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Abstract: London Heathrow airport is one of the busiest airports in the
world. Moreover, it is unusual among the world’s leading airports in that
it only has two runways. At many airports the runway throughput is the
bottleneck to the departure process and, as such, it is vital to schedule depar-
tures effectively and efficiently. For reasons of safety, separations need to be
enforced between departing aircraft. The minimum separation between any
pair of departing aircraft is determined not only by those aircraft but also
by the flight paths and speeds of aircraft that have previously departed. De-
partures from London Heathrow are subject to physical constraints that are
not usually modelled in departure runway scheduling models. There are many
constraints which impact upon the orders of aircraft that are possible and
we will show how these constraints either have already been included in the
model we present or can be included in future. The runway controllers are
responsible for the sequencing of the aircraft for the departure runway. This
is currently carried out manually. In this paper we propose a meta-heuristic-
based solution for determining good sequences of aircraft in order to aid the
runway controller in this difficult and demanding task. Finally some results
are given to show the effectiveness of this system and we evaluate those results
against manually produced real world schedules.

1 Introduction

London Heathrow is a busy two-runway airport which, due to its popularity
with both airlines and passengers, suffers severe aircraft congestion at certain
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times. Traffic in airports is not evenly spread, for obvious reasons which per-
tain to airline and passenger preferences. There are inevitably times when the
departures process is congested but the arrivals are sparse, vice versa, and
times when both are congested. London Heathrow airport is actually situated
on an extremely small plot of land in comparison both to how busy the airport
is and to other airports around the world.

The airport capacity problem is concerned with estimating the capacity
of an airport in terms of arrivals and departures. It has been examined for a
number of years. Newell [14] provided a model and showed that the capacity
of the airport is increased when arrivals and departures can be alternated
on both runways. Although mixed mode, where arrivals and departures are
intermixed on a runway, is preferable for increasing the throughput, this is
not currently possible at Heathrow due to the proximity of the surrounding
residences, although it may begin to be considered for peak times.

The departure flow at Logan airport was analysed in [11] and [12] and
Logan airport was compared to other major airports. Runway scheduling was
seen to be a bottleneck upon the departure process and the authors concluded
that it is vital to increase the throughput of the departure runway.

There are some similarities between the arrival and departure processes for
the runways at an airport. Both processes are subject to sequence-dependent
separation times between aircraft. Previous research has looked at the arrivals
problem with the goal being to order arriving aircraft for a single runway
so as to either minimise the total completion time or to minimise the total
deviation from an ideal arrival time for each aircraft. Mixed integer zero-one
formulations were presented in [6] and Genetic Algorithms were shown to be
effective in [7].

Abela et al [1] looked at the arrivals problem for a set of aircraft with
landing time windows. They presented a genetic algorithm to give an approx-
imate solution and branch and bound algorithm for solving the problem when
formulated as a 0-1 mixed integer programming problem to give an exact
solution.

A heuristic approach for an upper bound and a branch and bound algo-
rithm for the arrivals problem were given in [10]. A network simplex method
was used to assign arrival times given any partial ordering of aircraft.

The arrivals problem, as it is presented in the literature, however, does
not address the major constraints upon the departures problem at London
Heathrow airport.

A constraint satisfaction based model for the departure problem was pre-
sented in [13] for solution by ILOG Solver and Scheduler. A fifteen minute
time slot was assigned to each aircraft and separations were assigned based
upon the size and speed of the aircraft and upon the exit point that the
departing aircraft were going to use.

The departure process was analysed and a departure planner proposed
by Anagnostakis et. al. in [3], [4] and [5]. A search tree was described and
branch and bound techniques or an A* algorithm were recommended for solv-
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ing the departure problem in [2]. A dynamic program was suggested in [15] to
solve the departure order problem by limiting the possible number of aircraft
that are considered for any place in the schedule, reducing the search space
dramatically.

If only considering separations between adjacent aircraft and ignoring the
physical constraints from the holding points, the departure problem can be
seen to be a variant of the single machine job sequencing problem where jobs
have sequence-dependent processing or set-up times. Substantial research has
been undertaken into this problem. For example Bianco et. al. [8] looked at the
generalised problem with release dates as well as sequence-dependent process-
ing times, showing the equivalency to the cumulative asymmetric travelling
salesman problem with release dates. To ensure safety in the departure pro-
cess, however, it is not possible to only consider adjacent pairs of aircraft
and it is easy to produce schedules where all adjacent pairs have the required
separations but other aircraft pairs do not.

