
The Under-Performing Unfold
A new approach to optimising corecursive programs

Jennifer Hackett Graham Hutton
University of Nottingham
{jph,gmh}@cs.nott.ac.uk

Mauro Jaskelioff
Universidad Nacional de Rosario, Argentina

CIFASIS–CONICET, Argentina
jaskelioff@cifasis-conicet.gov.ar

Abstract
This paper presents a new approach to optimising corecursive pro-
grams by factorisation. In particular, we focus on programs written
using the corecursion operator unfold. We use and expand upon the
proof techniques of guarded coinduction and unfold fusion, captur-
ing a pattern of generalising coinductive hypotheses by means of
abstraction and representation functions. The pattern we observe is
simple, has not been observed before, and is widely applicable. We
develop a general program factorisation theorem from this pattern,
demonstrating its utility with a range of practical examples.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming

General Terms Theory, Proof Methods, Optimisation

Keywords fusion, factorisation, coinduction, unfolds

1. Introduction
When writing programs that produce data structures it is often nat-
ural to use the technique of corecursion [8, 20], in which subterms
of the result are produced by recursive calls. This is particularly
useful in lazy languages such as Haskell, as it allows us to process
parts of the result without producing the rest of it. In this way, we
can write programs that deal with large or infinite data structures
and trust that the memory requirements remain reasonable.

However, while this technique may allow us to save on the
number of recursive calls by producing data lazily, the time cost of
each call or the space cost of the arguments can still be a problem.
For this reason, it is necessary to examine various approaches
to reducing these costs. A commonly-used approach is program
fusion [4, 11, 31], where separate stages of a computation are
combined into one to avoid producing intermediate data. For this
paper, our focus will be on the opposite technique of program
factorisation [7], where a computation is split into separate parts.
In particular, we consider the problem of splitting a computation
into the combination of a more efficient worker program that uses a
different representation of data and a wrapper program that effects
the necessary change of representation [10].

The primary contribution of this paper is a general factorisa-
tion theorem for programs in the form of an unfold [9], a common

[Copyright notice will appear here once ’preprint’ option is removed.]

pattern of corecursive programming. By exploiting the categorical
principle of duality, we adapt the theory of worker-wrapper factori-
sation for folds, which was developed initially by Hutton, Jaskelioff
and Gill [15] and subsequently extended by Sculthorpe and Hut-
ton [24]. We discuss the practical considerations of the dual theory,
which differ from those of the original theory and avoid the need
for strictness side conditions. In addition, we revise the theory to
further improve its utility. As we shall see, the resulting theory for
unfolds captures a common pattern of coinductive reasoning that
is simple, has not been observed before, and is widely applicable.
We demonstrate the application of the new theory with a range of
practical examples of varying complexity.

The development of our new theory is first motivated using a
small programming example, which we then generalise using cat-
egory theory. We use only simple concepts for this generalisation,
and only a minimal amount of categorical knowledge is required.
Readers without a background in category theory should not be de-
terred. The primary application area for our theory is functional
languages such as Haskell, however the use of categorical concepts
means that our theory is more widely applicable.

2. Coinductive Types and Proofs
Haskell programmers will be familiar with recursive type defini-
tions, where a type is defined in terms of itself. For example, the
type of natural numbers can be defined as follows:

data N = Zero | Succ N
This definition states that an element of the type N is either Zero
or Succ n for some n that is also an element of the type N. More
formally, recursive type definitions can be given meaning as fixed
points of type-level equations. For example, we can read the above
as defining N to be a fixed point of the equation X = 1 + X ,
where 1 is the unit type and + is the disjoint sum of types.

Assuming that such a fixed point equation has at least one so-
lution, there are two we will typically be interested in. First of all,
there is the least fixed point, which is given by the smallest type
that is closed under the constructors. This is known as an inductive
type. In a set-theoretic context, the inductive interpretation of our
definition of N is simply the set of natural numbers, with construc-
tors Zero and Succ having the usual behaviour.

Alternatively, there is the greatest fixed point, which is given by
the largest type that supports deconstruction of values by pattern
matching. This is known as a coinductive type [12]. In a set-
theoretic context, the coinductive interpretation of our definition
of N is the set of naturals augmented with an infinite value∞ that
is the solution to the equation∞ = Succ ∞.

