

G5AIAI

Question 1 - Playing Backgammon

Review of the work that has been done in this area.

Programming a computer to play high-level backgammon has been found to be rather difficult. A backgammon program must choose its move from incomplete information. Uncertainty from dice rolls means that the number of alternatives at each level of the search is huge. At each ply there are 21 dice combinations possible, with an average of about 20 legal moves per dice combination, resulting in a branching ratio of several hundred per ply. The first program to make a serious impact was BKG Berliner (1980). It used only a one-ply search and a very complicated search function. In an informal match it defeated the human world champion, but it was lucky with dice [2].

NEUROGAMMON (Tesauro & Sejnowiski, 1989) is neural network model that learns from experience. It included specialised backgammon input features to measure positions. It was trained from examples of moves labelled with relative values by a human expert. Neurogammon reached a high level of intermediate play. TD-GAMMON (Tesauro, 1992) is a neural network that trains itself to be an evaluation function for backgammon by playing against itself and learning from the outcome.

There are two other leading programs that are based on neural network technology. They are SNOWIE (Egger, 1996) and JELLYFISH (V2.0 Dahl, 1996). Both programs have trained to play backgammon from self-play. On its highest-level Jellyfish matches the best humans in the world. Fredrik Dahl developed the neural nets of Jellyfish, and used the neural net complier nn from Neureka ANS [7]. Snowie has been trained to play as good as the best human players. During training, Snowie played on backgammon server fibs where it reached an ELO ranking of 2100 points [8]. There are other backgammon programs eg HC-Backgammon and Motif Backgammon that use slightly different learning methods.

Current state of the art

The current state of the art is TD-Gammon. Gerry Tesauro of IBM developed the original version of TD-Gammon in 1992. The latest version is TD-Gammon 3.0.

In 1991 version 1.0 played 51 games against world-class grandmasters such a B.Robertie, P.Magriel and M.Davis, and made a net loss of only 13 points. Version 2.0, which had more training experience and a 2-ply search algorithm, played in the 1992 World Cup of Backgammon tournament. In 38 games against top human players the program had a net loss of only 7 points. Version 2.1 achieved near-parity to Robertie in a 40 game session [3]. The latest version 3.0 has a 3-ply search. Tesauro estimates that it would score +0.02 to +0.04 points per game against the 2-ply search version. Therefore it should be as good as if not better than the top humans.

For the original version of TD-Gammon Tesauro experimented with “knowledge-free” networks that had no backgammon features, only raw representation of the board positions, which he trained to play by self-play with TD (lambada) algorithm. With no Knowledge, the networks first games against themselves were random. But after thousands of games, they became about as strong as Neurogammon. Adding Neurogammon’s features allowed TD-Gammon to become expert strength. Versions 2.0 and 2.1 used a 2-ply search to further improve their decisions [6].

Despite the strong level of play, there are still opportunities for further improvement of the program. Greater performance can be obtained by extending the search to greater depth. V2.0 and V2.1 used a 2-ply search and V3.0 uses a 3-ply search. Using a 3-ply search removed some of the technical errors of the previous versions. Developing a program that uses a 4-ply search would in theory be even better. It may also be possible to add some feature detectors that will deal with specific situations to make the programs game play better. Also if training experience was increased then it could continue to improve playing ability. K.Woolsy (expert human) said that JellyFish is better than TD-Gammon in some respects although weaker overall [7]. It may be possible to combine the two programs to produce a better one (as Neurogammon combined with TD-Gammon). If all these improvements were made then humans would stand no chance against the program. In theory this maybe the case but, humans are beginning to improve their game play by learning from the programs. They are adopting strategies used by the programs and analysing their game using the programs. Backgammon programs will continue to improve, but will the humans manage to keep up.

References

[1] Rich, E. & Knight, K., 1991, Artificial Intelligence, 2nd Edition

[2] Russell, S. & Norvig, P., 1995, Artificial Intelligence A Modern Approach

[3] Tesauro, G., 1995, Temporal Difference Learning and TD-Gammon, Communications of the ACM

[4] The WWW Backgammon Page (URL www.statslab.cam.ac.uk/~sret1/backgammom/main.htm)

[5] www.gameai.com

[6] www.satirist.org/learn-game/systems/gammon/td-gammon.htm

[7] http://jelly.effect.no/whatis.htm

[8] www.oasya.com/products/snowie.html

[9] Berliner, H.J. 1980, Backgammon: A computer program beats World Champion, Artificial Intelligence 14(2)

Playing Bridge

Review of the work that has been done in this area

Until more recently little work had been done to develop expert bridge programs. Computer games have done well in other areas, but not so well in bridge. A reason for this is that the traditional game-tree search techniques do not work so well in bridge, as bridge is an imperfect information game. There is imperfect information since bridge players don’t know what cards are in the other players’ hand. If we were to construct a game tree of all the moves a player might be able to make, in the worst case it might include about 5.6x1044 leaf nodes [1]. Since a bridge hand is normally played in just a few minutes there is not enough time for a game tree search to search enough of the tree to make a good decision.