Craig et. al. [9] did look at the effects of one holding point structure and
gave a dynamic programming solution for scheduling take-offs. In practice,
however, the holding point structures are more flexible than the one described
here and a more general solution needs to be developed.

There are important constraints at London Heathrow airport that are not
normally considered in the departure problem as it is presented in the current
scientific literature. These are identified in the problem description below.

2 Problem description

The objective of this paper is to increase the throughput of the departure
runway subject to various constraints, with safety being paramount.

There are currently only two runways in normal use at Heathrow, however,
if environmental targets are met, there may be a possibility to add a third,
parallel runway in the future. At any time of the day only one runway can
currently be used for departures.

The direction of the wind determines the direction in which the runways
are used. The runways are labelled according to the direction in which they
are employed and whether they are on the right or the left when facing that
direction. The four runway configurations have been labelled in Fig. 1. For
example, when arriving or departing heading west, the northern runway is
referred to as 27R as it has a direction of 270 degrees and is the runway on
the right.

There is actually a third runway already but this can only ever be used
for arrivals. It is shorter than the other two and not long enough for many
Heathrow departures. It is used no more than twice per year. It also intersects
both of the other runways so it is not practical to use it if either of the other
two runways is in use. Indeed, it is usually used as a taxiway.
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Fig. 1. The layout of London Heathrow Airport

There are currently four terminals at London Heathrow, labelled T1 to 4
in Fig. 1. Three terminals are situated between the runways but the fourth is
to the south of the southern runway.

When a flight is ready to depart a delivery controller has to give permission
for engine start up. A ground controller then instructs the pilot in order to
control the movement of the aircraft around the taxiways. Once an aircraft
approaches the runway end and is no longer in conflict with any other aircraft
the ground controller will relinquish control of the aircraft to the runway
controller.

In this paper, we are concerned only with the operations of the runway
controller. We assume that the ground controller and delivery controller are
currently outside of the system and merely feed aircraft into the start of the
system. Later research will look to include these roles into the model.

There are holding points, labelled HP in Fig. 1 at each end of each of
the runways, and both north and south of the southern runway. Within these
physical holding point structures the runway controller can reorder the aircraft
before they reach the runway.

2.1 Holding point constraints

Aircraft go through holding points to get to the runways. Holding points can
be considered to be one or more entrance queues to some maneuvering space
then finally to a single take-off order on the runway. Where there are different
entrance queues available, the ground controller will usually send an aircraft
into the most convenient queue. The runway controller can request aircraft
to be sent to specific queues but in practice, as the runway controller is very
busy with the aircraft already in the holding points, there is rarely sufficient
time to also consider the aircraft the ground controller has.

As mentioned before, Heathrow has very limited space so the holding point
and taxi space is limited. Given the initial order of aircraft in the input queues
to the holding points the runway controller has to decide how to sequence the
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take-offs in order to maximise the throughput at the runway. This can be a
very difficult task at times.

Only limited amounts of reordering are possible at these holding points.
The configuration of the holding points varies greatly between runway ends
and will determine what reordering operations can take place and the costs
involved in each operation.

2.2 Minimum separations

To ensure safety, minimum separation times are imposed between aircraft tak-
ing off. The order of the aircraft for take-off can make a significant difference
to the total delay that needs to be imposed upon the aircraft.

The minimum separation between aircraft is determined by:

• Wake Vortex: Large aircraft leave a stronger wake vortex than smaller/lighter
aircraft and are also less affected by wake vortex. Every aircraft has a
weight category and the wake vortex separation for any pair of aircraft
can be determined by comparing their weight categories.

• Departure Routes: Aircraft will usually have a Standard Instrument De-
parture (SID) route assigned to them, giving a pilot a known departure
route to follow. The relative SID routes of any two aircraft will impose a
minimum departure interval between them. This ensures that safe mini-
mum separation distances are kept while in flight. At times of congestion in
the airspace a larger than normal separation may be required between cer-
tain SID routes, in order to increase the separation between flights heading
into the congestion. These separations differ depending upon the runway
in use at the time.

• Speed Group: The relative flight speeds of the aircraft can also make a
difference to the separations which must be imposed upon aircraft flying
the same or similar routes. The relative speed groups of the two aircraft
modify the separation required for the relative SID routes. If the following
aircraft will close the distance then a larger initial separation is necessary.
Conversely, if the following aircraft is slower then a lower separation can
sometimes be applied.

