
JFP 19 (2): 227–251, 2009. c© 2009 Cambridge University Press

doi:10.1017/S0956796809007175 Printed in the United Kingdom

227

The worker/wrapper transformation

ANDY GILL

University of Kansas, USA

(e-mail: andygill@ku.edu)

GRAHAM HUTTON

University of Nottingham, UK

(e-mail: gmh@cs.nott.ac.uk)

Abstract

The worker/wrapper transformation is a technique for changing the type of a computation,

usually with the aim of improving its performance. It has been used by compiler writers for

many years, but the technique is little known in the wider functional programming community,

and has never been described precisely. In this article we explain, formalise and explore the

generality of the worker/wrapper transformation. We also provide a systematic recipe for its

use as an equational reasoning technique for improving the performance of programs, and

illustrate the power of this recipe using a range of examples.

1 Introduction

The worker/wrapper transformation is a technique for transforming a computation

of one type into a worker of a different type, together with a wrapper that acts as

an impedance matcher between the original and new computations.

The technique can be used to improve the performance of functional programs by

improving the choice of data structures used. For example, in the Glasgow Haskell

Compiler, a specific instance of the worker/wrapper transformation is used to replace

boxed data structures by unboxed structures, based upon strictness information

(Peyton Jones & Launchbury, 1991). Despite its practical importance, however, the

technique is little known in the wider functional programming community, and to

the best of our knowledge has never been described precisely.

In this article we explain, formalise, and explore the generality of the worker/

wrapper transformation. We also provide a systematic recipe for its use, and illustrate

the power of this recipe using a range of programming examples. More precisely,

the article makes the following contributions:

• We present the worker/wrapper transformation in a general semantic frame-

work (Section 3), rather than via specific syntactic instances, in order to make

the technique as widely applicable as possible.

• We give a correctness proof for the technique (Section 3), based upon the use

of the rolling rule from fixed point calculus, which provides a range of explicit

conditions under which the technique can be applied.

228 A. Gill and G. Hutton

• We provide a systematic recipe for its use as an equational reasoning technique

for improving the performance of programs (Section 3), by means of a step-

by-step process for applying the transformation.

• We apply this recipe to four different approaches to program optimisa-

tion, based upon the use of accumulation (Section 4), unboxing (Section 5),

memoisation (Section 6) and continuations (Section 7).

A summary of related work, and directions for further work, are provided in

the concluding sections. The article is aimed at readers who are familiar with the

basics of reasoning about functional programs, say to the level of Bird (1998),

but no previous experience with the worker/wrapper transformation is assumed.

The techniques are presented using Haskell (Peyton Jones, 2003), but can easily

be adapted to other functional languages. An extended version of the article that

includes all the proofs is available from the authors’ web pages.

2 The basic idea

In this section we review the basic idea of the worker/wrapper transformation, in a

similar manner to which it was originally described by Peyton Jones and Launchbury

(1991), and implemented in the Glasgow Haskell Compiler.

Suppose that we are given a function f , defined in the form

f = body

where body is the right-hand side of the definition, and may include recursive

calls to f . At this syntactic level, the first step in applying the worker/wrapper

transformation is to define appropriate functions wrap and unwrap that allow the

function f to be redefined by the equation f = wrap (unwrap body), which is then

split into two equations by naming the intermediate result, as follows:

f = wrap work

work = unwrap body

In this manner, f has been factorised into the application of a ‘wrapper’ function

wrap to a ‘worker’ function work , itself defined by applying unwrap to the body of

the original definition for f . Note that if f was originally recursive, then f and work

are now mutually recursive. The next step in the process is to eliminate such mutual

recursion by inlining the new definition for f in the definition for work , thereby

making work into a recursive definition that is independent of f :

f = wrap work

work = unwrap (body [wrap work / f])

As usual, e [e′/x] denotes the result of substituting e′ for all free occurrences of

the variable x in the expression e. The final step is then to simplify the resulting

definitions for f and work using standard program transformation techniques.

For example, Peyton Jones and Launchbury (1991) show how this process can be

used to transform a recursive definition of the factorial function into a more

The worker/wrapper transformation 229

efficient version that is defined in terms of a worker that only uses unboxed

integers, together with a wrapper that takes care of the initial unboxing and final

boxing.

The above, syntactic, description of the worker/wrapper transformation is appeal-

ingly simple, but raises a number of important questions. Is the technique actually

correct? How can this be proved? Under what conditions does the proof hold?

How should it be used in practice? What kind of applications is it suitable for?

Addressing these questions is the aim of the remainder of this article.

3 The worker/wrapper transformation

In order to give a precise treatment of the worker/wrapper transformation, and

hence prove its correctness, we move from the informal syntactic approach based

upon inlining to a formal semantic approach based upon the use of fixed points. We

begin by defining a fixed point operator in Haskell:

fix :: (a → a) → a

fix f = f (fix f)

The property of this operator that we will use to formalise the worker/wrapper

transformation is the rolling rule (Backhouse, 2002), which allows us to pull the

first argument of a composition outside a fixed point, resulting in the composition

swapping the order of its arguments, or ‘rolling over’:

fix (g ◦ f) = g (fix (f ◦ g))

Informally, this rule is valid because both sides expand to the infinite application

g (f (g (f (g (f . . .))))). A formal proof, together with a brief review of the fixed

point approach to recursion, is provided in the Appendix.

Now consider the problem of changing the type of a recursive computation. More

precisely, suppose that we are given a computation comp :: A, defined as the least

fixed point comp = fix body of some function body :: A → A, and that we wish to

change the underlying type from A to some other type B .

The worker/wrapper approach to this problem of changing types is based upon

defining conversion functions unwrap :: A → B and wrap :: B → A such that the

equation wrap ◦unwrap = idA holds, where idA is the identity function for the type A.

(To aid the reader, identity functions are subscripted with their types throughout

the article.) This equation states that converting a value of the original type into the

new type and then back again does not change the value, and formalises the idea

that the type A can be faithfully represented by the type B .