The first bridge program of any quality was BRIDGE BARON. It was originally developed in 1980 by a team from Game Products lead by Tom Throop. By 1993 even after many improvements its bidding and play was still worse than the best local club players.

TIGNUM 2 developed by S.Smith uses an adaptation of Hierarchical Task Network (HTN) planning techniques to plan declarer play. The program imitates the way a human might plan by using Task Decomposition. Tignum 2 uses state information sets to represent the locations of cards about which the declarer is certain, and belief functions to represent the probabilities associated with the locations of the cards about which the declarer is uncertain. Tignum 2 was tested against Bridge Baron (leading program at the time) in 1997. Tignum 2 defeated Bridge Baron by 250 to 191[1].

After Tignum 2 beat Bridge Baron the creators of Tignum 2 worked with Game Products to produce Bridge Baron 8. Bridge Baron 8 uses a version Tignum 2 code to plan its declarer play. Game Products released bridge Baron 8 in October 1997[1].

There have been many commercial and internet bridge programs developed such as Bridge Master and OKBridge.

Current state of the art

The currently the best program is GIB. Mathew Ginsberg, a top AI programmer and an expert bridge player developed it in 1996 [3]. The first version of GIB wasn’t release until 1998. In computer-against-computer competitions held at the at the Fifteenth National Conference on Artificial Intelligence (AAAI-98) in Madison, GIB beat all other computer programs, establishing itself as the best computer player in the world [5].

GIB also participated in the Par Contest at the 1998 World Bridge Championships. In a field consisting of 34 of the world's best card players, GIB finished 12th [6]. GIB showed its power against a pair of human world bridge champions at a demonstration match at the North American Bridge Championships. After 14 deals, the human players defeated GIB, but only by a thin margin [5]. Bridge programs are becoming better but as yet they have been unable to demonstrate superiority over humans. Human Bridge players have high technical skill that as yet computers have not been able to match. Currently GIB seems to be about halfway between Bridge Baron and world class [8].

Ginsberg developed a clever way to make the game tree for bridge smaller. The most common technique used to make the game tree smaller is the Monte Carlo Technique. The technique removes the need to represent uncertainty about other players’ cards within the game-tree itself. Ginsberg starts with the Monte Carlo approach and then uses a tree-pruning technique called partition search. This search reduces the branching factor of the game tree by combining similar branches. This technique produces a game tree that is small enough to search completely [1]. Ginsberg also showed that alpha-beta pruning could be extended to find optimal plans for playing bridge end positions [7].

Due to the fact that there is some random simulation of unseen hands, GIB occasionally errors in deciding which cards to play. Ginsberg’s next version of GIB (to be know as GIBSON) should solve these problems and lead to near perfect play [3]. GIBSON will also have improved bidding techniques. In 1997 Chip Martel (world Champion) suggested that he expected GIB to be the best bridge player in the world by 2003 [7]. Making improvements to GIB should allow GIBSON to reach this target. It may also be possible to make further improvements by add successful features of Bridge Baron to GIBSON. The quality and quantity of bridge programs increase rapidly in the future as the progams become more successful.

References

[1] Smith, S. J. J.; Nau, D.; Throop, T. Computer Bridge: A Big Win for AI Planning 1998, AI Magazine 19(2): 93 – 105
[2] Ginsberg, M. 1997 Proc. AAAI
[3] Gitelman, F. 1997 The Best Is Yet To Come CMP
[4] http://www.uoregon.edu/~uocomm/newsreleases/latest/jul98/P072798_2.html
[5] http://comm.uoregon.edu/newsreleases/latest/aug98/P082298.html

[6] http://www.cirl.uoregon.edu/research/gib.html

[7] Ginsberg, M., 2001, GIB: Imperfect Information in a Computationally Challenging Game, Journal of Artificial Intelligence Research 14 303-358

[8] Ginsberg M. GIB: Steps Toward an Expert-Level Bridge-Playing Program

Question 2 – McCulloch-Pitts network

2.1) Time is discrete therefore it takes time for stimulus at X1 and X2 to reach Y1 and Y2 where we perceive either hot or cold. Input to the system is either (1,0) or (0,1). We want the system to perceive cold if cold stimulus is applied for three time steps.

