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ABSTRACT
The search for the optimum in a mixed continuous-combinatorial
space is a challenging task since it requires operators that handle
both natures of the search domain. Instance reduction (𝐼𝑅), an im-
portant pre-processing technique in data science, is often performed
in separated stages, combining instance selection (𝐼𝑆) first, and sub-
sequently instance generation (𝐼𝐺). This paper investigates a fast
optimisation approach for 𝐼𝑅 considering the two stages at once.
This approach, namely Accelerated Pattern Search with Variable
Solution Size (APS-VSS), is characterised by a variable solution size,
an accelerated objective function computation, and a single-point
memetic structure designed for 𝐼𝐺 .

APS-VSS is composed of a global search crossover and three local
searches (𝐿𝑆). The global operator prevents premature convergence
to local optima, whilst the three 𝐿𝑆 algorithms optimise the reduced
set (𝑅𝑆). Furthermore, by using the k-nearest neighbours algorithm
as a base classifier, APS-VSS exploits the search logic of the 𝐿𝑆 to
accelerate, by orders of magnitude, objective function computa-
tion. The experiments show that APS-VSS outperforms existing
algorithms using the single-point structure, and is statistically as
competitive as state-of-the-art 𝐼𝑅 techniques regarding accuracy
and reduction rates, while reducing significantly the runtime.
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1 INTRODUCTION
With the explosion in the amount of data in the digital age, the
size of available training data (𝑇𝑅) has become enormous in many
areas, potentially having noise and imperfections. Pre-processing
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is essential to make downstream processes more accurate. Among
other data pre-processing techniques, data reduction techniques
such as feature selection, instance reduction, or discretisation result
in a cleaner and smaller dataset that is free from noise, redundant or
irrelevant samples. Most of the existing 𝐼𝑅 solutions were proposed
to enhance the performance of the well-known Nearest Neighbour
(NN) classifier [2], which will be also adopted in this work. How-
ever, any other classifier can use the resulting reduced dataset for
learning [1].

The purpose of 𝐼𝑅 is the identification of a smaller set of the
starting dataset which is as informative as the original source. Re-
search about 𝐼𝑅 can be categorised into instance selection 𝐼𝑆 [4]
and instance generation 𝐼𝐺 [9]. The former has frequently been
modelled as a binary combinatorial optimisation problem as it deals
with the decision whether or not to include a sample in the final
subset, whilst the latter may be modelled as a continuous optimisa-
tion problem, considering generating new examples non-existing
in the source but better to represent the training data.

Considering both reduction rate and accuracy, state-of-the-art
performance in 𝐼𝑅 techniques is achieved by hybrid approaches
in which 𝐼𝑆 and 𝐼𝐺 combine their effectiveness to produce a final
reduced dataset [5]. In practice, all hybrid techniques proposed so
far in the literature, make use of cascade approaches which perform
𝐼𝑆 and 𝐼𝐺 in separated and subsequent stages. In contrast, a method
that determines the most appropriate number of instances while
performing 𝐼𝐺 has not been explored yet.

Popular hybrid approaches combine a Steady State Memetic Al-
gorithm (SSMA) [3] plus an 𝐼𝐺 method [5, 10]. After optimising
the number of samples using SSMA, hybrid approaches feed the
subset of well-distributed samples to an 𝐼𝐺 algorithm to refine their
positions. Despite its effectiveness, this type of hybrid methods are
typically very time-consuming due to the expensive cost of com-
puting the objective function, not only caused by SSMA but also by
the 𝐼𝐺 phase (if tackled by evolutionary methods). A recent simple,
yet effective memetic approach [5] is able to yield major savings
in computational overhead during the 𝐼𝐺 phase but it still relies
on SSMA feeding in a subset of compact and well-rep resentative
samples among classes. Thus, the computational cost of the overall
𝐼𝑅 process is still high.

