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Abstract. This paper proposes a model for unmanned aerial vehicles (UAV) grid-
based coverage path planning, considering coverage completeness and energy con-
sumption in complex environments with multiple obstacles. The work is inspired
by the need for more efficient approaches to oil and gas exploration, but other
application areas where UAVs can be used to explore unknown environments can
also benefit from this work. An energy consumption model is proposed that con-
siders acceleration, deceleration, and turning manoeuvres, as well as the distance
to obstacles, to more accurately simulate the UAV’s movement in different envi-
ronments. Three different environments are modelled: desert, forest, and jungle.AQ1

The energy-aware coverage path planning algorithm implemented seeks to reduce
the energy consumption of a single drone while increasing coverage completeness.AQ2

The model implementation and experiments were performed in the ROS/Gazebo
simulation software. Obtained results show that the algorithm performs very well,
with the drone able to manoeuvre itself in a combination of hills, valleys, rugged
terrain, and steep topography while balancing coverage and energy consumption.AQ3

Keywords: UAV Path Planning · Drone Energy Optimisation · Coverage Path
Planning · Multiple Obstacle Avoidance · Exploration in Unknown Environment

1 Introduction

Environmental concerns have brought challenges to the oil and gas industry, including
pressure to reduce and stabilise costs for competitive advantage, improve its environ-
mental blueprint, and optimise its performance. In recent years, the production of most
onshore oil fields has declined [12] in part because, after a certain level of recovery, pro-
duction costs do not justify further investment. Oil and gas exploration often takes place
in difficult-to-reach environments where the use of robotic systems can be useful [37].
Petroleum deposits are generated by a natural process that commonly occurs at great
depth and is often poorly understood and predicted by earth scientists. Hence large areas
with significant oil and gas potential remain unexplored [25]. In 2015, Shell Oil decided
to abandon efforts to find and develop hydrocarbon resources in the Chukchi Sea, despite
having spent billions of dollars in exploration, which in the end turned out to be a dry
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hole [38]. This type of risk cannot be eliminated, but it can be reduced through tech-
nological innovations. An example of such technology is magnetic exploration which
measures variations in the earth’s magnetic field to identify rocks containing hydrocar-
bon [1]. Aeromagnetic surveys are used to measure magnetic anomalies using low-flying
aircraft carrying a high-precision magnetometer, a sensor for magnetic anomaly detec-
tion [2]. However, aeromagnetic surveying with low-flying aircraft brings challenges in
terms of safety, terrain complexity, quality of data, and costs. An attractive alternative
is to conduct magnetic exploration with UAVs [38]. UAVs can fly close to the surface
at optimal speed with efficient coverage for gathering good-quality magnetic data [42].
UAVs are fast becoming an attractive solution for many scenarios like search and rescue
[19], precision agriculture [31], and delivery systems [26].

Magnetic exploration with UAVs requires effective path planning in unknown envi-
ronments and with possibly multiple obstacles (e.g., trees, large rocks, etc.). The robotic
path planning problem can be divided into two main categories: motion path planning
and coverage path planning. In motion path planning, there is a clear start point and an
end point; the goal is to optimally cover the distance between the start to the endpoint
at minimum cost while avoiding obstacles [35]. Coverage path planning (CPP) finds an
optimal collision-free path that a robot must take to pass over each point in an area of
interest in the given environment [10]. CPP is related to the covering salesman problem
where an agent must travel a minimum-length tour covering the subsets of given cities or
customers [46, 24]. CPP can be offline or online depending on the availability of a priori
information about the area of interest [18], and several algorithms exist to tackle this
problem [40]. In CPP, the area of interest can be decomposed into smaller regions or not
at all. Simple and regular-shaped environments require no decomposition, and simple
geometric patterns such as back-and-forth (BF), zigzag movement, or spiral patterns
can be used to solve the problem [34]. When the exploration area is irregular-shaped
and complex, decomposition can be done in different ways, like exact cellular decom-
position [28], approximate cellular decomposition [8, 21], or grid-based decomposition
[18]. For the scenarios investigated in this paper, grid-based decomposition was used to
ensure that every cell within the area of interest is visited once. This method requires
computational power to represent the cells at higher resolution grids [24]. After the grid
is produced, a traveling salesman algorithm is applied to generate a sequence of nodes
or subregions to visit [4]. The coverage path is generated by connecting these nodes in
sequence using back-and-forth motion perpendicular to the sweep direction from the
start to the goal region [9, 28].

