AI Methods

Question 1

a)
With reference to the Travelling Salesman Problem explain what is meant by combinatorial explosion and what effect this has in finding an optimal solution?

(5 marks)

b)
Consider the following map (not drawn to scale).

(16 marks)

[image: image1.png]AND OR NOT

Using the A* algorithm work out a route from town A to town M. Use the following cost functions.

· G(n) = The cost of each move as the distance between each town (shown on map).

· H(n) = The Straight Line Distance between any town and town M. These distances are given in the table below.

Provide the search tree for your solution, showing the order in which the nodes were expanded and cost at each node. You should not re-visit states previously visited. Finally, state the route you would take and the cost of that route.

Straight Line Distance to M

A
51

E
42

I
50

M
0

B
50

F
14

J
32

C
32

G
33

K
41

D
28

H
43

L
56

c)
The straight line distance heuristic used above is known to be an admissible heuristic. What does this mean and why is it important?

(4 marks)

Question 1 - Answer

a)
With reference to the Travelling Salesman Problem explain what is meant by combinatorial explosion and what effect this has in finding an optimal solution?

The number of solutions is n! (n factorial), where n is the number of cities. This results in an exponential rise in the number of solutions. For example, for 10 cities the number of possible routes is 3,628,800.
This is known as combinatorial explosion where the number of solutions rises exponentially.
The effect this has with regards to TSP is that is quickly becomes impossible to search the entire search space (i.e. enumerate all possible solutions and choose the best route).

Therefore, heuristic methods are often used to find solutions to these problems.

b)
Using A* Algorithm

The Search Tree

The figures next to each node represent the G(n) and H(n) functions, where

G(n)
=
The cost of the search so far (i.e. distance travelled)

H(n)
=
The heuristic value (i.e. the straight line distance to the target town)
[image: image2.png]AND OR NOT

The nodes would be expanded in the following order A, C1, F1, B1, D1, L1, K1 and then M (that is the lowest cost node is expanded next).

The route taken is A, L, K, M at a cost of 109.

c)
The straight line distance heuristic used above is known to be an admissible heuristic. What does this mean and why is it important?

An admissible heuristic is one which never over estimates the cost to the goal. This is obviously the case with the straight line distance between two towns.

Having admissible heuristics is important as it allows the A* algorithm to be proved to be optimal (i.e. always find the best solution).

Question 2

With regards to Genetic Algorithms :-

a)
Describe a parent selection technique and describe the algorithm.

(8 marks)

b)
Explain the concept of mutation with regard to GA’s. Why is it important to have such an operator?

(8 marks)

c) If you were developing a GA for The Travelling Salesman Problem (TSP), what type of crossover operator would you use? Show how this crossover method works and explain why you would use it in preference to other crossover operators?

(9 marks)

Question 2 - Answer

a) Parent Selection Technique

The technique described in the lectures was roulette wheel selection.

The idea behind the roulette wheel selection technique is that each individual is given a chance to become a parent in proportion to its fitness. It is called roulette wheel selection as the chances of selecting a parent can be seen as spinning a roulette wheel with the size of the slot for each parent being proportional to its fitness. Obviously those with the largest fitness (slot sizes) have more chance of being chosen.

Roulette wheel selection can be implemented as follows

1. Sum the fitnesses of all the population members. Call this TF (total fitness).

2. Generate a random number n, between 0 and TF.

3. Return the first population member whose fitness added to the preceding population members is greater than or equal to n.

In marking this question I will be looking for the following points.

· Why it is called “roulette wheel” selection.

· The algorithm, in outline, has been presented.

· The fact that parents are picked in proportion to their fitness.

· An example may be useful in describing the technique.

b) Mutation

If we use a crossover operator such as one-point crossover we may get better and better chromosomes but the problem is, if the two parents (or worse – the entire population) has the same value in a certain position there is nothing that will change that that value.