Given such a setting, we can now calculate as follows:

comp

= { applying comp }
fix body

= { id is the identity for ◦ }
fix (idA ◦ body)

230 A. Gill and G. Hutton

= { † assuming wrap ◦ unwrap = idA }
fix (wrap ◦ unwrap ◦ body)

= { rolling rule }
wrap (fix (unwrap ◦ body ◦ wrap))

= { define work = fix (unwrap ◦ body ◦ wrap) }
wrap work

That is, we have shown how an arbitrary recursive computation of type A can

be factorised as a wrapper of type B → A applied to a new recursive worker

computation of type B , based upon the assumption that the identity function for

A can be split into the composition of two conversion functions. The following

diagram summarises the primary typing relationships:

comp :: A

unwrap

��
work :: B

wrap

��

As we shall see, however, in general there is no requirement that this diagram

commutes. For example, for some applications the assumption wrap ◦ unwrap = idA
may not be true in general, but only in the context (labelled by †) in which

it is used in the above calculation. In particular, we may sometimes require

the weaker property wrap ◦ unwrap ◦ body = idA ◦ body , which states that the

assumption is true for values produced by body , or even fix (wrap ◦unwrap ◦body) =

fix (idA ◦ body), which also takes the recursive context into account. That is, we

have the following hierarchy of worker/wrapper assumptions that support the above

calculation:

wrap ◦ unwrap = idA

⇓

wrap ◦ unwrap ◦ body = body

⇓

fix (wrap ◦ unwrap ◦ body) = fix body

For any given application, we will use the strongest such assumption that is valid,

i.e. the simplest to verify; often the basic equation wrap ◦unwrap = idA will suffice. In

conclusion, the original syntactic description of the worker/wrapper transformation

can now be formalised on semantic grounds as shown in Figure 1.

Once this transformation has been applied, one then attempts to simplify the

worker using normal fold/unfold transformation (Burstall & Darlington, 1977). It

is usually convenient to begin by rewriting the worker using explicit recursion

work = unwrap (body (wrap work))

The worker/wrapper transformation 231

Fig. 1. The worker/wrapper transformation.

which transformation can be verified as follows:

work

= { applying work }
fix (unwrap ◦ body ◦ wrap)

= { applying fix }
(unwrap ◦ body ◦ wrap) (fix (unwrap ◦ body ◦ wrap))

= { unapplying work }
(unwrap ◦ body ◦ wrap) work

= { applying ◦ }
unwrap (body (wrap work))

Further simplification of the worker is then typically driven by the desire to fuse

together instances of unwrap and wrap, to eliminate the overhead of repeatedly

converting between the two types. In general, it is not the case that unwrap ◦ wrap

can be fused to give idB , but the following worker/wrapper fusion property, in which

the argument value of type B is the worker itself, is often applicable:

If wrap ◦ unwrap = idA, then unwrap (wrap work) = work

For example, this property will be utilised in two of our programming applications

(Sections 4 and 7). The fusion property itself can be verified as follows:

unwrap (wrap work)

= { applying work }
unwrap (wrap (unwrap (body (wrap work))))

= { assuming wrap ◦ unwrap = idA }
unwrap (body (wrap work))

= { unapplying work }
work

In summary, we have the following general recipe for applying the worker/wrapper

transformation to change the type of a recursive computation:

• Express the computation as the least fixed point;

• Choose the desired new type for the computation;

232 A. Gill and G. Hutton

• Define conversions between the original and new types;

• Check that they satisfy one of the worker/wrapper assumptions;

• Apply the worker/wrapper transformation;

• Simplify the resulting definitions.

We conclude this section by noting that the worker/wrapper transformation can

also be formalised using fixed point fusion (Meijer et al., 1991) which requires the

additional property that wrap is strict (wrap ⊥ = ⊥). Fortunately this property

follows automatically from the basic worker/wrapper assumption wrap ◦ unwrap =

id , by virtue of the fact that any (monotonic) function that is right invertible must

be strict. We prefer the formulation using the rolling rule because it corresponds

directly to our understanding of why the transformation is valid.

4 Example: the reverse function

As a first example of our worker/wrapper recipe, we will use it to transform a

simple definition for the function that reverses a list into a more efficient version that

uses accumulation . This transformation is normally achieved using more elementary

techniques (Hutton, 2007, Section 13.6), but we now show that it also fits naturally

into our general worker/wrapper paradigm.

4.1 Hughes lists

We begin by reviewing the idea of representing lists using functions, which is the

essential algorithmic idea underlying this example.

As observed by Hughes (1986), it is possible to represent the normal type of lists

in an alternative manner using functions, which represent a list xs by the function

(xs ++) that prepends xs to its argument. We can implement this idea by defining a

type H a of Hughes lists , together with a representation function rep

type H a = [a] → [a]

rep :: [a] → H a

rep xs = (xs ++)

An important property of this representation is that the function rep forms a

homomorphism from lists to functions, in the sense that

rep (xs ++ ys) = rep xs ◦ rep ys

rep [] = id[a]

That is, rep is a homomorphism from the monoid of (finite) lists, for which the

associative operator is ++ and the unit is [], to the monoid of functions on lists,

for which the operator is composition ◦ and the unit is the identity function

id[a].

The worker/wrapper transformation 233

In addition to the function rep that converts normal lists into Hughes lists, it is

also natural to consider conversion in the opposite direction, which is achieved by

simply applying the given function to the empty list

abs :: H a → [a]

abs f = f []

This definition ensures that converting a list into Hughes form and back again

returns the original list, or more formally, it ensures that abs ◦ rep = id[a].

In summary, using the terminology of data representation (Hoare, 1972), we

have shown how the ‘abstract’ type [a] can be represented using the ‘concrete’

type H a . As is usual in this setting, note that the representation function rep is

injective but not surjective, while the abstraction function abs is surjective but not

injective.

4.2 Reverse

Now consider the following definition for the function that reverses a list:

rev :: [a] → [a]

rev [] = []

rev (x : xs) = rev xs ++ [x]

Because of the use of ++, this definition takes quadratic time in the length of its

argument. We now show how this definition can be transformed into a more efficient

worker that uses an extra argument to accumulate the result, together with a wrapper

that takes care of the initial setup. The first step is to redefine rev as the least fixed

point, by abstracting over the recursive call in the body

rev :: [a] → [a]

rev = fix body

body :: ([a] → [a]) → ([a] → [a])

body f [] = []

body f (x : xs) = f xs ++ [x]

Following our worker/wrapper recipe, and utilising the idea of Hughes lists, our

aim now is to transform the computation rev of type [a] → [a] into a worker of

type [a] → H a (which abbreviates [a] → [a] → [a] and hence introduces the

necessary extra argument list), as illustrated by the following diagram:

rev :: [a] → [a]

unwrap

��
work :: [a] → H a

wrap

��

234 A. Gill and G. Hutton

Implementing the conversion functions unwrap and wrap is simply a matter of

composing the conversion functions rep and abs from the previous section

unwrap :: ([a] → [a]) → ([a] → H a)

unwrap f = rep ◦ f

wrap :: ([a] → H a) → ([a] → [a])

wrap g = abs ◦ g

Verifying the worker/wrapper assumption, in this case wrap ◦ unwrap = id[a]→[a],

follows from the fact that abs ◦ rep = id[a] by straightforward calculation.