In general, coinductively-defined sets have infinite elements,
while inductively-defined sets do not. In the setting of Haskell,
however, types correspond to (pointed) complete partial orders

1 2014/1/13

(CPOs) rather than sets, where there is no distinction between in-
ductive and coinductive type definitions as the two notions coin-
cide [6]. For the purposes of this article we will use Haskell syntax
as a metalanguage for programming in both set-theoretic and CPO
contexts. It will therefore be necessary to distinguish between in-
ductive and coinductive definitions, which we do so by using the
keywords data and codata respectively.

For example, we could define an inductive type of lists and a
coinductive type of streams as follows, using the constructor (:) in
both definitions for consistency with Haskell usage:

data [a] = a : [a] | []

codata Stream a = a : Stream a

If types are sets, the first definition gives finite lists while the second
gives infinite streams. If types are CPOs, the first definition gives
both finite and infinite lists, while the second gives infinite streams.
Also note that in the context of sets, if streams were defined using
data rather than codata the resulting type would be empty.

2.1 Coinduction
To reason about elements of inductive types one can use the tech-
nique of induction. Likewise, to reason about elements of coinduc-
tive types one can use the dual technique of coinduction. To for-
malise this precisely involves the notion of bisimulation [8, 12]. In
this section we shall give an informal presentation of guarded coin-
duction [3, 28], a special case that avoids the need for such machin-
ery. This form of coinduction is closely related to the unique fixed
point principle developed by Hinze [14].

To prove an equality lhs = rhs between expressions of the
same coinductive type using guarded coinduction, we simply at-
tempt the proof in the usual way using equational reasoning. How-
ever, we may also make use of the coinductive hypothesis, which
allows us to substitute lhs for rhs (or vice-versa) provided that we
only do so immediately underneath a constructor of the coinduc-
tive type. We say that such a use of the coinductive hypothesis is
guarded. For example, if we define the following functions that
produce values of type Stream N

from n = n : from (n + 1)

skips n = n : skips (n + 2)

double (n : ns) = n ∗ 2 : double ns

then we can show that skips (n ∗ 2) = double (from n) for any
natural number n using guarded coinduction:

skips (n ∗ 2)
= { definition of skips }

n ∗ 2 : skips ((n ∗ 2) + 2)
= { arithmetic }

n ∗ 2 : skips ((n + 1) ∗ 2)
= { coinductive hypothesis }

n ∗ 2 : double (from (n + 1))
= { definition of double }

double (n : from (n + 1))
= { definition of from }

double (from n)

Despite the apparent circularity in using an instance of our desired
result in the third step of the proof, the proof is guarded because
the use of the coinductive hypothesis only occurs directly below
the (:) constructor. Therefore the reasoning is valid.

3. Example: Tabulating a Function
Consider the problem of tabulating a function f :: N → a by
applying it to every natural number in turn and forming a stream

from the results. We would like to define a function that performs
this task, specified informally as follows:

tabulate :: (N→ a)→ Stream a
tabulate f = [f 0, f 1, f 2, f 3, . . .]

The following definition satisfies this specification:

tabulate f = f 0 : tabulate (f ◦ (+1))

However, this definition is inefficient, as with each recursive call
the function argument becomes more costly to apply, as shown in
the following expansion of the definition:

tabulate f = [f 0, (f ◦ (+1)) 0, (f ◦ (+1) ◦ (+1)) 0, . . .]

The problem is that the natural number is recomputed from scratch
each time by repeated application of (+1) to 0. If we were to save
the result and re-use it in future steps, we could avoid repeating
work. The idea can be implemented by defining a new function
that takes the current value as an additional argument:

tabulate ′ :: (N→ a,N)→ Stream a
tabulate ′ (f ,n) = f n : tabulate ′ (f ,n + 1)

The correctness of the more efficient implementation for tabu-
lation can be captured by the following equation

tabulate f = tabulate ′ (f , 0)

which can written in point-free form as

tabulate = tabulate ′ ◦ (λf → (f , 0))

This equation can be viewed as a program factorisation, in which
tabulate is factored into the composition of tabulate ′ and the
function λf → (f , 0). This latter function effects a change of
data representation from the old argument type N → a to the
new argument type (N → a,N). In order to try to prove the above
equation, we proceed by guarded coinduction:

tabulate f
= { definition of tabulate }

f 0 : tabulate (f ◦ (+1))
= { coinduction hypothesis }

f 0 : tabulate ′ (f ◦ (+1), 0)
= { assumption }

f 0 : tabulate ′ (f , 1)
= { definition of tabulate ′ }

tabulate ′ (f , 0)