Mutation is designed to overcome this problem and so add some diversity to the population.

c) Crossover Operators for the TSP

For the TSP we need to use a crossover operator such as Order-Based Crossover. This operator ensures that illegal solutions to the TSP problem are not produced (e.g. duplicate and lost cities in this case).

(In the case of the TSP a chromosome will be coded as a list of towns. If we allow the one-point crossover operator we can (and almost definitely will) produce an illegal solution by duplicating some cities and deleting others).

The problem with other operators (such as one-point crossover) is that it can (and invariably will) lead to illegal solutions.

Order-based crossover works as follows (assume the coding scheme represent cities)

Parent 1
A
B
C
D
E
F
G

Parent 2
E
B
D
C
F
G
A

Template
0
1
1
0
0
1
0

Child 1
E
B
C
D
G
F
A

Child 2
A
B
D
C
E
G
F

· Select two parents

· A template is created which consists of random bits

· Fill in some of the bits for child 1 by taking the genes from parent 1 where there is a one on the template (at this point we have child 1 partially filled, but it has some “gaps”).

· Make a list of the genes in parent 1 that have a zero in the template

· Sort these genes so that they appear in the same order as in parent 2

· Fill in the gaps in child 1 using this sorted list.

· Create child 2 using a similar process

Question 3

a)
Show how breadth-first-search and depth-first-search can be implemented using some appropriate pseudo-code. If you use another search algorithm as a sub-routine then show this algorithm in detail as well.

(10 marks)

b)
Describe any data structures that are used in implementing the two searches and describe the way in which they are used.

(8 marks)

c)
What is the worst-case time and space complexity of the above two algorithms.

(5 marks)

d)
Describe the terms complete and optimal with regards to evaluating search strategies?
Are either depth-first-search or breadth-first-search complete? Are either of them optimal?

(2 marks)

Question 3 - Answer

a)
Show how BREADTH-FIRST-SEARCH and DEPTH-FIRST-SEARCH can be implemented using some appropriate pseudo-code. If you use another search algorithm as a sub-routine then show this algorithm in detail as well.

Breadth-First Search Implementation

Function BREADTH-FIRST-SEARCH(problem) returns a solution or failure

Return GENERAL-SEARCH(problem,ENQUEUE-AT-END)
Depth-First Search Implementation

Function DEPTH-FIRST-SEARCH(problem) returns a solution or failure

Return GENERAL-SEARCH(problem,ENQUEUE-AT-FRONT)
Both searches call the GENERAL-SEARCH algorithm

Function GENERAL-SEARCH(problem, QUEUING-FN) returns a solution or failure

nodes = MAKE-QUEUE(MAKE-NODE(INITIAL-STATE[problem]))

Loop do

If nodes is empty then return failure

node = REMOVE-FRONT(nodes)

If GOAL-TEST[problem] applied to STATE(node) succeeds then return node

nodes = QUEUING-FN(nodes,EXPAND(node,OPERATORS[problem]))

End
End Function

b)
Describe any data structures that are used in implementing the two searches and describe the way in which they are used.

Both searches use a queue. The next node to expand is always taken from the front of the queue. The important aspect is that the search is implemented by adding nodes to the queue in different orders (thus the need for a QUEUING-FN in the above implementations).

Breadth-First Search adds new nodes to the end of the queue.

Depth-First Search adds new nodes to the beginning of the queue.

c)
What is the worst-case time and space complexity of the above two algorithms.

Evaluation
Breadth First
Depth First

Time
BD
BM

Space
BD
BM

Where
B
=
Branching Factor

D
=
Depth of Solution

M
=
Maximum Depth of the Search Tree

d)
Describe the terms complete and optimal with regards to evaluating search strategies?
Are either DEPTH-FIRST-SEARCH or BREADTH-FIRST-SEARCH complete? Are either of them optimal?

Complete
:
Is the search guaranteed to find a solution if there is one?

Optimal
:
Is the search guaranteed to find the optimal (cheapest) solution (however cheapest has been defined for that search problem)?