The runway controller will aim for minimum separations between aircraft
wherever possible. It should be noted here that a controller has some discretion
as far as some separations are concerned. In particular some of the SID route
based separations can be reduced in good visibility.

2.3 Other constraints

The departure process is a dynamic system where aircraft are added to, and
removed from, the system over time. The runway controller will have only
limited knowledge about the aircraft that are not currently at the holding
points.
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The runway controller has a lot of information that is very hard to cap-
ture as hard data. In many cases a controller will be weighing the effects of
contradictory constraints such as maximising throughput while minimising
overtaking, to ensure fairness and minimising maneuvering, to reduce work-
load.

2.4 Overall objective

The objective is to find candidate solutions for which the runway throughput
is maximised and all constraints are met. We were told by one air traffic
controller that the best figure obtained for Heathrow was 54 aircraft in an
hour and that this figure is so good that it is extremely unusual.

For our research we use a reduction in the holding point delay as a sur-
rogate objective. Holding point delay is measured as the amount of time the
aircraft spend in the holding point. Any objective to minimise this will have
the effect of reducing the number of large separations and also of moving larger
separations later in the take off order, so that they delay less aircraft. Moving
larger separations later means that there is more opportunity to deal with
them using new aircraft entering the system later, so a delay based objective
for the problem at any instant in time is a good surrogate for a throughput
based approach for the overall schedule. As the holding point arrival times are
constant, the sum of take-off times could be used as an equivalent, but less
meaningful, objective function.

3 Model description

In this model we aim to maximise the throughput of the runway by minimising
the total delay, D, suffered by the aircraft at the holding points. Let hi be
the arrival time for aircraft i at the holding point, where i is an integer ≥ 1.
The integer i represents the position of the aircraft in the take-off order. If di

is the take-off time for aircraft i from the runway, then we can calculate the
total delay at the holding points using equation 1 where n is the total number
of aircraft departing.

We define a function S(j, i) to give the minimum separation necessary
between leading aircraft j and (not necessarily immediately) following air-
craft i to meet all separation requirements. Function S(j, i) incorporates all
separation rules for weight classes, SID routes and speed groups.

If we assign each aircraft a route through the holding point structure then,
given a holding point entry time, hi, and a suitable function, T (ti), for the
traversal time through the holding points along a traversal path ti for aircraft
i, the earliest time the aircraft can reach the runway can be calculated as
hi + T (ti).

For the model, we assume that all aircraft take off as early as possible, so
for any aircraft, i, the take-off time, di, can be predicted as the earliest point
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that both allows sufficient time to reach the runway and complies with all
required separation rules, equation 2.

Function S(j, i) can be taken to be the maximum of two functions:
W (wj , wi) which will calculate the required wake vortex separation from the
weight categories wi and wj of aircraft i and j and R(rj , sj , ri, si) which will
calculate the required separation based upon the SID routes, ri and rj , and
the speed groups, si and sj , of the aircraft i and j (see equation 3). The
separations for SID routes differ depending on which runway the aircraft are
departing from, so R(rj , sj , ri, si), like T (ti), is runway specific.

Both functions W (wj , wi) and R(rj , sj , ri, si) are defined to return stan-
dard separation values in accordance with current regulations. It should be
noted that the runway controller has some flexibility in good weather to re-
duce the separations given by R(rj , sj , ri, si) and a fully operational decision
support system would allow the controller to do just that.

3.1 Formal description of the mathematical model

We can express this model as follows:
Minimize

D =
n∑

i=1

(di − hi) (1)

Where
di = max(hi + T (ti), max

j=1..(i−1)
(dj + S(j, i))) (2)

S(j, i) = max(W (wj , wi), R(rj , sj , ri, si)) (3)

3.2 Holding point constraints

Any practical model must incorporate the holding point constraints. There
is no point in presenting candidate solutions to a runway controller if he/she
cannot actually achieve the order due to the physical constraints.

An example of a holding point structure can be seen in Fig. 2. The nodes
are the valid positions for aircraft and the arcs show moves that aircraft
could make. This network is more restrictive than the actual network at the
associated holding point at Heathrow and is deliberately so. Any solution
which is feasible for this network should be both feasible and sensible for the
real network.