Now that we have satisfied the preconditions for the worker/wrapper transforma-

tion, applying this transformation and rewriting the worker using explicit recursion

rather than the fix operator gives the following result:

rev :: [a] → [a]

rev = wrap work

work :: [a] → H a

work = unwrap (body (wrap work))

Making the list argument explicit in the definition for rev , and expanding out

wrap, we obtain the wrapper for the efficient version of rev , which simply supplies

the empty list as the initial accumulator

rev :: [a] → [a]

rev xs = work xs []

Now let us focus our attention on simplifying the definition for the worker

function. First of all, we redefine work using pattern matching

work [] = rep []

work (x : xs) = rep (wrap work xs ++ [x])

and the transformation can be verified as follows:

work xs

= { applying work }
unwrap (body (wrap work)) xs

= { applying unwrap }
rep (body (wrap work) xs)

= { applying body }
rep (case xs of

[] → []

(x : xs) → wrap work xs ++ [x])

= { distribution over case }
case xs of

[] → rep []

(x : xs) → rep (wrap work xs ++ [x])

The distribution step assumes that rev is only applied to finite lists, to ensure that

the argument list xs in this step is not undefined (⊥).

The worker/wrapper transformation 235

Now we exploit the fact that rep :: [a] → H a is a homomorphism from lists to

functions, to rewrite the new definition as follows:

work [] = id[a]

work (x : xs) = rep (wrap work xs) ◦ rep [x]

Then we simplify the first argument of the composition in this definition by exposing

the implicit use of unwrap and then fusing this with wrap

rep (wrap work xs)

= { unapplying unwrap }
unwrap (wrap work) xs

= { worker/wrapper fusion }
work xs

That is, we now have the following definition:

work [] = id[a]

work (x : xs) = work xs ◦ rep [x]

Finally, if we make the extra list argument in this definition explicit, and then expand

out ◦ and rep, we obtain the worker for the efficient version of reverse, which uses

an extra list argument to accumulate the final result

work :: [a] → [a] → [a]

work [] ys = ys

work (x : xs) ys = work xs (x : ys)

We conclude this section with three observations about the above derivation. First

of all, note that everything follows in a straightforward manner from the idea of using

Hughes’ representation of lists, in the sense that once we have made this decision, the

rest of the derivation proceeds using standard fold/unfold transformation. Secondly,

the derivation does not require the use of induction, other than the implicit use to

verify the auxiliary result that finite lists form a monoid, which is used in proof that

rep is a homomorphism. And finally, it is possible to generalise from this example

and formulate a special case of the worker/wrapper transformation for changing

the result type of a function; because this only saves a few steps in the above

calculations, we prefer to use our general formulation.

5 Example: the factorial function

For our second example, we formalise an example from the original article on the

worker/wrapper transformation (Peyton Jones & Launchbury, 1991), by showing

how to transform a simple definition for the factorial function on integers into a

more efficient version that only uses unboxed integers.

5.1 Boxed and unboxed integers

Consider the question of how integers should be represented in the implementation

of a programming language. For strict languages, such as ML, integers can be

236 A. Gill and G. Hutton

represented directly as binary numbers, for example as a 32-bit word. Integers

represented in this manner are called unboxed integers, because no additional

packaging is required around the raw numeric values themselves.

For non-strict languages, such as Haskell, a more refined representation is required,

because evaluation is only performed on demand. In particular, we must distinguish

between a computation that will return an integer value and an integer value itself. In

practice, this is usually achieved using some form of tagging in the implementation.

Such tagged integer representations are called boxed integers.

Tagging supports the use of non-strict evaluation, but carries a considerable

overhead. For example, evaluating x + y conceptually requires evaluating the

expressions x and y , unboxing the resulting values (removing the tags), performing

the actual addition and then boxing the result (reinstating the tag). It would clearly

be more efficient to work with unboxed integers as much as possible.

The key to achieving this behaviour in Haskell is an idea put forward by Peyton

Jones and Launchbury (1991), namely to reflect the notion of boxed and unboxed

integers directly in the language itself, via the following type definition:

data Int = I# Int#

That is, a boxed value of type Int can be constructed by applying the constructor

tag I# to a value of type Int#, which is the built-in type of unboxed 32-bit integers,

and is unlifted in the sense that it has no ⊥ element. Note that, by convention

in Haskell, unboxed types, values, variables and functions have a # suffix on their

names, as in Int#, 0#, n# and +#. However, this symbol has no semantic meaning,

and is used purely for identification purposes.

Given the above type definition, converting an unboxed integer into a boxed

integer can be achieved simply by applying the constructor I#, and in the opposite

direction by removing this constructor through pattern matching. Thus there is no

need to define explicit conversion functions.

5.2 Factorial

Consider the following definition for the factorial function on non-negative integers:

fac :: Int → Int

fac 0 = 1

fac n = n ∗ fac (n − 1)

In a non-strict language such as Haskell, a straightforward implementation of this

definition will be rather inefficient, due to repeated unboxing and boxing of integer

values. However, because fac is strict (fac ⊥ = ⊥), it is safe to replace the definition of

fac by a more efficient worker that only uses unboxed integers and strict evaluation,

together with a wrapper that takes care of the initial unboxing and final reboxing.