To complete the proof, the assumption used in the third step
tabulate ′ (f ◦ (+1), 0) = tabulate ′ (f , 1) must be verified. We
could attempt to prove this as follows:

tabulate ′ (f ◦ (+1), 0)
= { definition of tabulate ′ }
(f ◦ (+1)) 0 : tabulate ′ (f ◦ (+1), 1)

= { composition, arithmetic }
f 1 : tabulate ′ (f ◦ (+1), 1)

= { assumption }
f 1 : tabulate ′ (f , 2)

= { definition of tabulate ′ }
tabulate ′ (f , 1)

Once again, however, the proof relies on an assumption that needs
to be verified. We could continue like this ad infinitum without
ever actually completing the proof! We can avoid this problem by
generalising our correctness property to

tabulate (f ◦ (+n)) = tabulate ′ (f ,n)

2 2014/1/13

which in the case of n = 0 simplifies to the original equation.
The proof of the generalised property is now a straightforward
application of guarded coinduction, with no assumptions required:

tabulate (f ◦ (+n))
= { definition of tabulate }
(f ◦ (+n)) 0 : tabulate (f ◦ (+n) ◦ (+1))

= { simplification }
f n : tabulate (f ◦ (+(n + 1)))

= { coinduction hypothesis }
f n : tabulate ′ (f ,n + 1)

= { definition of tabulate ′ }
tabulate ′ (f ,n)

It is often necessary to generalise coinductive hypotheses in this
way for proofs by guarded coinduction, just as it is often necessary
to generalise inductive hypotheses for proofs by induction.

4. Abstracting
The above example is an instance of a general pattern of optimisa-
tion that is simple yet powerful. We abstract from this example to
the general case in two steps, firstly by generalising on the underly-
ing datatypes involved and secondly by generalising on the pattern
of corecursive definition that is used.

4.1 Abstracting on Datatypes
In the tabulation example, we replaced the original function of
type (N → a) → Stream a with a more efficient function
of type (N → a,N) → Stream a , changing the type of the
argument. Essentially, we used a “larger” type as a representation
of a “smaller” type. We can generalise this idea to any two types
where one serves as a representation of the other.

Suppose we have two types, a and b, with conversion functions
abs :: b → a and rep :: a → b such that abs ◦ rep = ida. We can
think of b as a larger type that faithfully represents the elements
of the smaller type a . Now suppose that we are given a function
old :: a → c, together with a more efficient version new :: b → c
that acts on the larger type b. Then the correctness of the more
efficient version can be captured by the equation

old = new ◦ rep

However, using the assumption that abs ◦ rep = ida we can
strengthen this property by the following calculation:

old = new ◦ rep
⇔ { abs ◦ rep = ida }

old ◦ abs ◦ rep = new ◦ rep
⇐ { cancelling rep on both sides }

old ◦ abs = new

In summary, if we wish to show that function new is correct, it
suffices to show that old ◦ abs = new . This stronger correctness
property may be easier to prove than the original version.

We now apply the above idea to our earlier example. In this
case, the appropriate abs and rep functions are:

abs :: (N→ a,N)→ (N→ a)
abs (f ,n) = f ◦ (+n)

rep :: (N→ a)→ (N→ a,N)
rep f = (f , 0)

The required relationship abs◦rep = id follows immediately from
the fact that 0 is the identity for addition. The above calculation can
therefore be specialised to our example as follows:

∀ f . tabulate f = tabulate ′ (f , 0)
⇔ { definition of rep }

∀ f . tabulate f = tabulate ′ (rep f)
⇔ { composition, extensionality }

tabulate = tabulate ′ ◦ rep
⇔ { abs ◦ rep = id }

tabulate ◦ abs ◦ rep = tabulate ′ ◦ rep
⇐ { cancelling rep on both sides }

tabulate ◦ abs = tabulate ′

⇔ { composition, extensionality }
∀ f ,n . tabulate (abs (f ,n)) = tabulate ′ (f ,n)

⇔ { definition of abs }
∀ f ,n . tabulate (f ◦ (+n)) = tabulate ′ (f ,n)

The final equation is precisely the generalised correctness property
from the previous section, but has now been obtained from an
abstract framework that is generic in the underlying datatypes.