We investigate meta-heuristic local search, as specified in section 4. This
means that the search will move from one solution to the next. A solution
could consist of just a final take-off order or it could give details about all of
the taxi movement within the holding points and a take-off order could be
derived from this.
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If a solution consisted of the order in which individual moves were made
within the holding point, specifying details of how aircraft attain the reorder-
ing as well as the final take-off order achieved, the search space would be
extremely large. Many solutions would give the same take-off order but differ
in the paths used to traverse the holding point or in the order in which moves
were made. The relative order in which many actions take place often does
not matter. So, many apparently different solutions may, in fact, be identical.
Some paths take longer to traverse than others, so some solutions will be much
better than others that have the same take-off order. This manoeuvring cost
would have to be considered within the objective function.

Rather than modelling the movement within the holding points, the se-
lected model instead has solutions which specify only a take-off order rather
than how the order is achieved. Not all potential take-off orders will be achiev-
able however, so this must be verified. The method, in which the reordering
is attained, does have an impact and some ways are obviously better than
others. We use a heuristic to assign holding point traversal paths to aircraft,
then perform a feasibility check to verify that the solution is achievable, given
the holding point structure.

A

D

G H

E

B C

F

I

J

Runway

Fig. 2. An example holding point network structure.

3.3 Path assignment heuristic

The heuristic to assign paths through the holding point to aircraft is hold-
ing point specific. The first stage in the design is to identify the good paths
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through the holding point. This is performed by asking the runway controllers
about the ease and feasibility of using possible paths and eliminating from con-
sideration any which are difficult to use, leaving only good paths. Given each
entrance point, multiple paths are available.

Some paths are faster than others, but all paths are easy to use even though
some will be longer than others. The allocation heuristic allocates slower paths
to aircraft that are overtaken and faster paths to aircraft that overtake. This
ensures that all aircraft on longer, slower paths are being overtaken in the
holding point and therefore have much more time available to traverse the
holding point.

For example, if two aircraft arriving at entrance A in Fig. 2 needed to
reverse their order before take-off, the first would be assigned path ADGH
and the second path ADH. The first would then hold at G while the second
overtook it.

Once an aircraft is in the holding point the heuristic does not allow the as-
signed path to be changed so it is important to attempt to maintain flexibility
when assigning paths to aircraft close to the holding point.

3.4 Directed graph model of the holding point

Once paths have been assigned to aircraft, the feasibility of the schedule is
checked by feeding aircraft into the start nodes of the directed graph for
the holding point, in the order they will arrive at the holding point. Fig. 2
shows the graph used for the 27R holding point. Rules are used to determine
which aircraft to move next and whether moving a specific aircraft could
block another aircraft. If the aircraft can exit the graph onto the runway in
the desired take-off order then the schedule is deemed feasible.

Two levels of pre-processing are used. The first is based purely upon the
holding point structure and the possible paths that could be used. This stage
is performed for each holding point graph prior to the start of the tests and can
be performed off-line. It caches information about the later structure of the
holding point beyond each node, recording for each of the paths entering the
node, details of which other paths converge with it and how many nodes are
not shared between them. The second pre-processing stage requires knowledge
of the desired take-off order so is performed before each feasibility check. This
stage calculates partial take off orders at each node, for sets of converging
paths, ensuring that, for any pair of aircraft for which there is no possibility
of changing order beyond this node, the aircraft enter the node in the correct
order. Together, the pre-processing results provide knowledge about whether
any aircraft can move without blocking another aircraft, ensuring that the
feasibility check can be made both deterministically and quickly.
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4 Departure scheduling algorithms

All of the search heuristics that we investigated had the same basic format
but differed in the details. They are described below.

First descent

The first descent algorithm is the most simplistic algorithm and has the fol-
lowing structure.

1. Obtain initial current solution. An initial current solution will usually be
a solution where the aircraft are in the order at which they arrived at
the holding points. This solution has the advantage that it will always be
feasible as no reordering is necessary within the holding points.

2. Evaluate the solution as described in section 4.2, using the default holding
point paths as no reordering is necessary so feasibility is guaranteed.

3. Generate a new candidate solution by selecting a solution from the neigh-
bourhood of the current solution, as described in section 4.1.

4. Heuristically assign holding point paths to aircraft, as in section 3.3.
5. Check the feasibility at the holding point structure to ensure that the

order of take-off is possible, as described in section 3.4.
6. Evaluate the cost of the solution, as shown in section 4.2.
7. If the candidate solution has a lower cost than the current solution then

accept it as the new current solution.
8. If the given number of evaluations have been completed then stop the

algorithm and report the best result so far, otherwise return to step 3.

