G5BAIM – Artificial Intelligence Methods

Search problems, their implementation and how to evaluate

Search Problems

Problem Formulation - Defined

If we are going to build a system (write a program) to solve a search problem we need to do at least two things.

· We need to define the problem in a precise way.

· We also need to have a strategy that will allow us to tackle the problem and try to find a solution. The choice of strategy can be very important as to how quickly the problem will be solved, if indeed the problem will be solved at all.

The first of these areas is considered in more detail here. The choice of a search strategy is the subject of a later lecture.

In order to formulate a problem we can use the following definitions

The Initial State of the problem defines our starting position. For example, in a game of chess the initial state is all the pieces in the usual positions (of course we would have to define this more formally when we wrote our system).

To move from one state to another we apply an Operator. This defines the set of possible actions open to us at a given time. At the start of a chess game we would allow the operators to move the pawns and the knights.

The set of states we can move to from a particular state is often called the Neighbourhood. Another way it is sometimes represented is by applying a Successor Function, S. By applying S(x), where x is the current state, we are returned all states reachable from the current state.

It should be apparent that applying an operator to a state takes us to a new state.

The initial state and the operators define the State Space of our problem. The state space is the set of all reachable states from the initial state. In our chess game, that state space is the set of all valid board configurations as our operator, from the initial state, should allow us to get to any legal board configuration.

We need to know when we have solved our problem. A Goal Test, when applied to the current state, informs us if the current state is a goal state. This can be explicit, such as the 8-puzzle in a certain board configuration. On other occasions, there may be more than one condition that represents a solution to our problem. In the 8-puzzle, for example, we may not care if the numbers go clockwise, counter-clockwise or in rows or columns; just as long as the numbers are consecutive.

The goal test can be more abstract. For example, in chess we would not (could not) enumerate all the possible board configurations which represented checkmate. Therefore, the goal test would simply check if the king would be taken on the next move no matter what the opponent does. If this is the case then we have checkmate.

For some problems we might not only be interested in that we have found a solution but also in the "cost" of that solution. This is termed the Path Cost Function and is often denoted by g

In the 8-puzzle the path cost could simply be the number of moves we have made. If we have another problem where each application of the operator represents money the path cost could be measured in a financial way.

In some cases, we are not concerned about the path cost. In chess, you may only be concerned in winning so the path cost is irrelevant as long as the final position is that your opponent is in checkmate.

In summary, the initial state, the set of operators, the goal states and the path cost function define a problem.

We could even define a datatype to represent problems; something like

Datatype PROBLEM


Components : INITIAL-STATE, OPERATORS, GOAL-TEST, PATH-COST-FUNCTION

Problem Formulation - Example

The 8-puzzle that we considered in the lectures can be defined as follows

States
:
A state description specifies the location of each of the eight tiles in one of the nine squares. It is also useful to include the blank.

Operators
:
Blank moves up, right, left or right

Goal Test
:
Tile 1 is in the top left square and the tiles 2 through 8 run clockwise around the square. By definition the blank is in the middle.

Path Cost
:
The number of times the blank was "moved"

Measuring how good a solution is

When we perform a search we want to be able to measure how good it is. This can be done in a number of ways

· Probably the most important is, does it find a solution at all? We are wasting our time if we implement a search that does not find any sort of solution to our problem.

· It is a good solution? One way of measuring this is to use the path cost. The lower the path cost the better the solution. We could also take into account the amount of time the search took and how much memory it used. This is known as the search cost.
The total cost of the search is given by the path cost added to the search cost.

· Another measure we could use is, does it find the optimal solution? For example, say, we were trying to find the shortest route between two towns. Our search algorithm might return us a route but is it the cheapest route (by cheapest we might mean fastest, lowest mileage or routes which avoid suspension bridges - the choice is yours).
Note, that finding the optimal solution is really just a specialised case of finding the lowest total cost.

To formalise a little we can define four criteria used to measure search strategies

Completeness
:
Is the strategy guaranteed to find a solution?

Time Complexity
:
How long does it take to find a solution?

Space Complexity
:
How much memory does it take to perform the search?

Optimality
:
Does the strategy find the optimal solution where there are several solutions?

In later lectures we will be using these measures in order to evaluate different strategies.

Search Trees

Before we look at implementing searches we need to be clear about what a search tree is.