APS-VSS is proposed to perform a fast reduction of the data
by simultaneously doing 𝐼𝑆 and 𝐼𝐺 . Our proposal stems from the
single-point memetic structure (SPMS), proposed in [5, 7]. SPMS
algorithm is a domain-specific technique for 𝐼𝐺 belonging to the
family of Memetic Computing, which features an accelerated ob-
jective function evaluation. Conversely, the proposed APS-VSS
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integrates two domain-specific 𝐿𝑆 components to optimise the total
number of instances appearing in the reduced set within the 𝐼𝐺
local search of [5].

2 ACCELERATED PATTERN SEARCH WITH
VARIABLE SOLUTION SIZE

Section 2.1 highlights the novelty, Section 2.2 defines the problem,
and Section 2.3 presents the implementation details.

2.1 Novelty of the proposed approach
Two main branches of 𝐼𝑅 may belong to different search space
domains. While 𝐼𝑆 may be considered in the combinatorial search
space, 𝐼𝐺 is in the continuous domain. Though there are 𝐼𝑅 tech-
niques working in both search spaces but they are applied sequen-
tially. The current state-of-the-art approaches are accurate but may
be extremely computationally expensive [10]. For example, with
the dataset “Magic” (19020 samples, 10 features), on average of 10
runs, SSMA-SFLSDE consumed 68.3 hours to complete [10], while
SSMA-LSHADE took 92.6 hours [5]. Unlike previous studies which
address 𝐼𝑅 in separated stages, APS-VSS performs the selection and
generation within a single framework.

2.2 Problem Definition
Given an instance 𝐼 having𝑚 features and belonging to a class𝑤 .
In a supervised classification problem, a𝑇𝑅 set contains 𝑙 entries of
𝐼 . An 𝐼𝑅 algorithm aims to provide a smaller set 𝑅𝑆 of 𝑝 instances
(𝑝 < 𝑙 ) by either selection or generation from the examples in 𝑇𝑅.
Let 𝑥 be a candidate solution formed by flattening matrix 𝑅𝑆 into a
one-dimensional array.

x = (𝑥1, 𝑥2, . . . , 𝑥𝑛) (1)
where 𝑥𝑖 represents the design variable of the feature perturbation
process and 𝑛 =𝑚 · 𝑝 .
Let ei be a vector in an 𝑛-dimensional space whose elements are all
zeros except from the 𝑖𝑡ℎ element which is one. LSIR [7] is based on
a greedy 𝐿𝑆 in the family of Pattern Search algorithms [6]. Every
single element in the one-dimensional array 𝑥 is perturbed one
at a time in its feasible range of values. The perturbed 𝑥 is then
evaluated to detect if any improvement is found. The adjusted value
can replace the current one if the trial solution is non-worsening.

2.3 Algorithmic Description
The proposed APS-VSS (Algorithm 1) partly makes use of the suc-
cessful search logic of SPMS-ALS [5] but completely reinterprets
the 𝐼𝑅 problem representation and hence the search space asso-
ciated with it. APS-VSS employs two novel extra 𝐿𝑆 components,
named 𝐿𝑆𝑒𝑙𝑖 and 𝐿𝑆𝑎𝑠𝑐 , respectively.

𝐿𝑆𝑒𝑙𝑖 (lines 3-8) discards any elements in 𝑅𝑆 whose absence does
not affect the current solution quality. Although this simple idea
of elimination relies heavily on the quality of initial sampling, the
output is yet promising as the 𝑅𝑆 can be enhanced by the generation
phase of the greedy LS (lines 9-26).

Different to 𝐿𝑆𝑒𝑙𝑖 , 𝐿𝑆𝑎𝑠𝑐 (lines 19-25) is called only occasionally
as its main role is to confirm the importance of the adjusted sample.
It is necessary because the feature perturbation process may adjust
it into an already existing (redundant) sample in 𝑅𝑆 .