Breadth-First Search is both optimal and complete

Depth-First Search is neither optimal nor complete

Question 4

a)
For each of the truth tables below say whether it is possible for a perceptron to learn the required output.

In each case, explain the reason behind your decision.

i)
Input
0
0
1
1

Input
0
1
0
1

Required Output
1
0
0
1

ii)
Input
0
0
1
1

Input
0
1
0
1

Required Output
1
1
0
0

iii)
Input
0
0
1
1

Input
0
1
0
1

Required Output
1
1
1
1

(10 marks)

b)
A perceptron with two inputs has a threshold level set at the point at which it will fire (i.e. output a one).
It is sometimes convenient to always set the threshold level to zero.
Show how this can be achieved by describing two perceptrons which act in the same way but one has its threshold set to a non-zero figure and the other perceptron has a zero threshold.
Why might it be a good idea to build a perceptron with a zero threshold figure?

(15 marks)

Question 4 - Answer

Only i) cannot be learnt. This is because it is not linearly separable. This can be shown on the diagrams below (where the outputs have been plotted and the filled circles represent a 1 and the hollow circles represent a zero.).

Those problems which are linearly separable can have a line dividing the "1" outputs from the "0" outputs. In the case of i) this is not possible.

i)
ii)

iii)

b)
A perceptron with two inputs has a threshold level set at the point at which it will fire (i.e. output a one).
It is sometimes convenient to always set the threshold level to zero.
Show how this can be achieved by describing two perceptrons which act in the same way but one has its threshold set to a non-zero figure and the other perceptron has a zero threshold.
Why might it be a good idea to build a perceptron with a zero threshold figure?

Perceptrons with two inputs and the threshold non-zero

A perceptron (with two inputs) to act as a logic gate could be modelled as follows (three examples are shown – students would only need to show one example).

If we consider the AND function we can see that it acts correctly for the four possible inputs (see table below).

Note in the table
Sum is defined as (Input 1 * Weight 1) + (Input 2 * Weight 2)

Step(t) is defined as returning 1 if Sum => t else 0 and the output of Step(t) is also the output (or activation level) of the perceptron.

AND

Input 1
Input 2
Weight 1
Weight2
Sum
Step(t)

0
0
1
1
0
0

0
1
1
1
1
0

1
0
1
1
1
0

1
1
1
1
2
1

Similarly, OR and NOT can be shown as follows

OR

Input 1
Input 2
Weight 1
Weight 2
Sum
Step(t)

0
0
1
1
0
0

0
1
1
1
0.5
1

1
0
1
1
0.5
1

1
1
1
1
1
1

NOT

Input 1
Weight 1
Sum
Step(t)

0
-1
0
1

1
01
-0.49
0

Perceptron with three inputs and the threshold set to zero

It is possible to have an extra input whose activation is set to –1 and the weight from that input unit to the output neuron is set to the required threshold level. Diagramatically this can be shown as follows

It can be shown that this acts in the same way as the previous perceptrons.

To demonstrate the perceptrons act in the same way the following tables are given

AND (weight on extra neuron = 1.5)

Input 1
Input 2
Input 3
Sum
Step(0)

-1
0
0
-1.5
0

-1
0
1
-0.5
0

-1
1
0
-0.5
0

-1
1
1
0.5
1

OR (weight on extra neuron = 0.5)

Input 1
Input 2
Input 3
Sum
Step(0)

-1
0
0
-0.5
0

-1
0
1
0
1

-1
1
0
0
1

-1
1
1
0.5
1

NOT (weight on extra neuron = -0.49)

Input 1
Input 2
Sum
Step(0)

-1
0
0.49
1

-1
1
-0.51
0

Again, I would not expect the students to show three examples. They are just shown for completeness.

Why it is an advantage to have threshold set to zero

When learning, the algorithm only has to adjust weights and not thresholds and weights.

Question 5

a) Describe the Turing Test

(5 marks)

b) If The Turing Test is passed does this show that computers exhibit intelligence? State your reasons.

(10 marks)

c) What advances do you think need to be made in order for The Turing Test to be passed?