We show how this transformation can be achieved in practice. Following our recipe,

The worker/wrapper transformation 237

the first step is to redefine fac as the least fixed point

fac :: Int → Int

fac = fix body

body :: (Int → Int) → (Int → Int)

body f 0 = 1

body f n = n ∗ f (n − 1)

Our aim now is to transform the computation fac of type Int → Int into a worker

of type Int# → Int#, as illustrated in the following diagram:

fac :: Int → Int

unwrap

��
work :: Int# → Int#

wrap

��

Implementing the conversion functions wrap and unwrap is simply a matter of

taking care of the necessary boxing and unboxing

unwrap :: (Int → Int) → (Int# → Int#)

unwrap f x# = case f (I# x#) of

I# y# → y#

wrap :: (Int# → Int#) → (Int → Int)

wrap g# x = case x of

I# x# → case g# x# of

y# → I# y#

Using the above definitions and properties of case expressions, it is straightforward

to show that wrap ◦ unwrap = idInt→Int , but only if we restrict our attention to

argument functions of type Int → Int that are strict. Hence for this example, the

simple assumption wrap ◦ unwrap = idInt→Int is not always valid. However, because

body f is defined by pattern matching and is therefore strict, we do have the

weaker assumption wrap ◦ unwrap ◦ body = body , which is precisely where strictness

is exploited in this example. More complex functions than factorial, for which

determining strictness depends upon taking account of recursion, will require our

weakest worker/wrapper assumption defined using fix .

Now that we have satisfied the worker/wrapper preconditions, applying this

transformation gives the following result:

fac :: Int → Int

fac = wrap work

work :: Int# → Int#
work = unwrap (body (wrap work))

238 A. Gill and G. Hutton

Making the integer argument explicit in the definition for fac, and expanding out

wrap, we obtain the wrapper for the unboxed version of fac, which unboxes the

integer argument, applies the worker and then boxes the result

fac :: Int → Int

fac n = case n of

I# x# → case work x# of

y# → I# y#

Now let us simplify the definition for the worker function, which in this case

amounts to expanding out definitions and then simplifying the result. As with the

reverse example, the first step is to redefine work using pattern matching, and this

transformation can be verified in a similar manner as before

work x# = case (case (I# x#) of

0 → 1

n → case (n − 1) of

I# a# → case work a# of

b# → n ∗ (I# b#)) of

I# y# → y#

Then if we expand out the boxed components 0, 1, n , − and ∗ in terms of the

constructor I# (for example, by replacing 0 with I# 0#), and simplify the resulting

definition using properties of case, we obtain a worker with the same structure as the

original factorial function, but which now operates entirely using unboxed integers,

and hence avoids the need for repeated unboxing and boxing

work :: Int# → Int#
work x# = case x# of

0# → 1#

n# → n# ∗# work (n# −# 1#)

Once again, note that once we have made the initial decision regarding the

change in type of the function, applying our worker/wrapper recipe is largely a

matter of routine equational reasoning, and does not require the use of induc-

tion. Note also that this derivation involved changing both the argument and

result type of a function, whereas our previous example only changed the result

type.

6 Example: the Fibonacci function

For our next example, we show how the worker/wrapper transformation can be

used to transform a simple definition for the Fibonacci function on natural numbers

into a more efficient version that operates by means of a memo table. In contrast to

our previous two examples, in which a function is represented by another function,

this derivation represents a function by a data structure.

The worker/wrapper transformation 239

6.1 Memoisation

The term memoisation was coined by Michie (1968), and refers to the optimisation

technique of tabulating all the arguments that a function is called with, together

with the corresponding results returned, and reusing these results if the function is

called again with any of its previous arguments. If this happens often, memoisation

can lead to a dramatic improvement in performance.

Our approach to memoising the Fibonacci function is to observe that any function

on natural numbers can be represented in an alternative manner as an infinite

list (or stream) of results. In particular, we represent a function f as the stream

[f 0, f 1, f 2, . . .] that tabulates its behaviour for all possible argument values.

To implement this representation, let us write Nat for the subtype of Int comprising

the natural numbers 0, 1, 2, 3, . . . , and Stream a for the subtype of [a] comprising

the infinite lists of elements of type a . Using these two subtypes allows us to be

more precise about the types of functions that we will define, while still being able

to use familiar notation and library functions for integers and lists.

For example, a function unwrap that converts functions on natural numbers into

streams in the manner described above can now be defined

unwrap :: (Nat → a) → Stream a

unwrap f = map f [0 . .]

Dually, we can also perform conversion in the opposite direction, from a stream

to a function, by simply indexing into the stream:

wrap :: Stream a → (Nat → a)

wrap xs = (xs !!)

The auxiliary operator !! selects the nth element of a stream

(!!) :: Stream a → Nat → a

xs !! 0 = head xs

xs !! (n + 1) = (tail xs) !! n

Using these definitions, we can show that wrap ◦ unwrap = idNat→a by making

the function and numeric arguments explicit, then expanding out definitions to give

(unwrap f) !! n = f n and finally verifying this equation by induction on n .

The dual property, unwrap ◦wrap = idStream a, also holds. In particular, making the

stream argument explicit and expanding out definitions gives unwrap (xs !!) = xs ,

which can be verified by coinduction on streams (Turner, 1995).

In conclusion, the functions unwrap and wrap establish an isomorphism between

the types Nat → a and Stream a . This isomorphism itself is well known, but perhaps

surprisingly, generalises in allowing any function type with an inductively defined

argument type to be represented in a coinductive manner (Altenkirch, 2001), thereby

providing a basis for memoising a large class of functions.

240 A. Gill and G. Hutton

6.2 Fibonacci

Consider the following standard definition for the Fibonacci function on natural

numbers, as found in any textbook on numerical series:

fib :: Nat → Nat

fib 0 = 0

fib 1 = 1

fib (n + 2) = fib n + fib (n + 1)

That is, the first two Fibonacci numbers are 0 and 1, and each successive number

is the sum of the previous two. While this definition directly expresses the desired

behaviour of the function, it also recomputes the same results many times over, in

fact requiring exponential time in the size of its argument. We now show how it can

be transformed into a more efficient worker that constructs a memo table comprising

the stream [0, 1, 1, 2, 3, 5, . . .] of all Fibonacci numbers (and hence ensures that each

result is computed at most once), together with a wrapper that selects the required

element from this table. The first step is to redefine fib using fix :

fib :: Nat → Nat

fib = fix body

body :: (Nat → Nat) → (Nat → Nat)

body f 0 = 0

body f 1 = 1

body f (n + 2) = f n + f (n + 1)

Our aim now is to transform the computation fib of type Nat → Nat into a

worker of type Stream Nat , as illustrated in the following diagram:

fib :: Nat → Nat

unwrap

��
work :: Stream Nat

wrap

��

Because we have already defined appropriate conversion functions satisfying the

assumption wrap ◦unwrap = idNat→Nat in the previous section, we can now apply the

worker/wrapper transformation to obtain the following result:

fib :: Nat → Nat

fib = wrap work

work :: Stream Nat

work = unwrap (body (wrap work))

Making the numeric argument explicit in the definition for fib, and expanding out

wrap, we obtain the wrapper for the memoised version of fib, which simply selects

The worker/wrapper transformation 241

the required element from the memo table

fib :: Nat → Nat

fib n = work !! n

Now we simplify the worker itself, which in this case just amounts to expanding

out definitions, and does not require any form of fusion:

work

= { applying work }
unwrap (body (wrap work))

= { applying unwrap }
map (body (wrap work)) [0 . .]

