, because implementing every behaviour
that is permitted by the semantics may not be practical. For example, a real im-
plementation may utilise a scheduler that only permits a context switch between
threads at particular intervals, rather than after every transition as in our seman-
tics, because doing so would be prohibitively expensive.

9.5.2 Validation of Correctness

Proving the correctness of programs in the presence of concurrency is notoriously
difficult. Ultimately we would like to have a formal proof of theorem 9.1, but
to date we have adopted a mechanical approach to validating this result, using
randomised testing.

QuickCheck [3] is a system for testing properties of Haskell programs. It
is straightforward to implement our semantics, virtual machine and compiler in
Haskell, and to define a property prop Correctness :: Proc → Bool that corre-
sponds to theorem 9.1. Non-deterministic transitions in our system are imple-
mented as set-valued functions, which are used to build up a tree that captures
all possible evaluation sequences, thus ensuring all possible interleavings are ac-
counted for. QuickCheck can then be used to generate a large number of random
test processes, and check that the theorem holds in each one of these cases:

9.6. CONCLUSION AND FURTHER WORK IX–141

*Main> quickCheck prop_Correctness
OK, passed 100 tests.

Having performed many thousands of tests in this manner, we gain a high degree
of confidence in the validity of our compiler correctness theorem. However, as
with any testing process, it is important to ensure that all the relevant parts of the
program have been exercised during testing.

The Haskell Program Coverage (HPC) toolkit [5] supports just this kind of
analysis, enabling us to quickly visualise and identify unexecuted code. Using
HPC confirms that testing our compiler correctness result using QuickCheck does
indeed give 100% code coverage, in the sense that every part of our implementa-
tion is actually executed during the testing process:

In combination, the use of QuickCheck for automated testing and HPC to con-
firm complete code coverage, as pioneered by the XMonad project [17], provides
high-assurance of the correctness of our implementation of transactions.

9.6 CONCLUSION AND FURTHER WORK

In this article we have shown how to implement software transactional memory
correctly, for a simplified language based on STM Haskell. Using QuickCheck
and HPC, we tested a low-level, log-based implementation of transactions with
respect to a high-level, stop-the-world semantics, by means of a compiler and its
correctness theorem. This appears to be the first time that the correctness of a
compiler for a language with transactions has been mechanically tested.

The lightweight approach provided by QuickCheck and HPC was indispens-
able in allowing us to experiment with the design of the language and its imple-
mentation, and to quickly check any changes. Our basic definitions were refined
many times during the development of this work, both as a result of correcting
errors, and streamlining the presentation. Ensuring that our changes were sound
was simply a matter of re-running QuickCheck and HPC.

On the other hand, it is important to be aware of the limitations of this ap-
proach. First of all, randomised testing does not constitute a formal proof, and the
reliability of QuickCheck depends heavily on the quality of the test-case genera-
tors. Secondly, achieving 100% code coverage with HPC does not guarantee that
all possible interactions between parts of the program have been tested. Nonethe-
less, we have found the use of these tools to be invaluable in our work.

In terms of expanding on the work presented in this article, we have identified
a number of possible directions for further work:

Proof. The most important step now is to consider how our correctness result can
be formally proved. The standard approach [20] to compiler correctness for con-
current languages involves translating both the source and target languages into

IX–142 CHAPTER 9. TOWARDS A VERIFIED STM

a common process language such as the π-calculus, where compiler correctness
then amounts to establishing a bisimulation. We are in the process of developing
a new, simpler approach that avoids the introduction of an intermediate language,
by establishing a bisimulation directly between the source and target languages.

Generalisation. Our simplified language focuses on the essence of implement-
ing transactions. However, it is important to take into account other features in
the core language of STM Haskell, namely binding, input / output, exceptions and
retry / orElse. Previous work by Huch and Kupke [9] describes a full implementa-
tion of the STM Haskell semantics given in [7], using existing Concurrent Haskell
primitives, but they do not address the correctness of their implementation.

We could go further, and consider the implications of allowing limited effects
within transactions, such as the creation of nested transactions or concurrent pro-
cesses, with a view to investigate a more liberal variant of STM in Haskell.