Simulated annealing

The simulated annealing algorithm has the same structure as the first descent
algorithm except in step 7. In step 7, rather than only accepting better solu-
tions, the simulated annealing algorithm will sometimes accept moves to worse
solutions, allowing it to escape local optima. If the cost of the new solution is
less than the cost of the current solution then the new solution will always be
accepted. If the cost of the new solution is more than the cost of the current
solution then there is a small chance to still accept the new solution.

Let Dcurr be the cost of the current solution and Dcand be the cost of the
candidate solution.

The candidate solution will be accepted in step 7 if:

Dcand < Dcurr (4)

or
R < e−δ/T (5)
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where δ = Dcand − Dcurr is the difference between the current and can-
didate solutions, R represents a uniform random variable in the range [0..1]
and T is a temperature which is initially large, so that many bad solutions are
accepted, but decreases over time so that the simulated annealing algorithm
slowly converges on the first descent over time.

Steeper descent

The steeper descent and tabu search algorithms are similar to the first descent
algorithm but both generate fifty candidate solutions at a time in step 3 rather
than just one. All of the fifty candidates are evaluated simultaneously in steps
4, 5 and 6. In step 7 the best of the feasible candidate solutions is adopted
as the new current solution in step 7. The best candidate is adopted even if
it is worse than the current solution, which means this is more than a strict
descent algorithm. This gives the algorithm a limited ability to move out of
local optima but no method to avoid it moving straight back to the local
optimum it just left.

Evaluations of candidates are expensive so, for comparison, the searches
are limited to a number of evaluations rather than a number of iterations. This
means that the first descent and simulated annealing algorithms run for fifty
times as many iterations as the steeper descent and tabu search algorithms.

Tabu search

The tabu search algorithm is similar to the steeper descent algorithm except
that it maintains a list of tabu moves. When a move is made, details of the
move are stored on a tabu list. The tabu list stores details of which aircraft
were moved and the absolute positions they were moved from, for the last 10
moves made. If a future move attempts to place all of these aircraft back at
the position from which they were moved then it will be declared tabu and
rejected.

Like the steeper descent algorithm, the tabu search evaluates fifty can-
didate solutions at once. The only difference between the two algorithms is
that, in step 7, each candidate is evaluated and tested to see if it matches a
move on the tabu list. The best of the feasible, non-tabu candidates is adopted
and the details of the move made are stored on the tabu list. Again, the best
candidate is adopted even if it is worse than the current solution, allowing the
search to escape loal optima. The tabu list ensures the search cannot quickly
return to a local optimum it has escaped.

4.1 Neighbourhood design

These algorithms all rely upon the selection of neighbouring solutions. Choos-
ing a neighbouring solution is a matter of first randomly determining the move
to use then randomly determining the details of that move. A large number
of moves are available to the searches.
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Swap single aircraft

The swap single aircraft move takes two aircraft from the schedule and swaps
the positions of the aircraft in the final take-off order. There is a 30% chance
that this move will be used, selecting two aircraft at random.

Shift aircraft

The shift multiple aircraft move selects a consecutive group of one to five
aircraft and moves them to a new random position in the schedule, either for-
wards or backwards. There is a 50% chance that this move will be made. Mov-
ing multiple aircraft is especially useful once the aircraft are in north/south
alternating pattern as moving a single aircraft would usually make the sched-
ule worse in that case.

Randomise a set of aircraft

The randomise a set of aircraft move selects a consecutive set of aircraft as
the target. Each aircraft within this set is then moved to a random position
in the set. This move may emulate a shift, swap or a reversal in the order in
some cases but some of the schedules attainable through this move are not
attainable otherwise. There is a 20% chance that this move will be used. In
experimental results this move has shown a valuable contribution in finding
good schedules, when not overused.

4.2 Objective function

It is advisable to limit the amount of deviation from the holding point arrival
order as well as to limit the delay. Reducing the number of ‘swaps’ of aircraft
in the take-off order will aid in reducing workload for the pilots and controllers
and it will also make it easier for the next iteration to build a feasible schedule.

With this goal in mind, the following objective function is used by the
search algorithms:

D = α

n∑

i=1

(Ai − i)2 + β

n∑

i=1

(di − hi) (6)

Where n is the number of aircraft in the take-off schedule, di is the take-off
time and hi is the holding point arrival time of the ith aircraft in the take-off
queue. Ai is the position, 1, 2...n, in the initial holding point arrival order, of
the ith aircraft in the take-off queue.