= { applying body }
map (λn → case n of

0 → 0

1 → 1

(n + 2) → wrap work n + wrap work (n + 1)) [0 . .]

= { applying wrap }
map (λn → case n of

0 → 0

1 → 1

(n + 2) → work !! n + work !! (n + 1)) [0 . .]

That is, we have derived the following definition for the worker, which builds a

memo table comprising all Fibonacci numbers, using the table itself to ensure that

each number is computed at most once, and lazy evaluation to ensure that the table

(which is conceptually infinite) is built on a demand-driven basis

work :: Stream Nat

work = map f [0 . .]

where

f 0 = 0

f 1 = 1

f (n + 2) = work !! n + work !! (n + 1)

In conclusion, we have improved the time performance of the fib function from

exponential to quadratic. Further improvements can readily be made in a variety of

ways, such as representing the memo table in a more efficient manner (e.g. using an

array with constant-time indexing rather than a stream with linear-time indexing),

exploiting the structure of the computation to design a specialised version of the

memo table (e.g. using a pair of numbers rather than a stream), or using more

advanced programming techniques (e.g. cyclic programming). For example, using

the technique of unique fixed points (Hinze, 2008), it can be shown that the above

definition for the worker is equivalent to the well-known cyclic definition for the

stream of Fibonacci numbers

fibs :: Stream Nat

fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

242 A. Gill and G. Hutton

7 Example: an evaluation function

For our final example, we show how to use the worker/wrapper transformation in

implementing the transformation of a function into continuation-passing style, an

important precursor to many program analyses and optimisations.

7.1 Continuations

As observed by Reynolds (1972), it is possible to represent any type in an alternative

manner using continuations . The notion of a continuation can be defined in many

ways, but for our purposes it is simply a function that is applied to the result

of another computation. Using this idea, we represent a value x as the function

λc → c x that takes another function c (a continuation) as its argument, and applies

this function to x in order to produce the final result.

We can implement this representation using the type (a → r) → r of continuation

computations of type a that return results of type r (Wadler, 1992b). For our

purposes, however, we only require the special case when the two types are the

same, which we abbreviate by Cont a , and define a function rep that converts

normal values into their representation as continuation values:

type Cont a = (a → a) → a

rep :: a → Cont a

rep x = λc → c x

Dually, we can also perform conversion in the opposite direction, by supplying the

identity function as the continuation:

abs :: Cont a → a

abs f = f ida

Using these definitions, it is easy to show that abs ◦ rep = ida.

7.2 Evaluation

Consider a simple expression language comprising integers values, an addition

operator, a single exceptional value called throw and a catch operator:

data Expr = Val Int | Add Expr Expr | Throw | Catch Expr Expr

This language provides an appropriate minimal setting in which to investigate

various aspects of the semantics of exceptions (Hutton & Wright, 2004, 2006, 2007).

Informally, Throw abandons the current computation and throws an exception,

while Catch x y behaves as the expression x unless it throws an exception, in which

case the catch behaves as the handler expression y .

To formalise the meaning of this language, we first recall the Maybe type

data Maybe a = Nothing | Just a

The worker/wrapper transformation 243

That is, a value of type Maybe a is either Nothing , which we think of as an

exceptional value, or has the form Just x for some x of type a , which we think of as

a normal value (Spivey, 1990). For the purposes of our example, however, we only

require the type Maybe Int , which we abbreviate as Mint

type Mint = Maybe Int

Using this type, it is straightforward to define a function that evaluates expressions,

and takes care of the necessary propagation and handling of exceptions

eval :: Expr → Mint

eval (Val n) = Just n

eval (Add x y) = case eval x of

Nothing → Nothing

Just n → case eval y of

Nothing → Nothing

Just m → Just (n + m)

eval (Throw) = Nothing

eval (Catch x y) = case eval x of

Nothing → eval y

Just n → Just n

Because of the repeated tagging and untagging of values of type Mint , this definition

may be rather inefficient. We now show how it can be transformed into a worker

that uses two continuations to make normal and exceptional control flow explicit

(and hence eliminate the use of tags), together with a wrapper that takes care of the

initial setup. Once again, the first step is to redefine eval using fix

eval :: Expr → Mint

eval = fix body

body :: (Expr → Mint) → (Expr → Mint)

body f (Val n) = Just n

body f (Add x y) = case f x of

Nothing → Nothing

Just n → case f y of

Nothing → Nothing

Just m → Just (n + m)

body f (Throw) = Nothing

body f (Catch x y) = case f x of

Nothing → f y

Just n → Just n

One might expect now to aim to transform the computation eval of type Expr →
Mint into a worker of type Expr → Cont Mint . In practice, however, the desire

to have separate continuations for normal and exceptional control flow, sometimes

called double-barrelled continuations (Thielecke, 2002), means that we start by

splitting the underlying type Mint → Mint of continuations into two parts, and aim

for a worker of the type illustrated in the following diagram:

244 A. Gill and G. Hutton

eval :: Expr → Mint

unwrap

��
work :: Expr → (Int → Mint) → Mint → Mint

wrap

��

Intuitively, the worker will apply a success continuation of type Int → Mint if

the result of evaluating the given expression is an integer, or a failure continuation

of type Mint (which can be viewed as a function with no arguments) if the result

is an exception. The necessary conversion functions, satisfying the worker/wrapper

assumption wrap ◦ unwrap = idExpr→Mint , can be defined as follows:

unwrap g e s f = case (g e) of

Nothing → f

Just n → s n

wrap h e = h e Just Nothing

Now that we have established the preconditions for the worker/wrapper trans-

formation, applying this transformation gives

eval :: Expr → Mint

eval = wrap work

work :: Expr → (Int → Mint) → Mint → Mint

work = unwrap (body (wrap work))