Mechanisation. Just as QuickCheck and HPC were of great benefit for testing our
compiler correctness theorem, we may similarly expect to benefit from the use of
mechanical support when proving this result. Indeed, in the presence of concur-
rency it would not be surprising if the complexity of the resulting bisimulation
proof necessitated some form of tool support. We are particularly interested in
the use of automated proof-checkers such as Epigram [12] or Agda [14], in which
the provision of dependent types allows proof to be conducted directly on the
program terms, which helps to shift some of the work from the user to the type-
checker [13]. Work on proving our correctness theorem in Agda is currently under
way.

Other approaches. We have verified the basic log-based implementation of trans-
actions, but it would also be interesting to consider more sophisticated techniques,
such as suspending a transaction that has retried until a relevant part of the heap
has changed. Finally, it is also important to explore the relationship to other
semantic approaches to transactions, such as the use of functions [19] and pro-
cesses [1], as well as relevant semantic properties, such as linearisability [8].

Acknowledgements

We would like to thank Nils Anders Danielsson, Peter Hancock, Tim Harris,
James McKinna, Henrik Nilsson, Wouter Swierstra, the FP Lab at Nottingham,
and the anonymous TFP referees for their useful comments and suggestions.

REFERENCES

[1] L. Acciai, M. Boreale, and S. D. Zilio. A Concurrent Calculus with Atomic Transac-
tions. In ETAPS Proceedings. Springer-Verlag, April 2007.

[2] R. Bird. Introduction to Functional Programming. Prentice Hall, 2nd edition, 1998.

[3] K. Claessen and J. Hughes. QuickCheck: A Lightweight Tool for Random Testing of
Haskell Programs. In ICFP Proceedings, 2000.

9.6. CONCLUSION AND FURTHER WORK IX–143

[4] C. J. Date. An Introduction to Database Systems. Addison-Wesley, 6th edition, 1995.

[5] A. Gill and C. Runciman. Haskell Program Coverage. In Haskell Workshop Proceed-
ings, September 2007.

[6] T. Harris and K. Fraser. Language Support for Lightweight Transactions. In OOPSLA
Proceedings, October 2003.

[7] T. Harris, S. Marlow, S. Peyton Jones, and M. P. Herlihy. Composable Memory
Transactions. In PPoPP Proceedings, June 2005.

[8] M. P. Herlihy and J. M. Wing. Linearizability: A Correctness Condition for Con-
current Objects. ACM Transactions on Programming Languages and Systems,
12(3):463–492, July 1990.

[9] F. Huch and F. Kupke. A High-Level Implementation of Composable Memory Trans-
actions in Concurrent Haskell. In Implementation and Application of Functional Lan-
guages, Lecture Notes in Computer Science, volume 4015, pages 124–141, 2005.

[10] G. Hutton. Programming in Haskell. Cambridge University Press, January 2007.

[11] G. Hutton and J. Wright. What is the Meaning of These Constant Interruptions?
Journal of Functional Programming, 17(6):777–792, November 2007.

[12] C. McBride and J. McKinna. The View from the Left. Journal of Functional Pro-
gramming, 14(1):69–111, 2004.

[13] J. McKinna and J. Wright. A Type-Correct, Stack-Safe, Provably Correct Expression
Compiler in EPIGRAM. To appear in the Journal of Functional Programming, 2008.

[14] U. Norell. Towards a Practical Programming Language Based on Dependent Type
Theory. PhD thesis, Chalmers University of Technology, September 2007.

[15] S. Peyton Jones. Tackling the Awkward Squad. In Engineering Theories of Software
Construction, pages 47–96. IOS Press, 2001.

[16] S. Peyton Jones, A. Gordon, and S. Finne. Concurrent Haskell. In POPL Proceedings,
pages 295–308, 1996.

[17] D. Stewart and S. Janssen. XMonad: A Tiling Window Manager. In Haskell Work-
shop, September 2007.

[18] H. Sutter. The Free Lunch is Over: A Fundamental Turn Toward Concurrency in
Software. Dr Dobb’s Journal, 30(3), March 2005.

[19] W. Swierstra. IOSpec: A Pure Specification of the IO Monad. Available from
http://cs.nott.ac.uk/∼wss/repos/IOSpec/, 2008.

[20] M. Wand. Compiler Correctness for Parallel Languages. In Functional Programming
Languages and Computer Architecture, pages 120–134, June 1995.