4.2 Abstracting on Corecursion Pattern
For the next step in the generalisation, we make some assumptions
about the corecursive structure of the functions that we are dealing
with. In particular, we assume that they are instances of a specific
pattern of corecursive definition called unfold [9, 18].

4.2.1 Unfold for Streams
An unfold is a function that produces an element of a coinductive
type as its result, producing all subterms of the result using recur-
sive calls. This pattern can be abstracted into an operator, which we
define in the case of streams as follows:

unfold :: (a → b)→ (a → a)→ a → Stream b
unfold h t x = h x : unfold h t (t x)

The function unfold h t produces a stream from a seed value x
by using the function h to produce the head of the stream from
the seed, and applying the function t to produce a new seed that
is used to generate the tail of the stream in the same manner. For
efficiency we could choose to combine the h and t functions into a
single function of type a → (b, a), allowing for increase sharing
between the two computations. However, we present a ‘tuple-free’
version because it leads to simpler equational reasoning.

By providing suitable definitions for h and t , it is straightfor-
ward to redefine the functions tabulate and tabulate ′:

tabulate = unfold h t
where h f = f 0

t f = f ◦ (+1)
tabulate ′ = unfold h ′ t ′

where h ′ (f ,n) = f n
t ′ (f ,n) = (f ,n + 1)

In this way, unfold allows us to factor out the basic steps in the
computations. A similar unfold operator can be defined for any
coinductive type. For example, for infinite binary trees

codata Tree a = Node (Tree a) a (Tree a)

the following definition for unfold l n r produces a tree from a
seed value by using l and r to produce new seeds for the left and
right subtrees, and n to produce the node value:

unfold :: (a → a)→ (a → b)→ (a → a)→ a → Tree b
unfold l n r x = Node (unfold l n r (l x))

(n x)
(unfold l n r (r x))

Once again, the l , n and r functions could be combined.

4.2.2 Unfold Fusion
The unfold operator for any type has an associated fusion law [18],
which provides sufficient conditions for when the composition of

3 2014/1/13

an unfold with another function can be expressed as a single unfold.
In the case of streams, the law is as follows:

Theorem 1 (Unfold Fusion for Streams). Given

h :: a → c h ′ :: b → c g :: b → a
t :: a → a t ′ :: b → b

we have the following implication:

unfold h t ◦ g = unfold h ′ t ′

⇐
h ′ = h ◦ g ∧ g ◦ t ′ = t ◦ g

The proof is a simple application of guarded coinduction:

unfold h ′ t ′ x
= { definition of unfold }

h ′ x : unfold h ′ t ′ (t ′ x)
= { coinduction hypothesis }

h ′ x : unfold h t (g (t ′ x))
= { first assumption: h ′ = h ◦ g }

h (g x) : unfold h t (g (t ′ x))
= { second assumption: g ◦ t ′ = t ◦ g }

h (g x) : unfold h t (t (g x))
= { definition of unfold }
unfold h t (g x)

The fusion law provides sufficient conditions for when our
strengthened correctness property old ◦ abs = new holds. As-
suming that old and new can both be expressed as unfolds, then:

old ◦ abs = new
⇔ { old = unfold h t , new = unfold h ′ t ′ }
unfold h t ◦ abs = unfold h ′ t ′

⇐ { fusion }
h ′ = h ◦ abs ∧ abs ◦ t ′ = t ◦ abs

4.3 Unfold Factorisation for Streams
Combining the two ideas of abstracting on the types and abstract-
ing on the corecursion pattern, we obtain a general theorem for
factorising functions defined using unfold for streams.

Theorem 2 (Unfold Factorisation for Streams). Given

abs :: b → a h :: a → c h ′ :: b → c
rep :: a → b t :: a → a t ′ :: b → b

satisfying the assumptions

abs ◦ rep = ida
h ′ = h ◦ abs
abs ◦ t ′ = t ◦ abs

we have the factorisation

unfold h t = unfold h ′ t ′ ◦ rep

Using this result, we can split a function unfold h t into the
composition of a worker function unfold h ′ t ′ that uses a different
representation of data and a wrapper function rep that effects the
necessary change of data representation.