Magnetic surveying with UAVs for oil/gas exploration requires complete coverage of
the area of interest. Performing CPP with UAVs in an environment with multiple obsta-
cles is energy-demanding due to the need for obstacle avoidance, and limited energy
capacity is a feature of UAVs [20]. The approach in this paper minimised energy con-
sumption by limiting accelerations, decelerations, and turning manoeuvres by the drone
while at the same time maximising coverage. Aided by simultaneous localisation and
mapping (SLAM), a model for coverage path-planning in a regular and irregular-shaped
environment is developed in ROS/Gazebo platform. The regular-shaped environment
has a perfect square-shaped setting with no mountains, hills, or valleys. In contrast,
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the irregular-shaped environment has a complex terrain with no specific shape. Exper-
iments were conducted to study the tradeoff between area coverage and energy con-
sumption. Section 2 outlines related research on coverage path planning. Section 3
describes the methodology and cost function. Section 4 presents the experimental result
and discussions, and concluding remarks are presented in Sect. 5.

2 Related Research

Coverage path planning (CPP) has been extensively studied in the literature but is still
an open problem in robotics [40]. Different approaches have been adopted to classify
the problems into (i) increasing the coverage completeness, (ii) reducing the path over-
lapping, (ii) reducing the energy consumption, (iv) optimising the number of turns, and
(v) reducing the time to completion. A randomised approach does not require sensors
and algorithms for localisation, but such an approach is inefficient when dealing with
large coverage areas requiring more energy and time to complete the coverage [14].
A distributed strategy and model for UAVs oil spill mapping used randomness and
probabilistic guessing to avoid visiting all the cells and hence reduce the total distance
travelled, but coverage completeness decreased [32]. Different geometric patterns and
shapes for coverage patterns have been studied, including back-and-forth (BF), Hilbert
curves, LMAT (chain of equilateral triangles), S curves, and spiral patterns [5]. An opti-
mal line-sweep decomposition path planner to minimise the time required for covering
the area with obstacles in an unknown environment was presented in [4]. The authors
claimed that changing the sweep direction, as shown in Fig. 1, helps in minimising the
number of turns and hence reducing the time to completion. Similarly, reducing the
number of turns using optimal sweep direction and coverage pattern was considered in
[3, 24] in a quest to reduce energy consumption. Energy-aware CPP is an active area of
research aiming at minimum energy consumption and maximum area coverage. Some
studies considered energy optimisation based on the UAV structure, aerodynamic prop-
erties, rotor efficiency, and energy consumed in onboard data processing and controls
[17–44].

Fig. 1. Coverage path-planning with sweep direction changed to reduced turning angles.

Energy-aware coverage path planning algorithms with a high emphasis on trajecto-
ries that reduce power consumption during operations have been proposed [15, 36]. It
has been found that the length of the trajectory, the UAV speed, and the way to make turns
along the trajectory are the main energy sinks during the operation. In the literature, the
performance index for energy consumption was to reduce the path length traveled during
the coverage to minimise the energy consumption [45, 47], improve time-to-completion
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for both single and multi-robot coverage [13, 20, 30], and reduce the number of turns [11,
41]. An algorithm for single-robot coverage path planning under constrained energy was
presented in [39]. The robot was aware of its energy limitation, and hence the total dis-
tance traveled to refueling was minimised. Boustrophedon cellular decomposition using
back-and-forth or “ox-plow” motions and Dijkstra’s algorithm were used. Although
reducing the total distance to refueling is important, most of the energy is often con-
sumed during the coverage and turning manoeuvres. Grid-based coverage path planning
exhibits excellent performance in several robotic applications in irregular shapes and no
fly-zones environments [5, 7]. In the work proposed by [43], the irregular-shaped area of
interest was decomposed into regular cells of equal sizes, using an approximate cellular
decomposition technique. The authors introduced a cost function to minimise the num-
ber of turning manoeuvres to save energy but did not take into account important factors
like optimal energy and energy consumption due to accelerations and decelerations. The
energy-aware algorithm proposed by [6] drastically reduced the energy consumption
for the entire coverage. The model was based on optimising the turning manoeuvres,
and avoiding sharp angles while reducing speed, acceleration, and deceleration at the
turning angles. An improved cost function aimed at minimising energy consumption in
an irregular shape was proposed in [7]. The model was good in energy saving, and it may
scale well in a simplistic environment, especially those applications that do not require
a high degree of coverage completeness. Only a single occlusion point was considered
in their experiment, but multiple obstacles can have a significant effect on the coverage
completeness.