Making the expression argument explicit in the definition for eval , and expanding

out wrap, we obtain the wrapper for the continuation-passing version of eval , which

simply supplies Just and Nothing as the initial continuations

eval :: Expr → Mint

eval e = work e Just Nothing

Now let us focus our attention on simplifying the definition for the worker

function. First of all, we redefine work using pattern matching

work (Val n) s f = s n

work (Add x y) s f = case wrap work x of

Nothing → f

Just n → case wrap work y of

Nothing → f

Just m → s (n + m)

work (Throw) s f = f

work (Catch x y) s f = case wrap work x of

Nothing → case wrap work y of

Nothing → f

Just n → s n

Just n → s n

The worker/wrapper transformation 245

Now we simplify the case analyses used in the recursive definition by exposing

the implicit use of unwrap and then fusing again with wrap. In particular, for an

arbitrary expression x , and continuations g and s of the appropriate types

case wrap work x of

Nothing → g

Just n → s n

= { unapplying unwrap }
unwrap (wrap work) x s g

= { worker/wrapper fusion }
work x s g

Applying this result three times gives our final definition for the worker, in which

control flow is now managed by explicit success and failure continuations, rather

than by repeated tagging and untagging of Maybe values

work :: Expr → (Int → Mint) → Mint → Mint

work (Val n) s f = s n

work (Add x y) s f = work x (λn → work y (λm → s (n + m)) f) f

work (Throw) s f = f

work (Catch x y) s f = work x s (work y s f)

Once again, note that everything follows in a straightforward manner once we have

made the initial design decision to represent the type Mint using two continuations,

and that the derivation does not require the use of induction. We conclude this

section by noting that the resulting worker function can now readily be transformed

into an abstract machine for evaluating expressions (Ager et al., 2003; Hutton &

Wright, 2006), resulting in an efficient machine that operates using two control

stacks, one for normal evaluation and the other for handling exceptions.

8 Related work

As discussed in Section 1, the worker/wrapper transformation was first used to

exploit strictness information in the Glasgow Haskell Compiler (Peyton Jones &

Launchbury, 1991). However, the correctness of the resulting transformation has

never been formally verified. During our work on this article we learned that the

authors did in fact sketch a proof using the rolling rule, but this proof was never fully

developed, nor was it published. The underlying strictness analyser in this compiler

has been changed and improved several times since its initial implementation (Peyton

Jones & Partain, 1993), but the use of the worker/wrapper technique to exploit this

information remains exactly the same.

The worker/wrapper transformation has also been used to improve the shortcut

approach to deforestation (Gill et al., 1993), an optimisation technique that attempts

to remove intermediate data structures from programs. In particular, the shortcut

approach performs fusion when functions that produce and consume lists are written

in a specific, idiomatic way, and are completely inlined. In the final chapter of his

246 A. Gill and G. Hutton

PhD thesis (Gill, 1996), Gill describes a scheme for abstracting a function that

produces a list in a way that utilised the worker/wrapper transformation to reduce

the increase in code size that can result from wholesale inlining of definitions. In

particular, Gill considered list producing functions of the form

f x1 . . . xn = build (λc n → body)

which were then split into a wrapper and a worker

f x1 . . . xn = build (λc n → work x1 . . . xn c n)

work x1 . . . xn c n = body

and finally, the new definition for f was inlined in the definition for work , thereby

communicating the deforestation opportunity. However, no formal justification was

given for the correctness of the worker/wrapper technique.

Chitil (2000a, 2000b) considerably extended Gill’s work, by generalising to allow

for multiple return lists, as directed by his type-inference based approach to

deforestation. In particular, Chitil uses a static argument transformation (Santos,

1995) to turn a recursive function into a non-recursive function with local recursion,

and splits the new, non-recursive function into a worker and wrapper, with detailed

justification. He also explores the recursive instance of the worker/wrapper technique

as applied to deforestation, acknowledging that ‘whereas intuitively the semantic

correctness of [this approach] is clear, a formal proof is hard’, and suggests that

a proof may be possible using improvement theory (Sands, 1998). However, as we

have shown in this article, simpler techniques suffice.

Another application of the worker/wrapper transformation has been in changing

the order of function arguments, to aid static analysis. In particular, Launchbury

and Sheard (1995) use the technique to illustrate how the standard definition

map :: (a → b) → [a] → [b]

map f xs = case xs of

[] → []

(x : xs) → f x : map f xs

can be translated into an equivalent version that is defined using a worker that takes

the two arguments in the opposite order

map :: (a → b) → [a] → [b]

map f xs = work xs f

work :: [a] → (a → b) → [b]

work xs f = case xs of

[] → []

(x : xs) → f x : work xs f

It is interesting to note that the various users of the worker/wrapper transforma-

tion appear to realise its potential as a powerful tool for communicating a change

of type through a recursive definition, but did not explore this generalisation.

The worker/wrapper transformation 247

The worker/wrapper terminology has also been used to describe a similar but

distinct technique, namely when a wrapper of one type is exposed to an optimisation

system for the purpose of applying a type conversion to a worker. Technically, this

corresponds to the adapter design pattern (Gamma et al., 1995). The rewrite system

of the Glasgow Haskell Compiler (Peyton Jones et al., 2001) uses this technique

in its implementation of short-cut deforestation, as does the recent implementation

of stream fusion (Coutts et al., 2007). In both these systems, rather than wholesale

inlining of a candidate function, an inlined wrapper expresses the opportunity for

deforestation, but the actual computation is performed by the worker. In a real sense,

these uses of workers and wrappers are part of the worker/wrapper transformation,

which is the combination of splitting a function into a worker and wrapper in a

correct and potentially useful manner, together with the use of these new functions

to fulfill specific roles inside a rewrite system.

9 Conclusion and further work

In this article we presented the worker/wrapper transformation, and gave several

examples of its use as an equational reasoning technique for improving the per-

formance of functional programs. In particular, we showed how it can be used

to derive more efficient programs based upon the use of accumulation, unboxed

values, memoisation and continuations. Since these are all well-studied and widely

used approaches to program optimisation, it is natural to ask what new value the

worker/wrapper transformation brings? We see the following three primary benefits:

• It provides a general and systematic approach to transforming a computation

of one type into an equivalent computation of another type. Such type

transformations are pervasive in functional programming and reasoning, and

in the efficient compilation of functional languages.

