Transmission Modes

Gail Hopkins

Introduction

- More fundamental concepts underlying data communications!
- Ways data are transmitted
- Parallelism
- Synchronous and asynchronous communication
 - RS-232-C

Two categories

- Serial
 - One bit sent at a time
- Parallel
 - More than one bit sent at a time

Parallel Transmission

- Multiple data bits transferred at the same time over separate media
- Generally used with wired medium with multiple independent wires
- Signals on all wires are synchronised
 - Each wire carries the signal for one bit
 - All wires operate simultaneously
- Other wires allow sender and receiver to coordinate
- Wires placed in a single large cable

Parallel Transmission - Advantages

- High speed
 - Faster than serial as more wires!
- Match to underlying hardware
 - Computers and communication hardware use parallel circuitry internally
Serial Transmission

- Sends one bit at a time
- Most communications systems use serial mode
 - Cheaper to extend over long distances
 - Fewer wires
 - Intermediate electronic components are cheaper
 - Never a timing problem caused by one wire being slightly longer than another
 - Because only one wire!

Transmission Order: Bits and Bytes

- Which bit should be sent across a medium first?
 - Most Significant Bit (MSB)
 - Least Significant Bit (LSB)
- Which byte should be sent first??
 - Byte order and bit order can be chosen independently

Transmission Order (2)

- Ethernet technology specifies that data is sent byte big-endian and bit little-endian

Timing of Serial Transmission

- Three broad categories of serial transmission:
 - Asynchronous
 - Transmission can occur at any time
 - Arbitrary delay between the transmission of two data items
 - Synchronous
 - Continuous transmission
 - No gap between transmission of data items
 - Isochronous
 - Transmission occurs at regular intervals
 - Fixed gap between transmission of two data items

Asynchronous Transmission

- Allows physical medium to be idle for an arbitrary amount of time between transmissions
- Good for applications that generate data at random
 - E.g. keyboard connected to a computer
- BUT – lack of coordination between sender and receiver
Asynchronous Transmission (2)
- Receiver does not know when the sender will transmit
 - transmit when data are ready
 - variable delays between transmissions
 - no sender-receiver coordination beforehand
- Technically, the electrical signal does not contain information about where individual bits begin and end
 - Therefore common for technologies to specify a preamble
 - Few extra bits before each data item to tell receiver data are coming

Asynchronous Character Transmission - The RS-232 Standard
- To connect keyboards, terminals etc. to computers over copper wire
- Concerned with 7-bit characters
- Details of physical connection (maximum length, plugs and sockets)
- Electrical details (voltages)
- Serial communication
- Asynchronous (for each character)

Example RS-232 Waveform
![Example RS-232 Waveform](image)

RS-232
- Never leaves 0 volts on the wire - an idle line is the same as a 1 bit
- Sender and receiver agree how long a bit lasts - receiver uses a local timer
- A 0 start bit signifies the start of a character and is followed by 7 data bits
- A minimum gap of 1 bit between characters (a phantom stop bit of 1)

Baud Rate Revisited
- Transmission hardware is rated in baud - the number of signals that are generated per second
- The baud rate need not be the same as the bit rate, it depends on how many levels of signal are used
- With RS-232 they are the same

Agreeing the Baud Rate
- Sender and receiver agree on length of time each bit is held => maximum number of bits per second (e.g., 300, 9600, 19200)
- RS-232 may often have a configurable baud rate (manually or by software)
Framing Errors

- Might occur if the sender and receiver are set to different baud rates.
- Receiver samples the signal several times for each bit to check for differences (framing errors).
- Used by the break key to send an abort signal.

RS-232 Connectors and Pins

- RS-232 uses a 25 pin connector (extra pins for control functions).
- Computer transmits on pin 2 and receives on 3. Opposite on a modem.

A 3 Wire RS-232 Connection

Limitations of Real Hardware

- Hardware cannot instantly change voltage and so imperfect signals must be detectable.
- RS-232 specifies how much tolerance there should be.

Synchronous Communication

- Synchronous mechanism transmits bits of data continually.
 - No idle time between bits.
- Advantage:
 - Sender and receiver synchronised at all time.
 - Less synchronisation overhead compared with e.g. RS-232.
 - Because no start and stop bits!

Synchronous Transmission – Bytes, Blocks and Frames

- If synchronous mechanism must send bits continually – what happens if no data to send?
 - Framing
 - Interface added to synchronous mechanism.
 - Accepts and delivers a block of bytes called a frame.
 - Frame starts with special sequence of bits.
 - Common to include a special ‘idle sequence’ between frames.
Synchronous Transmission - Framing

Isochronous Transmission
- Designed to provide a steady bit flow for multimedia applications
 - Voice and video
- Enables network jitter to be managed
- With an isochronous network, data are accepted and sent at a fixed rate, \(R \)
 - Sender and receiver want to see a continuous stream of data without delays
 - Usually an underlying synchronous mechanism operating at slightly more than \(R \) bits per second

Simplex, Half-Duplex and Full-Duplex Transmission
- Simplex
 - Can only transfer data in a single direction
 - E.g. Single optical fibre
- Half-duplex
 - Data can transfer in both directions, but only one direction at a time
 - Shared transmission medium
 - Analogous to "walkie-talkies"
 - Additional mechanism needed at each end to coordinate transmission
- Full-Duplex
 - Data can transfer in both directions simultaneously
 - Typically consists of two simplex mechanisms
 - E.g. Pair of optical fibres, running in parallel

Summary
- Transmission modes
 - Parallel, serial
- Transmission order and timing
- Synchronous, asynchronous and isochronous transmission
- RS-232 – an asynchronous transmission standard
- Simplex, half-duplex and full-duplex transmission
- Reading:
 - Chapter 9, Computer Networks and Internets, Comer, 5th Edition, 2009