Then, optimising the coverage completeness, energy consumption, and distance to
obstacles in complex oil and gas environments with multiple occlusions is an interesting
problem that has not been investigated to the best of our knowledge. The problem
is unique because magnetic survey for oil/gas exploration requires near optimum line
spacing and flight height, and the coverage completeness can be easily affected when
trying to avoid obstacles. The environment is often mixed with regular and irregular
settings of different terrains. In addressing this problem, the following question arises:
Can an intelligent coverage path-planning algorithm that reduces the number of sharp
turns for obstacle avoidance in a highly irregular-shaped environment reduce the amount
of energy consumed by the UAV without reducing the coverage completeness?

3 Proposed Methodology

The proposed model was implemented in the ROS/Gazebo simulation software using
a drone package hector quadrotor noetic [33]. As a proof of concept for the magne-
tometer, the drone is integrated with a magnetic sensor to read the magnetic field of
the Gazebo environment. The modelled exploration environment is rugged terrain with
steep topography, variations in the surface elevations, and thick vegetation cover, as
illustrated in Fig. 2. The environment E is then partitioned into a grid with multiple
cells of equal size Mx × My as illustrated in Fig. 3. Each cell (x, y) has an associated
value u(x, y, t) ∈ [0, 1] that represents the UAV’s uncertainty about the target distri-
bution in the cell at time interval t, for occupancy grid mapping, implemented using the
slam_gmapping package provided in ROS [22]. The distance between each grid cell for
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UAV Path Planning for Area Coverage and Energy Consumption 5

cell-to-cell movement can be calculated using Eq. (1) where xi, yi are the target goal
point [27].

d(x, y) =
∑m

i=1
|xi − yi| (1)

Fig. 2. Example of forest environment modeled in the Gazebo simulation software for oil and
gas exploration.

3.1 Energy Model

To derive the energy model, we first analysed energy consumption data obtained from
real flights of a HEIFU drone [29] with a 22,000 mAh LiPo battery, and the nominal
voltage and current were at 24 V and 60 A, respectively. The drone consumes around 23.5
V for hovering, 20.3 V for liner movement at a constant speed, 21.7 V when turning at a
soft angle, and 22.6 V at a sharp bend. The nominal voltage drops drastically at around
35 min of flight from 25.2 V to 18.6 V; hence the drone has to come back for refueling.
The drone’s weight was 7.5 kg with maximum payload of 6 kg for a maximum take-off
weight of 13.5 kg. To develop the energy cost function, we split the UAV path into a
set of segments as in [7, 16]. The first segment consists of the path for constant speed
(straight line movement), which does not consume much energy, compared to the second
segment, the variable speed of the UVA, which includes hovering and angular movements
for maneuvering and obstacle avoidance. The variable speed consumes energy due to
the acceleration, deceleration, and point of discontinuity along the path. It is important
to note that the energy model proposed by [43] and extended by [7] does not consider
the effect of minimising the energy on coverage completeness, especially in multiple
obstacle environments. Following the same idea, the cost function has been extended to
consider coverage completeness and energy minimisation as two conflicting objective
functions.