We now apply this to the tabulate example. As we have already
shown that abs ◦ rep = id , it is only necessary to verify the
remaining two assumptions. We start with the first assumption:

h (abs (f ,n))
= { definition of abs }

h (f ◦ (+n))
= { definition of h }

(f ◦ (+n)) 0
= { simplification }

f n
= { definition of h ′ }

h ′ (f ,n)

Now, the second assumption:

t (abs (f ,n))
= { definition of abs }

t (f ◦ (+n))
= { definition of t }

f ◦ (+n) ◦ (+1)
= { simplification }

f ◦ (+(n + 1))
= { definition of abs }

abs (f ,n + 1)
= { definition of t’ }

abs (t ′ (f ,n))

In conclusion, by generalising from our tabulation example we have
derived a framework for factorising corecursive functions that are
defined using the unfold operator for streams.

5. Categorifying
To recap, we have combined the idea of a change of data repre-
sentation with an application of fusion to produce a factorisation
theorem for stream unfolds. This theorem covers cases not covered
by fusion alone. For example, attempting to prove the tabulate ex-
ample correct simply using fusion fails in precisely the same way
that our attempted proof using coinduction failed.

However, so far we have only concerned ourselves with the
coinductive type of streams. If we wish to apply this technique
to other coinductive types, it would seem that we must define
unfold and prove its fusion law for every such type we intend to
use. Thankfully this is not the case, as category theory provides
a convenient generic approach to modelling coinductive types and
their unfold operators using the notion of final coalgebras [18].

5.1 Final Coalgebras
Suppose that we fix a category C and a functor F : C → C on
this category. Then an F-coalgebra is a pair (A, f) consisting of
an object A along with an arrow f : A → F A. We often omit
the object A as it is implicit in the type of f . A homomorphism
between coalgebras f : A → F A and g : B → F B is an arrow
h : A → B such that F h ◦ f = g ◦ h . This property is captured
by the following commutative diagram:

A
h //

f

��

B

g

��
F A

F h
// F B

Intuitively, a coalgebra f : A → F A can be thought of as
giving a behaviour to elements of A, where the possible behaviours
are specified by the functor F. For example, if we define F X =
1 + X on the category Set of sets and total functions, then a
coalgebra f : A → 1 + A is the transition function of a state
machine in which each element of A is either a terminating state or
has a single successor. In turn, a homomorphism corresponds to a
behaviour-preserving mapping, in the sense that if we first apply the
homomorphism h and then the target behaviour captured by g , we

4 2014/1/13

obtain the same result as if we apply the source behaviour captured
by f and then apply h to the components of the result.

A final coalgebra, denoted (νF, out), is an F-coalgebra to which
any other coalgebra has a unique homomorphism. If a final coal-
gebra exists, it is unique up to isomorphism. Given a coalgebra
f : A → F A, the unique homomorphism from f to the final
coalgebra out is denoted unfold f :: A → νF. This uniqueness
property can be captured by the following equivalence:

h = unfold f ⇔ F h ◦ f = out ◦ h

We also have a fusion rule for unfold:

Theorem 3 (Unfold Fusion for Final Coalgebras). Given

f : A→ F A g : B → F B h : A→ B

we have the following implication:

unfold g ◦ h = unfold f
⇐

F h ◦ f = g ◦ h

The proof of this theorem can be conveniently captured by the
following commutative diagram:

A

f

��

h //

unfold f

%%
B

g

��

unfold g // νF

out

��
F A

F h
// F B

F (unfold g)

// F (νF)

The left square commutes by assumption while the right square
commutes because unfold g is a coalgebra homomorphism. There-
fore, the outer rectangle commutes, meaning that unfold g ◦ h is
a homomorphism from f to out . Finally, because homomorphisms
to the final coalgebra out are unique and unfold f is also such a
homomorphism, the result unfold g ◦ h = unfold f holds.

We illustrate the above concepts with a concrete example. Con-
sider the functor F X = N × X on the category Set. This
functor has a final coalgebra (Stream N, 〈head , tail〉), consist-
ing of the set Stream N of streams of natural numbers together
with the function 〈head , tail〉 : Stream N → N × Stream that
combines the stream destructors head : Stream N → N and
tail : Stream N → Stream N. Given any set A and functions
h : A → N and t : A → A, the function unfold〈h, t〉 : A →
Stream N is uniquely defined by the two equations

head ◦ unfold〈h, t〉 = h
tail ◦ unfold〈h, t〉 = unfold〈h, t〉 ◦ t

which are equivalent to the more familiar definition of unfold using
using the stream constructor (:) presented earlier:

unfold h t x = h x : unfold h t (t x)

We also note that the earlier fusion law for streams is simply a
special case of the more general fusion law where F X = N× X .
The fusion precondition simplifies as follows

F g ◦ 〈h ′, t ′〉 = 〈h, t〉 ◦ g
⇔ { definition of F, products }
〈h ′, g ◦ t ′〉 = 〈h ◦ g , t ◦ g〉
⇔ { separating components }

h ′ = h ◦ g ∧ g ′ ◦ t = t ◦ g

and the postcondition is clearly equivalent. All of the above also
holds for Stream A for an arbitrary set A.