Assume we are just about to start a game of noughts and crosses (or tic tac toe as the literature often calls it). The board initially looks like this


From this position we can expand the tree to show all possible positions that are reachable from this point. If we assume that the first person to move is playing X then the next level of the tree will look like this


If we expand one of the other nodes we get a tree that looks like this.


You can see how quickly search trees can grow. This, by anybody's standards, is a very simple game yet at level 2 (assuming the root node is level zero) we have 72 nodes. At the next level we would have 504 nodes. By the next level we have 3024 nodes. And keep in mind this is a very simple game. If we look at something like chess then the search tree gets very large, very quickly.

The way in which a search tree grows is governed by the branching factor. In noughts and crosses the branching factor at level 0 is nine. At the next level it is eight and so on, decreasing by one at each level. The reason chess produces such a large search tree is because it has an average branching factor of 35.

If we use a search tree in order to implement our search strategy then the search is simply a matter of looking through the search tree in order to find a goal state for a problem. But as we shall discover this is not as easy as it sounds.

But before we look at these problems we'll consider how we might implement a search, in general terms.

Implementing a Search

First of all we need to decide what information to store at each node of the tree. I suggest the following as a good starting point.

State
:
This represents the state in the state space to which this node corresponds

Parent-Node
:
This points to the node that generated this node. In a data structure representing a tree it is usual to call this the parent node.

Operator
:
The operator that was applied to generate this node

Depth
:
The number of nodes from the root (i.e. the depth)

Path-Cost
:
The path cost from the initial state to this node

Some of these may seem a bit over the top at the moment but we will make use of all these aspects as we continue our investigations.

Of course, it is possible to define a data structure for these node components

Datatype node


Components: STATE, PARENT-NODE, OPERATOR, DEPTH, PATH-COST

Just so that we are clear. There is a distinction between nodes and states. A node is simply part of a structure that allows us to search our state space. Nodes have parents and depths whereas states do not. It is also possible for two nodes to have the same state which have been arrived at by two different sequences of state changes.

Now we need to decide how best to implement our tree. There is no reason why we cannot simply implement it in a language such as C++ and use the obvious method of having each node with a pointer to its parent node (which would satisfy our need to recognise who our parent is) and a pointer(s) to its children. This is a perfectly reasonable way to proceed but for our purposes it poses two problems.

Firstly, from an implementation point of view we need to implement a tree structure with varying numbers of children at each node (I refer you to tic tac toe and I'm sure you can think of many other examples). It's obviously not impossible but there is an easier way which we'll look at in a moment.

Secondly, as our search proceeds, we need to expand certain nodes of our tree. The nodes that are candidates for expansion are the leaf nodes of our tree and they are often called the fringe or frontier nodes. The problem we have is deciding which node, from the set of fringe nodes, we should expand next.

We could look at every node in our tree (which either means navigating to every fringe node or maintaining a list) and choosing the best one. But it would be nice if we always had available the next node that we wish to expand. And we can do this, as explained below.

If we implement the tree using a queue we can always take the next node from the head of the queue as the one to expand. Our queue will have the familiar queue functions; such as

Make-Queue(Elements)
:
Create a queue with the given elements

Empty?(Queue)
:
Returns true if the queue is empty

Remove-Front(Queue)
:
Removes the element at the head of the queue and returns it

We also need a way of inserting elements into the queue. As we will want to insert elements at different places in the queue, depending on the search strategy we adopt, we will use a function to do this.

Queuing-FN(Elements,Queue)
:
inserts a set of elements into the queue. Different queuing functions produce different search algorithms.

Armed with this information we can now define a function that will perform a search.

Function GENERAL-SEARCH(problem, QUEUING-FN) returns a solution or failure


nodes = MAKE-QUEUE(MAKE-NODE(INITIAL-STATE[problem]))


Loop do


If nodes is empty then return failure



node = REMOVE-FRONT(nodes)



If GOAL-TEST[problem] applied to STATE(node) succeeds then return node



nodes = QUEUING-FN(nodes,EXPAND(node,OPERATORS[problem]))


End
End Function

We will be making extensive use of this function as our investigation into search strategies progresses.

For now, assume that the queuing function always adds new nodes to the end of the queue. Work through the algorithm and make sure you understand how it works.

x





x





x





x





x





x





x





x





x





x





x





x





x





x





x





x





x





x





o





x





o





x





x





o





x





………..








C:\My Documents\Training & Courses\Lecture Courses\G5BAIM\Nott Handouts\003 Searching.doc
© Graham Kendall - 01/02/01 - Page 5 of 1