Figure 3 illustrates the concept of obstacle avoidance in coverage path planning. It
shows a UAV flying at a fixed height h from the ground acquiring magnetic data from
a cell in the grid. The field of view is the magnetometer’s projected area of size 1 × 1
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6 S. S. Maaji and D. Landa-Silva

Fig. 3. Drone coverage path-planning with grid decomposition in an occluded environment.

square meter. An obstacle in the form of a tree is shown at the center of the exploration
environment. Three possible waypoints are shown, marked as a, b, and c. Waypoint
(a) maximises coverage in the occluded region but consumes more energy due to the
sharp angles at the path. Waypoint (b) minimises energy consumption due to the reduced
distance by the resultant vector but still consumes energy due to turning manoeuvres.
Waypoint (c) consumes less energy because of the smoothed angle on the waypoint but
with reduced coverage. The problem lies in optimising Delta �, the distance between
the drone and the obstacle during the coverage as a constraint to be imposed for obstacle
avoidance by the UAV. Minimising the delta increases the coverage, and maximising it
reduces energy consumption.

Given an initial position (xo, yo) and target goal points (xi, yi), a collision-free path
ensures that at no time should the UAV enter into the no-fly-zone region. The equation
for collision avoidance is presented as follows:

∀p ∈ [1 . . . N ],∀i ∈ [0 . . . T]

∣∣xip − xk
∣∣ ≥ � (2)

∣∣yip − yk
∣∣ ≥ � (3)

In the Eqs. (2), (3) above, xip, yip are the drone position in the x and y axis at the T
time instance, and xk , yk are the obstacle position at the x-axis and y-axis, respectively.
Since most obstacles in the forest can be approximated to the shape of a sphere or circle
in 2D, Eqs. (2) and (3) can be written as Eq. (4).

∣∣xip − xk
∣∣ sin θ + ∣∣yip − yk

∣∣ cos θ ≥ � (4)

The instantaneous power for the flight scenarios is calculated with Eq. (5), where V
is an instantaneous voltage, and I is the instantaneous current consumed by the drone.

P = VI (5)
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UAV Path Planning for Area Coverage and Energy Consumption 7

The total energy consumption can be calculated by integrating the power over the
period of the mission, as shown in the energy Eq. (6), where E is the energy consumed
in joules, P is the instantaneous power consumed in watts, and t is the time interval for
the flight mission.

E =
∫ t

0
Pdt =

∫ t

0
VIdt (6)

The energy consumed when moving at a straight line to cover a distance d at constant
speed v can be calculated with Eq. (7).

Ec =
d/v
∫
0

Pcdt = Pc
d

v
(7)

The energy consumed for variable speed due to acceleration and deceleration can be
calculated with Eq. (8).

Evar =
di/vi∫
do/vo

Paccdt = Pv(t2 − t1) +
do/vo∫
di/vi

Pdeccdt = Pv(t2 − t1) (8)

The energy consumed for hovering is calculated using Eq. (9).

Eh =
∫ h/vclimb

0
Phdt = Ph(t2 − t1) (9)

In this work, the drone is restricted not to flying above trees for quality data collection
as well as for manoeuvability. Hence the maximum height is set to 1 m as a constraint.
Finally, the energy consumed during the rotation, maneuvering, and turning at a certain
angle θ, with angular speed ω is calculated with Eq. (10).

Eturn =
∫ �θ/ωi

�θo/ωo

Pturndt = Pturn
�θ

ω
(10)

The cost function can be written by summing the total energy consumed in straight
line movement, which also has sub-components of the constant speed and variable speed
due to acceleration and deceleration, and the energy consumed in the rotational move-
ment for turning and maneuvering in obstacle avoidance. The cost function is given by
Eq. (11).

Ec =
∑m

i=1

(∫ vi

0
Paccdt +

∫ 0

vi

Pdecdt +
∫ d/v

0
Pcdt +

∫ �θ/ωi

�θo/ωo

Pturndt

)
(11)

While the total energy needed for the coverage can be compud with Eq. (12).