With the delay measured in seconds and separation rules specifying a
minimum number of minutes separation, the constants α and β were chosen
to be 1 and 5 respectively to ensure that reducing the delay was the primary
objective and reducing the reordering was only secondary.
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4.3 Testing the search algorithms

We aim to determine the feasibility of a meta-heuristic based approach to real-
time scheduling of aircraft at Heathrow given the holding point constraints
that must be considered at Heathrow. We therefore test our algorithms by
providing them with static problems of a type that may occur in a real system,
where there is limited visibility of future aircraft and some constraints upon
what can be done with aircraft already in the holding point. We form a series
of these problems by applying a rolling window of 25 aircraft at a time to
each input dataset and applying the results of each search to the input for the
next search. In a real system not all suggested reorderings will be accepted,
as the controller has a number of other objectives to keep in mind. Here
we are assuming that the meta-heuristic order will always be accepted. It is
important to attempt to automate the system, so that it can be tested in an
objective rather than subjective manner, even though this is not how it would
be used in practice.

An initial schedule was first built for the first 25 aircraft.

1. Add the first 20 aircraft to the system.
2. Run the search algorithms for 10000 evaluations. Keep the best result

found.
3. Fix the take-off order, take-off time and traversal paths of the first 5

aircraft to take off. Traversal paths for aircraft overtaken by these aircraft
were also fixed.

4. Add the next 5 aircraft to the system.
5. Run the algorithms for 5000 evaluations. Keep the best result found.

A second, iterated stage was then entered. This is the stage that more
closely emulates what will happen in practice, with some aircraft having take-
off slots or traversal paths already assigned. Each iteration took between 0.4
and 0.8 seconds.

1. Fix the take-off order, take-off times and traversal paths of the first 10
aircraft to take off. Again this also fixes the traversal paths of all aircraft
they overtake.

2. Add the next aircraft to the system.
3. Remove the first aircraft from the system.
4. Run the search algorithms for 5000 evaluations. Keep the best result.
5. If there are no more aircraft to add then stop, otherwise return to step 1.

As aircraft are removed from the system the take-off order is recorded
and at the end, the combined schedule of all of the departures is built and
evaluated. This test was applied ten times to each dataset for each of the
algorithms.

We have two main concerns in our testing. Firstly, we must verify whether
our algorithms can find good results for the sub-problems within a very short
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search time, to verify their feasibility for use in a real-time system. Secondly,
although the searches are considering only a subset of aircraft at once, it is
the value of the entire schedule as a whole which actually matters. We would
like to verify that solving the sub-problems will give good results for the entire
schedule, validating the approach for a real system. To answer both of these
questions we evaluate the final schedule as a whole, predicting take-off times
and calculating a total delay for all of the aircraft in the dataset.

5 Results

5.1 Input data and assumptions

Historical recorded data was used for the evaluation. Three datasets were used
with different numbers of aircraft (123, 189 and 299 respectively).

The most convenient holding point entrance for the allocated stand was
assigned to each aircraft. The real holding point arrival times from the historic
data were used. In a real system, precise arrival times would not be known
until the aircraft actually arrived at the holding points and estimated arrival
times would have to be used until then.

Recorded data shows that it takes a minimum of just over a minute for an
aircraft to traverse the holding point structure and get airborne but this time
can vary widely. For this paper, all holding point traversal times were assumed
to be equal and independent of the route taken, as only good paths were used.
Two values for this time were tested: one and two minutes. A traversal time of
one minute has the advantage of allowing aircraft to arrive, enter the runway
and take-off very quickly, which is what often happens in practice at quiet
periods. A two-minute traversal time, although no longer allowing fast entry
at times when this is possible, seems better suited for the model in many ways
as it can be assumed to account for some of the uncertainty in arrival time or
traversal time in real life.

The real situation would have some aircraft already in the holding point.
We simplify these tests by always starting aircraft at the holding point en-
trances to avoid having to make predictions for the positions of aircaft within
the holding point. The danger of not predicting holding point positions for
aircraft already in the holding point is that the reordering of earlier aircraft
that have already taken off may have enforced certain manoeuvring upon the
aircraft that haven’t taken off yet. To ensure that restarting aircraft at the
holding point entrances does not increase the flexibility of later take-offs we
leave earlier aircraft in the system until they can no longer have any effect on
the aircraft that haven’t yet taken off, thus re-enforcing the manoeuvring on
the later aircraft.