(10 marks)

Question 5 - Answer

a) Describe The Turing Test

In this part of the answer I am looking for the “classic” description of The Turing Test (i.e an interrogator asks a computer and a human questions without knowing which is which and than has to decide which is the human and which is the computer).

If the computer can fool the interrogator then it has passed The Turing Test and, according to Turing, exhibits intelligence.

I will give marks for clarity of description (which may include a diagram) and also for some examples from Turing’s paper which describes some of the things the computer should be able to do. For example, answer a question on maths but take its time and occasionally get it wrong. Or discuss a sonnet of Shakespeare.

b) If The Turing Test is passed does this show that computers exhibit intelligence? State your reasons.

I am looking for the student to come clearly down on one side of the fence or the other. I don’t really want an argument put forward from both sides.

I will award marks for how convincing their argument is.

They will get more marks for using some other published work as a backup for their case.

For example, they could quote Searle’s Chinese Room and argue that this shows that a machine which exhibits intelligence can still not be considered intelligent.

They might quote Copeland (in his response to Searle) and say that the system, as a whole understands, and can therefore be considered intelligent.

c) What advances do you think need to be made in order for The Turing Test to be passed?

Again I am looking for a clear description of the main areas that would need to be advanced.

The three main areas would have to be

· Natural language processing so that the computer can interpret and respond to any question.

· The knowledge base that would have to be held

· How that knowledge would be represented.

The student may also give examples of other areas that would have to be in place.

Question 6

a) Write brief notes on each of the following. State on which aspect of the real world each of them is based.

· Tabu Search

· Simulated Annealing

· Ant Algorithms

 (15 marks)

b) What is the main difference(s) between simulated annealing and hill climbing?

(5 marks)

c) What is meant by recency with regards to Tabu Search?

(5 marks)

Question 6 - Answer
a) Write brief notes on each of the following.

Tabu Search

Tabu Search, like simulated annealing, is a neighbourhood search. This means we find the next possible state from the set of neighbourhood states and then we decide if to move to that state.

Tabu search, like hill climbing considers the set of all possible neighbourhood states and takes the best one. Unlike hill climbing it will take the best move in the neighbourhood, even though it might be worse than the current move. And, unlike simulated annealing, we are likely to move away from a good solution in search of others.

Therefore, with a tabu search it is normal to remember the best move seen during the complete search and return that as the best solution. In fact, most searches will do this anyway as the benefits far outweigh the disadvantages.

The main principle behind tabu search is that it has some memory of the states that is has already investigated and it does not re-visit those states. It is like you searching for a bar in a town you have never been to before. If you recognised you had already been to a particular street you would not search that area again.

Not re-visiting previously visited states helps in two ways. It avoids the search getting into a loop by continually searching the same area without actually making any progress. In turn, this helps the search explore regions that it might not otherwise explore.

The moves that are not allowed to be re-visited are held in a data structure (usually a list) and these moves are called “tabu” (thus the name).

Simulated Annealing

Simulated Annealing (SA) is motivated by an analogy to annealing in solids.

Take a situation where you need to grow silicon in the form of highly ordered, defect-free crystals for use in semiconductor manufacturing.

To accomplish this, the material is annealed. This is, it is heated to a temperature that permits many possible atomic rearrangements (i.e. it is melted). It is then cooled, carefully and slowly, until the material freezes into a well ordered structure. The rate at which the material is cooled (the cooling schedule) is crucial is allowing the crystals to align into a well ordered state.

Computer science have used this annealing process to search large spaces. As they are only mimicing the annealing process it has been called simulated annealing.

The main principle behing SA is that it operates like hill climbing but it accepts solutions with a certain probability (see part b of question).

Ant Algorithms

Imagine that you are an ant. You are practically blind, which is a bit of a problem when you are trying to find your way from your home to a source of food or trying to find your way from some food back to your home.

But, we know that ants find their way to and from food all the time. So how do they do it?