Etotal =
∑m

i=1

(∫ vi

0
Paccdt +

∫ 0

vi

Pdecdt +
∫ d/v

0
Pcdt

+
∫ h/vclimb

0
Phdt +

∫ �θ/ωi

�θo/ωo

Pturndt

)
(12)
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3.2 Coverage-Path Pseudocodes

Given the above energy model for the UAV, the coverage path planning shown below was
implemented. The algorithm can be summarised in three sequential main steps: decom-
position, planning, and execution. First, a cellular decomposition technique is applied
over the irregular-shaped area to discretise the map to regular equal size cells. Second,
a coverage path planning algorithm finds the nearest cell in back-and-forth movement
based on the coverage goal received. The solution to the movement is according to the
predefined cost function and obstacle avoidance constraint in the model. Finally, the
resulting path is executed, and the coverage mission is completed.

The UAV energy model, environment model, and coverage path planning approach
were all implemented in the ROS/Gazebo simulation software. Several experiments
were conducted for various types of exploration scenarios. The scenarios consist of a
perfect square regular-shaped environment and an irregular-shaped environment char-
acterised by arbitrarily shaped obstacles. We investigated the tradeoff between coverage
completeness and energy consumption in these environments.
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UAV Path Planning for Area Coverage and Energy Consumption 9

4 Experimental Result

Three different environments usually seen in oil/gas exploration were modelled: a desert
with low obstacles, including hills and valleys; a forest with a combination of hills, val-
leys, and moderate vegetation; and a jungle depicted rugged terrain and steep topography.
A survey conducted by [48] shows that flying drones at varying altitudes of 0.5 m, 1.3
m, and 2.2 m above the ground with line spacing of 1 m provides a good result. The
flight altitude was set to 1 m, and the speed was set to v = 2 m/s for the entire experi-
ment. The experiment in a desert environment is considered a benchmark to evaluate the
coverage quality, assuming the drone could successfully cover the cell with minimum
energy consumption without obstacles.

4.1 Exploration Scenarios

First, an experiment was conducted in a rectangular-shaped environment, and three
flights were performed to compare the algorithm’s effectiveness in deserts, forests, and
jungles. The environment is first decomposed into 20 cells of equal size (5 × 4) and delta
set to 0.55 m. The obtained result shows that exploration in the desert consumes less
energy and provides full coverage. The energy consumption doubled in the forest, and
the coverage was 19 cells out of 20 target cells. The worst performance was recorded in
the jungle exploration, in which the mean coverage was 11 cells out of 20 target cells,
and the energy consumption was still high. A cross-section of the simulation result from
the ROS-rviz software is shown in Fig. 4.

Fig. 4. The red dots represent the area in which the drone performs coverage path planning. The
gray area represents a region in which the UAV is certain there is no obstacle, i.e., path-planning
can be performed on it. The dark edges in the gray regions are obstacle or no-fly zones identified
based on the principle of occupancy grid mapping, and the remaining part of the graph in light
green represents the unexplored area.

To further assess the performance of the algorithm, another experiment was con-
ducted using the same parameters but in a much bigger and irregular map illustrated in
Fig. 5. The area was decomposed into 110 cells of equal size, and the algorithm scales
well in the desert, and also performs well in the forest with few obstacles (Fig. 5b),
as well as in the jungle with more obstacles (Fig. 5c). In the jungle exploration, the
number of uncovered cells was 31 compared to 36 in the forest. In the second sce-
nario, the delta was s et to 0.75 m, and an experiment was also conducted again in a
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regular-shaped environment, decomposed into 20 cells of equal size (5 × 4). It was also
run in an irregular-shaped environment decomposed into 110 cells of equal size. Like
the first scenario, three flights were performed to compare the algorithm’s effectiveness
in deserts, forests, and jungles. In the third scenario, the delta was set to 1.0 m, and
the experiment was conducted similarly to scenarios one and two. The regular-shaped
environment was decomposed into 20 cells of equal size (5 × 4). The irregular-shaped
environment was decomposed into 110 cells of equal size. Three flights were performed
to compare the algorithm’s effectiveness in deserts, forests, and jungles. Setting the delta
to 1.0 m makes the coverage very difficult in an obstacle environment. In most cases,
the drone has to abandon the mission because it was trapped for over 8 min facing an
obstacle, i.e., it cannot pass through a narrow path because the delta is too big. Hence,
the energy consumed in the jungle was less than what was consumed in the forest. The
trees in the forest along the way point were dense, and the drone was trapped hence
abandoning the mission before completion.