It is now straightforward to generalise our earlier unfold fac-
torisation theorem from streams to final coalgebras. Combining the
general unfold fusion law with the same type abstraction idea from
before, we obtain the following theorem.

Theorem 4 (General Unfold Factorisation). Given

abs : B → A f : A→ F A
rep : A→ B g : B → F B

satisfying the assumptions

abs ◦ rep = idA
F abs ◦ g = f ◦ abs

we have the factorisation

unfold f = unfold g ◦ rep

that splits the original corecursive program unfold f into the
composition of a worker unfold g and a wrapper rep.

5.2 Exploiting Duality
Our results up to this point have been generic with respect to the
choice of a category C. This is helpful, because not only are the
results general, they are also subject to duality.

In category theory, the principle of duality states that if a prop-
erty holds of all categories, then the dual of that property must also
hold of all categories. By applying this duality principle to our gen-
eral unfold factorisation theorem, we obtain the following factori-
sation theorem for folds, the categorical dual of unfolds:

Theorem 5. Given

abs : A→ B f : F A→ A
rep : B → A g : F B → B

satisfying the assumptions

rep ◦ abs = idA
g ◦ F abs = abs ◦ f

we have the factorisation

fold f = rep ◦ fold g

that splits the original recursive program fold f into the composi-
tion of a wrapper rep and a worker fold g .

Note that now rep is required to be a left-inverse of abs , rather
than the other way around. If we swap their names to reflect this
new situation, we see that this is a special case of the following
general result, due to Sculthorpe and Hutton [24]:

Theorem 6 (Worker-Wrapper Factorisation for Initial Algebras).
Given

abs : B → A f : F A→ A
rep : A→ B g : F B → B

satisfying one of the assumptions

(A) abs ◦ rep = idA
(B) abs ◦ rep ◦ f = f
(C) fold (abs ◦ rep ◦ f) = fold f

and one of the conditions

(1) g = rep ◦ f ◦ F abs (1β) fold g = fold (rep ◦ f ◦ F abs)
(2) g ◦ F rep = rep ◦ f (2β) fold g = rep ◦ fold f
(3) f ◦ F abs = abs ◦ g

5 2014/1/13

we have the factorisation

fold f = abs ◦ fold g

If we now apply duality in turn to this theorem, we obtain an even
more general version of our unfold factorisation theorem:

Theorem 7 (Worker-Wrapper Factorisation for Final Coalgebras).
Given

abs : B → A f : A→ F A
rep : A→ B g : B → F B

satisfying one of the assumptions

(A) abs ◦ rep = idA
(B) f ◦ abs ◦ rep = f
(C) unfold (f ◦ abs ◦ rep) = unfold f

and one of the conditions

(1) g = F rep ◦ f ◦ abs
(2) F abs ◦ g = f ◦ abs
(3) F rep ◦ f = g ◦ rep

(1β) unfold g = unfold (F rep ◦ f ◦ abs)
(2β) unfold g = unfold f ◦ abs

we have the factorisation

unfold f = unfold g ◦ rep

At this point it would be reasonable to ask why we did not sim-
ply present the dualised theorem straight away. This is indeed pos-
sible, but we do not feel it would be a good approach. In particu-
lar, our systematic development that starts from a concrete example
and then applies steps of abstraction, generalisation and dualisation
provides both motivation and explanation for the theorem.

We now turn our attention to interpreting Theorem 7. First of
all, assumptions (B) and (C) are simply generalised versions of our
original assumption (A), in the sense that (A)⇒ (B)⇒ (C). Sec-
ondly, conditions (1) and (3) are alternatives to the original condi-
tion (2), providing a degree of flexibility for the user of the theorem
to select the most convenient. In general these three conditions are
unrelated, but any of them is sufficient to ensure that the theorem
holds. Finally, the β conditions in the second group arise as weaker
versions of the corresponding conditions in the first, i.e. (1)⇒ (1β)
and (2)⇒ (2β), and given assumption (C) the two β conditions are
equivalent. We omit proofs as they are dual to those in [24].