Our model can easily consider aircraft already in the holding point by
modifying the earliest take-off time appropriately and starting the feasibility
check with the aircraft already in the intermediate nodes rather than at the
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holding point entrance. This would considerably reduce the complexity of the
feasibility check in the holding point graph, but introduce a great deal of
complexity into the test simulation with the need for a position prediction
system.

5.2 Total delay on aircraft

The test schedule was executed ten times for each of the search approaches, on
each set of data, for both one and two minute holding point traversal times.
The mean values of the total delay in seconds for the ten runs are shown in
the tables below. The best figures are presented in bold.

Table 1. Comparison of mean delays - 1 minute traversal time

Algorithm Dataset 1 Dataset 2 Dataset 3

Manual schedule 55140 136168 103692
First Descent 23548 49966 51438
Steeper Descent 23511 49158 50977
Simulated Annealing 23511 48613 50788
Tabu Search 23516 48767 50661

Table 2. Comparison of mean delays - 2 minute traversal time

Algorithm Dataset 1 Dataset 2 Dataset 3

Manual 62244 142828 121632
First Descent 30831 59170 69377
Steeper Descent 30831 58275 68916
Simulated Annealing 30831 57815 68728
Tabu Search 30831 57504 68601

5.3 Search times

We aim to verify the feasibility of implementing a meta-heuristic based system
to provide real-time advice to a runway controller. One of the key objectives
for this research is that results must be returned extremely quickly from each
individual search. Although the important consideration for our research is the
search time for a single iteration, the total test time is useful for evaluating
the relative speeds of the algorithms. Tables 3 and 4 give the mean execution
time, in seconds, for the tests performed with each of the four algorithms.
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Table 3. Comparison of search time and total time - 1 minute traversal time

Algorithm Dataset 1 Dataset 2 Dataset 3

First Descent 69.4 114.0 193.1
Steeper Descent 67.3 110.1 187.5
Simulated Annealing 71.6 116.5 197.8
Tabu Search 80.9 132.4 225.4

Table 4. Comparison of search time and total time - 2 minute traversal time

Algorithm Dataset 1 Dataset 2 Dataset 3

First Descent 69.2 114.7 194.5
Steeper Descent 67.7 110.9 199.1
Simulated Annealing 72.0 117.2 238.2
Tabu Search 80.9 132.0 225.4

5.4 Evaluation of the results

The meta-heuristic solutions provide much lower total delays than the man-
ual solution and this provides significant evidence for the high value of such
approaches. However, there are a number of reasons why our automated so-
lutions are so superior (in terms of delay). In fact, the manual solutions are
very good, with very few separations above the minimum. These reasons are
outlined below.

1. Maximising throughput is not the same as minimising delay. The con-
troller is trying to maximise throughput not directly to minimise total
delay. Minimising delay will have the effect of moving larger separations
as late as possible in the schedule. Minimising the delay will maximise
the throughput but the converse is not true. For example assume a six
minute period with only three aircraft available to take off. Two minute
separations would give the same throughput as one minute separations
but a lot larger delay. Where larger separations will be necessary, a run-
way controller may sometimes wish to have them earlier to avoid delaying
aircraft which take advantage of these to cross the runway.

2. Some aircraft have a Calculated Time of Take-off (CTOT) which effec-
tively designates a fifteen minute take-off time slot. It is important that
such aircraft take off within this window. For the results in this paper, we
have no CTOT information so we assumed no CTOT limitations.

3. In bad weather, a Minimum Departure Interval (MDI) could be applied to
some routes. This temporarily increases the minimum separation allowed
between aircraft using certain routes and so can increase delay. We have
no data for whether any MDIs were present on the specified days so were
forced to exclude MDIs from the evaluation.
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4. This is a multi-objective problem and minimising delay only looks at one
objective. Many conflicting objectives need to be satisfied and this is one
reason why an automated solution can only ever be advisory.

5. Taxi times are not actually identical or predictable. We have no way of
knowing whether certain aircraft were exceptionally slow or fast in prac-
tice.

6. The meta-heuristics have more knowledge about the future than the run-
way controller did. Sometimes a good order from the meta-heuristics has
been a result of knowing which aircraft are going to be arriving later. Re-
ducing the load on the runway controller via an advisory system should
allow a runway controller to take account of these later arrivals themselves;
something they do not currently have the time to do.

Minimising the delay is a good way to try to ensure maximal throughput
of the runway as it makes it easier to reschedule as new aircraft enter the
system.