Fig. 5. Coverage path planning in desert, forest, and jungle for more complex environments.

In some cases, the drone was only able to cover 7 out of the 20 cells in a regular-shaped
forest environment and 29 out of 110 cells in an irregular-shaped forest environment.
Tables 1 and 2 show the average value of the energy consumption and coverage for the
three flights performed in deserts, forests, and jungles.

Table 1. Mean energy (J) vs. Coverage (sq m) regular-shaped environment.

Environment Delta = 0.55 m Delta = 0.75 m Delta = 1.0 m

Mean
Energy

Mean
Coverage

Mean
Energy

Mean
Coverage

Mean
Energy

Mean
Coverage

Desert 411.5 20 417.0 20 402.1 20

Forest 1120.9 19 393.5 19 724.7 7

Jungle 1198.2 11 523.6 11 259.2 4
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Table 2. Mean energy (J) vs. Coverage (sq m) irregular-shaped environment.

Environment Delta = 0.55 m Delta = 0.75 m Delta = 1.0 m

Mean
Energy

Mean
Coverage

Mean
Energy

Mean
Coverage

Mean
Energy

Mean
Coverage

Desert 2451.6 110 2388.8 110 2434.3 110

Forest 3462.7 73 942.7 26 2070.6 29

Jungle 2639.8 78 1380.5 28 1256.9 24

4.2 Evaluation of Experimental Results

The algorithm’s performance was evaluated in terms of increased coverage and reduced
energy consumption. The coverage results for regular-shaped and irregular-shaped envi-
ronments are compared in Fig. 1 and Fig. 2, where the vertical axis is the number of
cells covered, and the horizontal axis shows the various delta values for experiments in
the desert, forest, and jungle. As can be seen, the algorithm achieved better coverage
results in a regular-shaped environment when the delta was set to 0.55 m and 0.75 m, but
the result for forest and jungle got worst when the delta was set to 1.0 m. The findings
from these studies suggest that delta plays an important role and it has significance on
energy consumption and coverage completeness. It allows the drone to maneuver freely
out of the obstacle. That is, the higher the delta, the less energy consumption; the lower
the delta, the more coverage completeness. As expected, there is a tradeoff between the
number of cells covered and energy consumption in the occluded environment. Figure 6
and 7 compare energy consumption and coverage completeness for both regular and
irregular-shaped environments.
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Fig. 6. Coverage completeness for regular-shaped and irregular-shaped environments.
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Fig. 7. Mean energy (J) in regular and irregular-shaped environments.

5 Conclusion

This paper described a model for UAV Path Planning considering the tradeoff between
area coverage and energy consumption. The work is inspired by magnetic data sur-
veying for oil/gas exploration, where environments are usually unknown and present
multiple obstacles. Simulations were implemented in ROS/Gazebo for three environ-
ments: desert, forest, and jungle. A parameter delta is used to set the constraint for
obstacle avoidance, and experiments with different values (0.5 m, 0.75 m, and 1.0 m)
were conducted. Experimental results show that the drone effectively maneuvered itself
in different environmental settings, achieving high coverage and moderate energy con-
sumption when the delta was set to 0.5 m in a desert environment. As the complexity
of the environment increases, energy consumption increases due to obstacle avoidance
while the coverage optimality reduces. The overall best results were obtained when the
delta was set to 0.5 m, skipping a few cells while performing coverage in forest and
jungle but with added energy consumption compared to exploration in the desert. The
worst coverage result was obtained when the delta was set to 1.0 m in the forest and
the jungle. These results show that the delta value influences energy consumption and
coverage completeness. The larger the delta value, the less energy consumption due to
the smoothed angle and less acceleration and deceleration along the obstacle avoidance
path. The lower the delta value, the more coverage completeness. There was a tradeoff
between the number of cells covered and energy consumption in the occluded environ-
ment, and in some cases, the drone was trapped by the obstacles. Further work will look
at more sophisticated path-planning algorithms and multiple drones.
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