Algorithm 1 Accelerated Pattern Search with Variable Solution
Size (symbol ‘=’ indicates an assignment)
1: INPUT 𝑥

2: while local budget and precision conditions are not met do
3: for ℎ = 1 : 𝑝 do
4: xℎ = x after removing the elements 𝑏ℎ1, 𝑏ℎ2, . . . , 𝑏ℎ𝑚
5: if 𝑓 (xh) ≥ 𝑓 (x) then
6: 𝑥 = xh
7: end if
8: end for
9: for 𝑖 = 1 : 𝑛 (𝑛 =𝑚 · 𝑝) do
10: xt = x − 𝜌 · e𝑖
11: if 𝑓

(
xt
)
≥ 𝑓 (x) then

12: x = xt
13: else
14: xt = x + 𝜌

2 · e𝑖
15: if 𝑓

(
xt
)
≥ 𝑓 (x) then

16: x = xt
17: end if
18: end if
19: if mod (𝑖,𝑚) = 0 then
20: j = i / m ⊲ Get index of the generated example
21: x

′
𝑡 = x𝑡 after removing the elements 𝑏 𝑗1, 𝑏 𝑗2, . . . , 𝑏 𝑗𝑚

22: if 𝑓
(
x
′
𝑡

)
≥ 𝑓 (x𝑡 ) then

23: x = x
′
𝑡

24: end if
25: end if
26: end for
27: if 𝑥 has not been updated then
28: halve the exploratory radius 𝜌
29: if 𝜌 < 𝜖 then
30: Randomly generate a candidate solution xr
31: Apply Crossover between 𝑥 and xr to generate a new trial vector 𝑥𝑡
32: Reinitialise x = xt
33: end if
34: end if
35: end while
36: RETURN 𝑥

37:

Finally, the gene-resamplingmechanism (lines 27-34), taken from
SPMS-ALS, is an important countermeasure to prevent the sam-
ple adjustment from overfitting. An excessive effort on sample
adjustment is likely to yield an overfitted RS, which results in poor
performance on unseen data [5].

3 EXPERIMENTS AND ANALYSIS
Section 3.1 introduces the experimental setup, Section 3.2 highlights
the effectiveness of 𝐿𝑆𝑒𝑙𝑖 and 𝐿𝑆𝑎𝑠𝑐 , Sections 3.3 and 3.4 discuss
the performance between APS-VSS against different models, and
Section 3.5 presents advantages of APS-VSS. Details of all numerical
results can be found at the repository1.

3.1 Experimental Setup
We use 57 multi-class datasets with various sizes from the KEEL
dataset repository, and group them into small and medium cate-
gories based on the number of samples. To validate the results, we
use a 10-fold stratified cross-validation (10-fcv) procedure to parti-
tion each dataset. Thus, the reported training and test performance
of each dataset is a 10-fold average.

Compared algorithms include baselines and state-of-the-art 𝐼𝑅
solutions. Baselines are Nearest Neighbour (1NN) employing the

1https://github.com/lehoanglam20000/APS-VSS
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entire 𝑇𝑅 for training, LSIR [7] and SPMS-ALS [5]. State-of-the-art
approaches are hybrid techniques including SSMA-LSHADE [5, 8],
SSMA-SFLSDE [10], SSMA-SPMS-ALS [5].

The same parameters suggested by the authors in their original
works have been used. Apart from the shared parameters obtained
from SPMS-ALS including 𝜌 , 𝑁max, 𝜌𝑅𝑒𝑑 , 𝜌𝑇ℎ𝑟 and𝐺𝑟 [5], APS-VSS
requires the tuning of the 𝑃𝑖𝑛𝑖𝑡 parameter, which is the percentage
of initialisation. As described in Section 2.3, 𝐿𝑆𝑒𝑙𝑖 relies on the
quality of initial sampling, 𝑃𝑖𝑛𝑖𝑡 is tuned in a wide range, from 5%
up to 70%. 𝑃𝑖𝑛𝑖𝑡 = 5 meaning 5% of samples of a class are randomly
allocated to the initial 𝑅𝑆 .

3.2 Search behaviour
As an example, Figure 1 characterises the search behaviour of APS-
VSS and SPMS-ALS on the zoo dataset.
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Figure 1: Search behaviour of APS-VSS and SPMS-ALS at
dataset zoo, folds 2 and 5.