The fact that the meta-heuristics give better delays than the manual so-
lution means that they hold significant promise for forming the basis of an
advisory system. By reducing the work load of the runway controller and al-
lowing more aircraft to be considered than are currently in the holding point
structure it should be possible to reduce the delay and increase throughput
in practice.

Dataset 1 was from a less busy time of the day than the other two datasets.
There were less possibilities to reorder aircraft as there were less aircraft in
the holding points at any time. All but the first descent algorithm found the
same good schedule for the aircraft in this dataset, the mean values of 23511
and 30831 were also the minimum values found for this dataset, by any of the
algorithms. The tabu search failed on one execution to find this good schedule
hence the slightly higher mean for the tabu search with one minute traversal
time.

Datasets 2 and 3 were from busier times of the day. For both traversal
times, for both datasets 2 and 3, student t-tests showed that tabu search
performed significantly better than the steeper descent algorithm and that
both simulated annealing and tabu search performed significantly better than
the first descent algorithm, with a confidence level of 99% in each case.

The simulated annealing algorithm gave good results across the datasets.
It got the best results for dataset 2 on table 1 and equal best on dataset 1 for
both tables. Student t-tests performed on the results, however, failed to show
a significance in the difference between the results for simulated annealing
and tabu search, for either of the traversal times for dataset 2, despite the
difference in the mean values of the results.

With ten executions of the algorithms on each dataset for each traversal
time, there are forty executions that can be compared for these datasets.
Tabu search gave better results that the steeper descent algorithm on 39 of
the executions and the same result on the other execution. The only difference
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between the two approaches is the presence of the tabu list so we conclude
that the tabu list is contributing to the success of the search.

Tabu search produced the best result for dataset 3 on table 1 and the best
results for all three datasets on table 2, although all of the automated results
got equal best results for dataset 1. Student t-tests showed that tabu search
performed significantly better than simulated annealing for both traversal
times for dataset 3, with a confidence level of 99%.

However, there is a significant cost to maintaining and checking the tabu
list, this being shown in the greater time that the tabu search takes to perform
the search.

We aimed to determine whether a meta-heuristic approach could solve the
scheduling problem fast enough to be of use to a real time system and whether
an approach which solves a number of sub-problems could attain a good overall
delay for the entire schedule. The good overall delay for the schedule obtained
when applying either the Tabu Search or Simulated Annealing algorithms
to the problem assures us that the meta-heurisitic approach is a promising
approach for a real-time decision support system for a runway controller as
it can, with a very short search time, provide very good results for the sub-
problems a real controller would have to deal, leading to very good overall
delays.

6 Conclusions

The departure problem is a complicated one due to the many constraints
upon the schedule and the sequence-dependent separations between aircraft.
Most of the existing research has looked at the arrivals problem rather than
the departure problem where the separations are based on the wake vortex
categories of aircraft. In that case it is only necessary to check the separations
between adjacent aircraft. However, the route and speed based separations
at Heathrow are not only asymmetric, but also do not obey the triangle in-
equality, so it is not sufficient merely to look at adjacent pairs of aircraft. A
schedule that provides safe separations for all adjacent pairs of aircraft will
not necessarily provide safe separations for other aircraft pairs.

Many different techniques have previously been applied to this problem
yet none account for the physical constraints upon reordering that exist at an
airport like London Heathrow. There are many constraints upon a departure
system that are not normally modelled and any solution should also aim to
minimise other aspects such as controller and pilot workload and fairness.

This paper has presented a model for the system that can take account of
the real life constraints. The initial results presented here include some of the
constraints that are particularly important at Heathrow.

The results show that it is feasible to check the effects of the holding
points after schedules have been generated and that the meta-heuristics will
still perform well in the limited time that they have.
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From the experiments carried out here we can conclude that Tabu search
obtained the best delays overall, although it was the worst performer on
dataset 1 in table 1 and it did take the longest to run due to the overheads
associated with the tabu list. Simulated Annealing performed well across all
the experiments but not always as well as tabu search. Further research will
include much more experimentation to see whether these results apply in gen-
eral for the Heathrow problem.

Both the Tabu search and Simulated Annealing algorithms perform well in
the very short search time permitted. We can determine from the results that
the meta-heuristic searches form a promising basis for an advisory system for
a controller as they are suggesting schedules which improve on the delay in
the schedules the controllers are currently implementing.

Further research will add to this model and evaluate the effects of the
constraints that have not yet been included. Implementation using genetic
algorithms and hybridised meta-heuristics are also planned.
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