• It is straightforward to understand and apply, requiring only basic equational

reasoning techniques, and often avoiding the need for induction. As such, it

can readily be utilised by a wide spectrum of functional programmers as a

simple but powerful technique for refactoring their programs.

• It captures many seemingly unrelated optimisation techniques inside a single

unified framework, which may help reveal new connections between existing

techniques, and the discovery of new techniques.

This article is by no means the end of the worker/wrapper story, but rather opens

up a number of opportunities for further research. Interesting topics for further

work include mechanising the technique in an equational reasoning system such as

HERA (Gill, 2006), investigating how it can be automated in an optimising compiler

such as GHC (Peyton Jones et al., 2001), considering programs that utilise effects

(Wadler, 1992a; McBride & Paterson, 2008) and more advanced applications (e.g.

to programming languages themselves), exploring the use of specialised patterns of

recursion (Gibbons & Jones, 1998; Hutton, 1999) and versions of the transformation

(e.g. for changing the result type of a function) and further generalising the technique

using category theory (Backhouse et al., 1995).

248 A. Gill and G. Hutton

Acknowledgments

We would like to thank Roland Backhouse, Olaf Chitil, Isaac Dupree, Conal Elliott,

Peter Gammie, Peter Jonsson, John Matthews, Conor McBride, Simon Peyton Jones

and Mark Tullsen for many useful comments and suggestions, Colin Runciman for

the invitation to submit to JFP, and the three anonymous referees for their detailed

reviews. Work on this article was initiated during a sabbatical visit to Galois, Inc.

in Portland, Oregon by the second author during Summer 2007, for which funding

from Galois is very gratefully acknowledged.

References

Ager, Mads Sig, Biernacki, Dariusz, Danvy, Olivier & Midtgaard, Jan (2003) A functional

correspondence between evaluators and abstract machines. In Proceedings of the Fifth ACM-

SIGPLAN International Conference on Principles and Practice of Declarative Programming

Uppsala, Sweden.

Altenkirch, Thorsten (2001) Representations of first-order function types as terminal

coalgebras. In Typed Lambda Calculi and Applications. LNCS, no. 2044. Berlin: Springer.

Backhouse, Roland (2002) Galois connections and fixed point calculus. In Algebraic and

Coalgebraic Methods in the Mathematics of Program Construction. LNCS Tutorial, vol.

2297. Berlin: Springer-Verlag.

Backhouse, Roland, Bijsterveld, Marcel, van Geldrop, Rik & van der Woude, Jaap (1995)

Categorical fixed point calculus. In Proceedings of the Sixth International Conference on

Category Theory and Computer Science. Berlin: Springer-Verlag.

Bird, Richard (1998) Introduction to Functional Programming using Haskell, second edition.

New York: Prentice Hall.

Burstall, Rod & Darlington, John (1977) A transformational system for developing recursive

programs. J. ACM 24, 44–67.

Chitil, Olaf (2000a) Type-Inference Based Deforestation of Functional Programs. Ph.D. thesis,

RWTH Aachen.

Chitil, Olaf (2000b) Type-inference based short cut deforestation (nearly) without inlining.

In Proceedings of 11th International Workshop on Implementation of Functional Languages,

Chris Clack and Pieter Koopman (eds). LNCS, no. 1868. Berlin: Springer.

Coutts, Duncan, Leshchinskiy, Roman & Stewart, Don (2007) Stream fusion: From lists

to streams to nothing at all. In Proceedings of the 2007 ACM SIGPLAN International

Conference on Functional Programming. New York: ACM Press.

Gamma, Erich, Helm, Richard, Johnson, Ralph & Vlissides, John (1995) Design Patterns.

Reading, Mass: Addison-Wesley Professional.

Gibbons, Jeremy & Jones, Geraint (1998). The under-appreciated unfold. In Proceedings of

the Third ACM SIGPLAN International Conference on Functional Programming Baltimore,

Maryland.

Gill, Andy (1996) Cheap Deforestation for Non-Strict Functional Languages. Ph.D. thesis,

University of Glasgow.

Gill, Andy (2006) Introducing the haskell equational reasoning assistant. In Proceedings of

the 2006 ACM SIGPLAN Workshop on Haskell. New York: ACM Press.

Gill, Andy, Launchbury, John & Peyton Jones, Simon (1993) A short cut to deforestation.

In Proceedings of the Conference on Functional Programming Languages and Computer

Architecture. New York: ACM Press.

The worker/wrapper transformation 249

Hinze, Ralf (2008) Functional pearl: Streams and unique fixed points. In Proceedings of the

13th ACM SIGPLAN International Conference on Functional Programming Victoria, British

Columbia.

Hoare, Tony (1972) Proof of correctness of data representations. Acta Informatica 1(4), 271–

281.

Hughes, John (1986) A novel representation of lists and its application to the function reverse.

Info. Process. Lett. 22(3), pp 141–144.

Hutton, Graham (1999) A tutorial on the universality and expressiveness of fold. J. Funct.

Prog. 9(4), pp 355–372.

Hutton, Graham (2007) Programming in Haskell, Cambridge: Cambridge University Press.

Hutton, Graham & Wright, Joel (2004) Compiling exceptions correctly. In Proceedings of

the Seventh International Conference on Mathematics of Program Construction. LNCS, vol.

3125. Stirling, Scotland: Springer.

Hutton, Graham & Wright, Joel (2006) Calculating an exceptional machine. Selected papers

from the Fifth Symposium on Trends in Functional Programming, Munich, vol. 5, November

2004 UK: Intellect.

Hutton, Graham & Wright, Joel (2007) What is the meaning of these constant interruptions?

J. Funct. Prog. 17(6), pp 777–792.

Launchbury, John & Sheard, Tim (1995) Warm fusion: Deriving build-catas from recursive

definitions. In Proceedings of the Seventh ACM SIGPLAN/SIGARCH International

Conference on Functional Programming Languages and Computer Architecture. New York:

ACM Press.

McBride, Conor & Paterson, Ross (2008) Applicative programming with effects. J. Funct.

Prog. 18(1), pp 1–13.

Meijer, Erik, Fokkinga, Maarten & Paterson, Ross (1991) Functional programming with

bananas, lenses, envelopes and barbed wire. In Proceedings of the Conference on Functional

Programming and Computer Architecture, Hughes, John (ed). LNCS, no. 523. Springer-

Verlag.