Y2(t) = X2(t –3) AND X2(t – 2) AND X2(t – 1)

(1)

This truth table shows that is expression gives the correct result.

	X2(t – 3)
	X2(t – 2)
	X2(t – 1)
	Y2(t)

	0
	0
	0
	0

	0
	0
	1
	0

	0
	1
	0
	0

	0
	1
	1
	0

	1
	0
	0
	0

	1
	0
	1
	0

	1
	1
	0
	0

	1
	1
	1
	1

We want heat to be perceived if either heat is applied or cold stimulus is applied for two time steps and then removed.

Y1(t) = [X1(t – 1)] OR [[X2(t – 4) AND X2(t – 3)] AND NOT X2(t – 2)]
(2)

This truth table shows that the expression give the required result.

	X2(t – 4)
	X2(t – 3)
	X2(t – 2)
	AND NOT
	X1(t – 1)
	OR

	0
	0
	0
	0
	1
	1

	0
	0
	1
	0
	1
	1

	0
	1
	0
	0
	1
	1

	0
	1
	1
	0
	1
	1

	1
	0
	0
	0
	1
	1

	1
	0
	1
	0
	1
	1

	1
	1
	0
	1
	1
	1

	1
	1
	1
	0
	1
	1

	0
	0
	0
	0
	0
	0

	0
	0
	1
	0
	0
	0

	0
	1
	0
	0
	0
	0

	0
	1
	1
	0
	0
	0

	1
	0
	0
	0
	0
	0

	1
	0
	1
	0
	0
	0

	1
	1
	0
	1
	0
	1

	1
	1
	1
	0
	0
	0

2.2) The logical statements have to be converted into the network. Taking statement (2). This can be represented as

Y1(t) = X1(t – 1) OR Z1(t – 1)

(3)

Now consider the Z1 neuron at time step t – 1 and how it is formed.

Z1(t – 1) = Z2(t – 2) AND NOT X2(t – 2)

(4)

The Z2 neuron at time step t –2 is formed by

Z2(t – 2) = Z3(t – 3) AND X2(t – 3)

(5)

The Z3 neuron is simply

Z3(t – 3) = X2(t – 4)

(6)

If we take formula (3) and substitute in formula (4), (5) and (6) we end up with formula (2). Taking formula (1)

Y2(t) = X2(t – 1) AND Z2(t – 1)

(7)

Z2 is formed by:

Z2(t – 1) = X2(t – 2) AND Z3(t – 2)

(8)

Z3 is formed by:

Z3(t – 2) = X2(t – 3)

(9)

2.3) The network in diagrammatical form, including weights. Each neuron has a threshold of 2.

2.4) Each Neuron has a threshold of 2.

Apply cold for two time steps and we perceive heat

	Time
	Heat (X1)
	Cold (X2)
	Z1
	Z2
	Z3
	Hot (Y1)
	Cold (Y2)

	0
	0
	1
	
	
	
	
	

	1
	0
	1
	0
	0
	1
	
	

	2
	0
	0
	0
	1
	1
	
	

	3
	0
	0
	1
	0
	0
	0
	0

	4
	0
	0
	0
	0
	0
	1
	0

Apply cold for three time steps and we perceive cold

	Time
	Heat (X1)
	Cold (X2)
	Z1
	Z2
	Z3
	Hot (Y1)
	Cold (Y2)

	0
	0
	1
	
	
	
	
	

	1
	0
	1
	0
	0
	1
	
	

	2
	0
	1
	0
	1
	1
	
	

	3
	0
	0
	 0
	1
	1
	0
	1

Apply heat and we perceive heat

	Time
	Heat (X1)
	Cold (X2)
	Z1
	Z2
	Z3
	Hot (Y1)
	Cold (Y2)

	0
	1
	0
	
	
	
	
	

	1
	1
	0
	0
	0
	0
	
	

	2
	1
	0
	0
	0
	0
	1
	0

Each neuron input. Read across to see the inputs of each neuron.

	
	X1
	X2
	Z1
	Z2
	Z3

	Z1
	
	-1
	
	2
	

	Z2
	
	1
	
	
	1

	Z3
	
	2
	
	
	

	Y1
	2
	
	2
	
	

	Y2
	
	1
	
	1
	

Whether heat is perceived

If apply heat at t –1 then we perceive heat

If cold is applied for two times steps then removed, we perceive heat

2

2

OR Function

AND NOT Function

-1

2

AND Function

1

1

1

2

Y1

Z2

X1

Y2

Z3

Z1

X2

1

2

-1

1

2

1

2

Page 1 of 5