While the new assumptions and conditions are dual to those of
the original theorem, they differ significantly in terms of their prac-
tical considerations, which we shall discuss now. Firstly, assump-
tion (B) in the theorem for fold, i.e. abs ◦ rep ◦ f = f , can be
interpreted as “for any x in the range of f , abs (rep x) = x”. This
can therefore be proven by reasoning only about such x . When ap-
plying the theorem for unfold, this kind of simple reasoning for
assumption (B) is not possible, as f is now applied last rather than
first and hence cannot be factored out of the proof.

Secondly, condition (2) in the fold case, i.e. rep ◦ f = g ◦F rep,
allowed g to depend on a precondition set up by rep. If such
a precondition is desired for the unfold case, condition (3) must
be used. This has important implications for use of this theorem
as a basis for optimisation, as we will often derive g based on a
specification given by one of the conditions.

Finally, we note that proving (C), (1β) or (2β) for the fold case
usually requires induction. To prove the corresponding properties
for the unfold case will usually require the less widely-understood
technique of coinduction. These properties may therefore turn out

to be less useful in the unfold case for practical purposes, despite
only requiring a technique of comparable complexity. If we want
to use this theory to avoid coinduction altogether, assumption (C)
and the β conditions are not applicable. Section 5.3 offers a way
around this problem in the case of (C).

5.3 Refining Assumption (C)
As it stands, assumption (C) is expressed as an equality between
two corecursive programs defined using unfold, and hence may
be non-trivial to prove. However, we can derive an equivalent
assumption that may be easier to prove in practice:

unfold f = unfold (f ◦ abs ◦ rep)
⇔ { uniqueness property of unfold (f ◦ abs ◦ rep) }

out ◦ unfold f = F (unfold f) ◦ f ◦ abs ◦ rep
⇔ { unfold f is a homomorphism }

out ◦ unfold f = out ◦ unfold f ◦ abs ◦ rep
⇔ { out is an isomorphism }
unfold f = unfold f ◦ abs ◦ rep

We denote this equivalent version of assumption (C) as (C’). As this
new assumption concerns only the conversions abs and rep along
with the original program unfold f , it may be provable simply from
the original program’s correctness properties.

Assumption (C’) also offers a simpler proof of Theorem 7 than
one obtains by dualising the proof in [24]. We start from this
assumption and use the fact that in this context, conditons (1), (2)
and (1β) all imply (2β):

unfold f = unfold f ◦ abs ◦ rep
⇒ { (2β): unfold g = unfold f ◦ abs }
unfold f = unfold g ◦ rep

The proof in the case of condition (3) remains the same as previ-
ously. We conclude by noting that the implication (B) ⇒ (C’) is
not as obvious as the original implication (B)⇒ (C). Altering the
theory in this manner thus “moves work” from proving the main
result to proving the relationships between the conditions.

5.4 Applying the Theory in Haskell
The category that is usually used to model Haskell types and func-
tions is CPO, the category of (pointed) complete partial orders and
continuous functions. While a fold operator can be defined in this
category, its uniqueness property carries a strictness side condition
[18]. As a result, the worker-wrapper theory for folds in CPO re-
quires a strictness condition of its own [24]. However, in the case of
unfold in CPO the uniqueness property holds with no side condi-
tions [18] so our theorem can be freely used to reason about Haskell
programs without such concerns.

6. Examples
We now present a collection of worked examples, demonstrating
how our new factorisation theorem may be applied. Firstly, we re-
visit the tabulation example, and show that it is a simple application
of the theory. Secondly, we consider the problem of cycling a list,
where we reduce the time cost by delaying expensive operations
and performing them in a batch. We believe that this will be a com-
mon use of our theory. Thirdly, we consider the problem of taking
the initial segment of a list, which allows us to demonstrate how
sometimes different choices of condition can lead to the same re-
sult. Finally, we consider the problem of flattening a tree. In all
cases the proofs are largely mechanical and the main inspiration
necessary is in the choice of a new data representation.

With the exception of the initial segment example, all of the
following examples occur in the context of the category Set of sets

6 2014/1/13

and total functions. Working in Set results in simpler reasoning as
we do not need to consider issues of partiality.