It was these type of observations and questions that inspired a new type of algorithm called ant algorithms (or ant systems).

These algorithms are very new (see Dorigo, 1996) and is still very much a research area. It might be the case that they turn not to produce the results that the initial research suggests they are capable of, but the initial results are promising.

The ant system is a population based approach. In this respect it is similar to genetic algorithms although there is not a population of solutions being maintained. Rather, there is a population of ants all working on the same solution.

So how does ants operate?

Consider this diagram.

If you are an ant trying to get from A to B then there is no problem. You simply head in a straight line and away you go. And all your friends do likewise.

But, now consider if you want to get from C to H. You head out in a straight line but you hit an obstacle. The decision you have to make is do you turn right or left?

The first ant to arrive at the obstacle has a fifty, fifty chance of which way it will turn. That is whether it will go C,d,f,H or C, e, g, H.

Also assume that ants are travelling in the other direction (H to C). When they reach the obstacle they will have the same decision to make. Again, the first ant to arrive will have a fifty, fifty chance or turning right or left.

But, the important fact about ants is that as they move they leave a trail of pheromone and ants that come along later have more chance of taking a trail that has a higher amount of pheromone on it.

So, by the time the second, and subsequent ants arrive, the ants that took the shorter trail will have laid their pheromone whilst the ants taking the longer route will still be in the process of laying their trails.

Over a period of time the shorter routes will get higher and higher amounts of pheromone on them so that more and more ants will take those routes.

If we follow this through to its logical conclusions, eventually all the ants will follow the shorter route.

State on which aspect of the real world each of them is based.

Tabu Search

Based on the fact that if we are searching for somewhere (maybe a shop in a town), if we see somewhere we have been before we will not search that area again. That is, we do not search states we have already seen.

Simulated Annealing

Based on the physical annealing of solids (details are above).

Ant Algorithms

Based on how ants forage for food

b) What is the main difference(s) between simulated annealing and hill climbing?

It is the fact that hill climbing always accepts better states and rejects worse states. SA always accepts better states but also accepts worse states with some probability given by

Exp(-C/T) > R

Where

C
=
the change in the evaluation function

T
=
the current temperature

R
=
a random number between 0 and 1

This allows it to jump out of local minima (or optima).

The ways the parameters are varied are known as the cooling schedule and they are critical to the performance of the algorithm (both in terms of time and the quality of the solution).

c) What is meant by recency with regards to Tabu Search?

The list of visited moves (which is sometimes called a history) does not usually grow forever. If we did this we might restrict the search too much.

Therefore, the purpose of a Recency function is to restrict the size of the list in some way (it is called a Recency function as it keeps the most recently visited states in the list – discarding the others).

The easiest (and most usual) implementation of this function is to simply keep the list at a fixed size and use a FIFO (First-In, First-Out) algorithm to maintain the list. But other methods are sometimes implemented, depending on the problem. Maybe the list-size parameter is dynamic in that it changes as the algorithm runs. One method of doing this is to keep the list small when states are not being repeated very often but, when repeated states keep being generated the list is made larger so that the search is forced to explore new areas.

1,0

0,1

1,1

0,0

1,0

0,1

1,1

0,0

1,0

0,1

1,1

0,0

109+0=109

91+41=132

89+32=121

M

� EMBED PBrush ���

W = 1

W = 1

W = 1.5

-1

x

y

t = 0.0

L

A

K

C

F

J

I

H

G

E

D

B

M

29

20

42

23

48

20

41

32

42

40

20

23

10

10

40

42

K1

J1

68+41=109

60+56=116

49+14=63

0+51=51

65+28=93

K1

L2

F1

D1

48+56=104

20+32=52

42+50=92

L1

C1

B1

A

107+42=149

E1

f

g

e

d

H

C

B

A

C:\My Documents\Training & Courses\Lecture Courses\G5BAIM\Exams\Nott Exams\1998-99\Exam 1999.doc
Graham Kendall - 13/11/00 - Page 3 of 1

_949738106