The search consists of several cycles, separated by a straight drop.
The first cycle begins with random initialisation of 𝑅𝑆 , and end
after about 4,500 evaluations. APS-VSS and SPMS-ALS do not share
the same initial percentage of samples, as they start at different
positions. Then, the global evolutionary operator introduces new
materials to let the search start at a new region, initialising the start
of the second cycle.

At Fold 2, through the feature perturbation, the accuracy value
of SPMS-ALS progressively increases and remains unchanged at
97-98% until the end of the first search cycle, while APS-VSS only
reaches 94-95%. Around evaluation 4500, the upward trends at both
algorithms suddenly drop sharply due to the effect of the global
gene-resampling crossover operator. It depends on the parameters
used for the operator to observe how far the accuracy drops down.
A new similar pattern of the search restarts from evaluation 4500
as the elements in the RS have been refreshed. APS-VSS gradually
develops the accuracy whilst SMPS-ALS goes back to its previous
peak, which can be attributed to the impact of the two new 𝐿𝑆

components in APS-VSS.
Different from Fold 2, the two algorithms used up the computa-

tional budget in Fold 5. SPMS-ALS shows a better performance at a
few first cycles, but eventually APS-VSS obtains higher accuracy.

APS-VSS is likely more consistent to make progression after each
restart than SPMS-ALS.

3.3 Comparison with baseline models
Table 1 presents the average training and test, the number of Wins,
Ties and Losses of APS-VSS with baseline models in both small and
medium datasets. The 𝑝−value is calculated to confirm if APS-VSS
statistically outperforms the algorithm in the row.

Table 1: Performance of APS-VSS and baselines

TRAINING TEST APS-VSS vs 𝑝-value
APS-VSS vsAcc ± Std Acc ± Std Win Tie Lose

SM
A
LL

1NN 0.7367 ± 0.012 0.7388 ± 0.061 27 1 12 0.031
LSIR 0.8693 ± 0.014 0.7415 ± 0.061 28 0 12 0.001
SPMS-ALS 0.8733 ± 0.011 0.7549 ± 0.062 25 0 15 0.044
APS-VSS 0.8753 ± 0.015 0.7656 ± 0.064 – – – –

M
ED

IU
M 1NN 0.8322 ± 0.006 0.8308 ± 0.017 11 11 3 0.08

LSIR 0.9052 ± 0.004 0.8609 ± 0.014 8 0 9 0.644
SPMS-ALS 0.9199 ± 0.003 0.8668 ± 0.011 6 1 10 0.431
APS-VSS 0.9271 ± 0.005 0.8682 ± 0.014 – – – –

APS-VSS has obtained the highest average test accuracy in ei-
ther small or medium datasets. 𝑝-values at the last column have
confirmed the difference is significant in small datasets, while no
significant difference found in medium ones.

APS-VSS has a substantially greater number of Wins than Losses
with respect to the three baseline models in small datasets. Specifi-
cally, it is more than 2 times comparedwith LSIR and 1NN, andmore
than 1.5 times compared with SPMS-ALS. On the contrary, those
figures are distributed mostly equal immedium datasets which does
not help distinguish which one outperforms the other.

3.4 Comparison with state-of-the-art models
In Table 2 𝑝-value at the last column refers to the Wilcoxon statisti-
cal test of the algorithm in the row to APS-VSS.

Table 2: Performance of APS-VSS and state-of-the-art models

TRAINING TEST APS-VSS vs 𝑝-value
vs APS-VSSAcc ± Std Acc ± Std Win Tie Lose

SM
A
LL

SSMA-LSHADE 0.8687 ± 0.010 0.7792 ± 0.057 11 0 29 0.008
SSMA-SFLSDE 0.8684 ± 0.011 0.7767 ± 0.059 15 0 25 0.096
SSMA-SPMS-ALS 0.8727 ± 0.013 0.7670 ± 0.057 19 0 21 0.979
APS-VSS 0.8815 ± 0.015 0.7623 ± 0.061 – – – –