Michie, Donald (1968) Memo functions and machine learning. Nature, 218, pp 19–22.

Peyton Jones, Simon (2003) Haskell 98 Language and Libraries: The Revised Report.

Cambridge University Press. Also available on www.haskell.org/definition.

Peyton Jones, Simon & Launchbury, John (1991) Unboxed values as first class citizens in a

non-strict functional language. In Proceedings of the Conference on Functional Programming

and Computer Architecture. Cambridge, MA: Springer-Verlag.

Peyton Jones, Simon & Partain, Will (1993) Measuring the effectiveness of a simple strictness

analyser. In Proceedings of the 1993 Glasgow Workshop on Functional Programming,

Hammond, Kevin & O’Donnell, John (eds). Ayr, Scotland: Springer-Verlag.

Peyton Jones, Simon, Tolmach, Andrew & Hoare, Tony (2001) Playing by the rules: Rewriting

as a practical optimisation technique in GHC. In Proceedings of the 2001 ACM SIGPLAN

Workshop on Haskell. ACM Press.

Reynolds, John C. (1972) Definitional interpreters for higher-order programming languages.

In Proceedings of the ACM Annual Conference. ACM Press.

Sands, David (1998) Improvement theory and its applications. In Higher Order Operational

Techniques in Semantics, Gordon, Andrew & Pitts, Andrew (eds). Cambridge, UK:

Cambridge University Press.

Santos, Andre (1995) Compilation by Transformation in Non-strict Functional Languages. Ph.D.

thesis, University of Glasgow.

Schmidt, David (1986) Denotational Semantics: A Methodology for Language Development.

Allyn and Bacon, Inc.

250 A. Gill and G. Hutton

Spivey, Mike (1990) A functional theory of exceptions. Sci. Comput. Prog. 14(1), pp 25–42.

Thielecke, Hayo (2002) Comparing control constructs by double-barrelled CPS. Higher-Order

Symbol. Comput. 15(2/3), pp 141–160.

Turner, David A. (1995) Elementary strong functional programming. In Proceedings of the

First International Symposium on Functional Programming Languages in Education. LNCS,

no. 1022. Springer-Verlag.

Wadler, Philip (1992a) Monads for functional programming. In Proceedings of the

Marktoberdorf Summer School on Program Design Calculi, Broy, Manfred (ed). Springer–

Verlag.

Wadler, Philip (1992b) The essence of functional programming. Proc. Principles Prog. Lang.

New York: ACM Press, pp 1–14.

Appendix: fixed points and the rolling rule

For completeness, this appendix briefly reviews the necessary semantic theory of

fixed points that underlies our formalisation of the worker/wrapper transformation,

and presents a proof of the rolling rule in this context.

Our formalisation is based upon the domain-theoretic approach to semantics

(Schmidt, 1986), in which the basic idea is that types are complete partial orders

(cpos), that is, sets with a partial-ordering � , the least element ⊥, and limits of

all non-empty chains. In turn, programs are continuous functions , that is, functions

between cpos that preserve the partial-order and limit structure.

Now consider a recursive equation x = f x that defines a value x in terms of

itself and some continuous function f . A well-known fixed point theorem states that

this equation has the least solution for x , denoted by fix f and called the least fixed

point of f , which is adopted as the semantics of the definition. Moreover, fix f is

constructed as the limit of the following infinite chain:

⊥ � f ⊥ � f (f ⊥) � f (f (f ⊥)) � · · ·
As a simple example of this approach, consider the equation ones = 1 : ones that

defines the infinite list 1 : 1 : 1 : · · ·. This definition can be rewritten as ones = f ones ,

where f is the function defined by f xs = 1 : xs . Hence, the semantics of the

definition is given by ones = fix f , and by the fixed point theorem is constructed as

the limit of the infinite chain of partial lists containing increasing numbers of ones

⊥ � 1 : ⊥ � 1 : 1 : ⊥ � 1 : 1 : 1 : ⊥ � · · ·
The fixed point approach to recursive definitions can be realised in Haskell by

defining an explicit version of the function fix as follows:

fix :: (a → a) → a

fix f = f (fix f)

For example, evaluating the expression fix (λxs → 1 : xs) using this definition gives

the infinite list of ones, 1 : 1 : 1 : · · ·, as expected.

In order to prove the rolling rule, which states that fix (g ◦ f) = g (fix (f ◦ g))

for any functions f and g of the appropriate types, we exploit the following two

fundamental properties of fixed points (Backhouse, 2002):

fix f = f (fix f) (computation)

f x � x ⇒ fix f � x (induction)

The worker/wrapper transformation 251

The first property states that fix f is a fixed point of f (an expression x satisfying

f x = x), while the second states that fix f is the least prefix point of f (the least

expression x satisfying f x � x). One might have expected in the latter case to

state that fix f is the least fixed point rather than just the least prefixed point, but

these two notions can be shown to be equivalent, and the above formulation has the

advantage of being more useful for reasoning purposes. Using these two properties,

the rolling rule can now be verified by mutual inclusion

fix (g ◦ f) � g (fix (f ◦ g))

⇐ { induction }
(g ◦ f) (g (fix (f ◦ g))) � g (fix (f ◦ g))

⇔ { applying ◦ }
g (f (g (fix (f ◦ g)))) � g (fix (f ◦ g))

⇔ { unapplying ◦ }
g ((f ◦ g) (fix (f ◦ g))) � g (fix (f ◦ g))

⇔ { computation }
g (fix (f ◦ g)) � g (fix (f ◦ g))

⇔ { reflexivity }
True

and

g (fix (f ◦ g)) � fix (g ◦ f)

⇔ { computation }
g (fix (f ◦ g)) � (g ◦ f) (fix (g ◦ f))

⇔ { applying ◦ }
g (fix (f ◦ g)) � g (f (fix (g ◦ f)))

⇐ { g is monotonic }
fix (f ◦ g) � f (fix (g ◦ f))

⇔ { above result, swapping f and g }
True

We conclude by noting that the above proof of the rolling rule only relies on

the basic notion of monotonic functions on partially ordered sets, rather than the

stronger notion of continuous functions on cpos. However, working in this stronger

setting automatically guarantees that the necessary fixed points always exist, by

virtue of the fixed point theorem described above, which in weaker settings may

become a side condition on the rolling rule.