M
ED

IU
M SSMA-LSHADE 0.9069 ± 0.004 0.8706 ± 0.012 5 0 12 0.145

SSMA-SFLSDE 0.9059 ± 0.004 0.8675 ± 0.013 6 0 11 0.712
SSMA-SPMS-ALS 0.9264 ± 0.003 0.8700 ± 0.011 5 0 12 0.145
APS-VSS 0.9271 ± 0.005 0.8682 ± 0.014 – – – –

Though average training performance goes up in the order of
SSMA-LSHADE, SSMA-SFLSDE, SSMA-APMS-ALS and APS-VSS,
the average test performance does not follow the same pattern in
both small and medium datasets.

In either small or medium datasets, APS-VSS has no significant
difference with and SSMA-SFLSDE, SSMA-APMS-ALS. This infor-
mation shows the robustness of APS-VSS with respect to several
state-of-the-art methods in 𝐼𝑅 techniques. SSMA-LSHADE outper-
forms statistically APS-VSS in small datasets but the significant
difference is rejected in medium datasets. Note that SSMA-LSHADE
is a very complicated meta-heuristic technique, demanding an ex-
cessive amount of runtime to complete a run.
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3.5 Advantages of APS-VSS
Reduction Rate: Figure 2 plots a bar chart starting with the origi-
nal size in𝑇𝑅, followed by the reduction rate of SPMS-ALS, Hybrid
approaches, and APS-VSS. At each algorithm, three pieces of infor-
mation are written above each bar. At topmost, it is the average
size of the reduced set, then the percentage of the average size in
relation to the original size, and at last the percentage of reduction.
On average, APS-VSS has reduced 97.06% and 98.75% on small and
medium datasets, respectively, while the hybrid approaches have
saved 96.97% and 98.82% the original data size on small and medium
datasets, respectively.
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Figure 2: Reduction rate of APS-VSS against other examined
algorithms over 57 datasets.

Runtime: Figure 3 shows how much faster the proposed APS-
VSS is against all the comparison algorithms in small and medium
datasets, respectively. Given the runtime of APS-VSS as T(s), we
also display, on top of each bar, the proportion of runtime that other
algorithms take in relation to T(s) in both types of datasets.

On small datasets, APS-VSS spends around 9 seconds while LSIR
and SPMS-ALS are 1(s) or 2(s) lower. Other hybrid approaches
substantially consume more runtime than APS-VSS. Particularly,
SSMA-LSHADE uses more than 10 times, SSMA-SFLSDE takes ap-
proximate 6 times, and SSMA-SPMS-ALS is 1.38 times the runtime
used in APS-VSS. The benefit of the runtime is more obviously ob-
served in medium datasets, where any compared algorithm requires
more runtime than our solution. Specifically, APS-VSS reduces 3.58
times consumed in SSMA-SPMS-ALS and 43.79 times in SSMA-
LSHADE. With respect to LSIR and SPMS-ALS, the range is from
1.07 times and 3 times, respectively.

4 CONCLUSION
This paper has proposed an approach for handling simultaneously
𝐼𝑆 and 𝐼𝐺 within one algorithmic framework. The proposed algo-
rithm is a single point memetic structure that perturbs candidate
solutions in the continuous space, i.e., performing the 𝐼𝐺 endowed
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Figure 3: Average runtime (in seconds) of of APS-VSS against
other examined algorithms over 57 datasets.

with two 𝐿𝑆 mechanisms that attempt to shorten the length of the
solutions. This algorithmic approach is new in the domain-specific
body of literature of 𝐼𝑅.

The robustness of the proposed method with respect to perfor-
mance, runtime and reduction rate is proved competitive to a few
state-of-the-art hybrid methods existing in the literature, and statis-
tically better than published algorithms using single-point search
structure. The outputs of APS-VSS are valuable in the context of real-
world problems when an application is required to be processed in a
timely fashion. Also, these preliminary results may offer initial em-
pirical evidence for investigating mixed continuous/combinatorial
optimisation in data science.
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