6.1 Example: Tabulating a Function
We can instantiate our theory as shown above to give a proof of the
correctness of our tabulate example. The proof uses assumption (A)
and condition (2). Therefore we see that this example is a simple
application of the worker-wrapper machinery.

6.2 Example: Cycling a List
The function cycle takes a non-empty finite list and produces the
stream consisting of repetitions of that list. For example:

cycle [1, 2, 3] = [1, 2, 3, 1, 2, 3, 1, 2, 3, . . .

One possible definition for cycle is as follows, in which we
write [a]+ for the type of non-empty lists of type a:

cycle :: [a]+ → Stream a
cycle (x : xs) = x : cycle (xs ++ [x])

However, this definition is inefficient, as the append operator ++
takes linear time in the length of the input list. Recalling that
Stream a is the final coalgebra of the functor F X = a × X ,
we can rewrite cycle as an unfold:

cycle = unfold h t
where h xs = head xs

t xs = tail xs ++ [head xs]

The idea we shall apply to improve the performance of cycle is to
combine several ++ operations into one, thus reducing the average
cost. To achieve this, we create a new representation where the
original list of type [a]+ is augmented with a (possibly empty) list
of elements that have been added to the end. We keep this second
list in reverse order so that appending a single element is a constant-
time operation. The rep and abs functions are as follows:

rep :: [a]+ → ([a]+, [a])
rep xs = (xs, [])

abs :: ([a]+, [a])→ [a]+

abs (xs, ys) = xs ++ reverse ys

Given these definitions it is easy to verify assumption (A):

abs (rep xs)
= { definition of rep }

abs (xs, [])
= { definition of abs }

xs ++ reverse []
= { definition of reverse }

xs ++ []
= { [] is unit of ++ }

xs

For this example we take condition (2), i.e. F abs ◦ g =
f ◦ abs , as our specification of g , once again specialising to the
two conditions h ◦ abs = h ′ and t ◦ abs = abs ◦ t ′. From this we
can calculate h ′ and t ′ separately. First we calculate h ′:

h ′ (xs, ys)
= { specification }

h (abs (xs, ys))
= { definition of abs }

h (xs ++ reverse ys))
= { definition of h }

head (xs ++ reverse ys)
= { xs is nonempty }

head xs

Now we calculate a definition for t ′. Starting from the specification
abs ◦ t ′ = t ◦ abs , we calculate as follows:

t (abs (xs, ys))
= { definition of abs }

t (xs ++ reverse ys))
= { case analysis }
case xs of

[x] → t ([x] ++ reverse ys)
(x : xs ′)→ t ((x : xs ′) ++ reverse ys)

= { definition of ++ }
case xs of

[x] → t (x : ([] ++ reverse ys))
(x : xs ′)→ t (x : (xs ′ ++ reverse ys))

= { definition of t }
case xs of

[x] → [] ++ reverse ys ++ [x]
(x : xs ′)→ xs ′ ++ reverse ys ++ [x]

= { definition of reverse , ++ }
case xs of

[x] → reverse (x : ys)
(x : xs ′)→ xs ′ ++ reverse (x : ys)

= { definition of abs }
case xs of

[x] → abs (reverse (x : ys), [])
(x : xs ′)→ abs (xs ′ , x : ys)

= { pulling abs out of cases }
abs (case xs of

[x] → (reverse (x : ys) , [])
(x : xs ′)→ (xs ′ , x : ys))

Hence, t ′ can be defined as follows:

t ′ ([x], ys) = (reverse (x : ys), [])
t ′ (x : xs, ys) = (xs, x : ys)

In conclusion, by applying our worker-wrapper theorem, we
have calculated a factorised version of cycle

cycle = unfold h ′ t ′ ◦ rep
where h ′ (xs, ys) = head xs

t ′ ([x], ys) = (reverse (x : ys), [])
t ′ (x : xs, ys) = (xs, x : ys)

which can be written directly as

cycle = cycle ′ ◦ rep
where

cycle ′ ([x], ys) = x : cycle ′ (reverse (x : ys), [])
cycle ′ (x : xs, ys) = x : cycle ′ (xs, x : ys)

This version only performs a reverse operation once for every
cycle of the input list, so the average cost to produce a single
element is now constant. We believe that this kind of optimisation
— in which costly operations are delayed and combined into a
single operation — will be a common use of our theory.

6.3 Example: Initial Segment of a List
The function init takes a list and returns the list consisting of all
the elements of the original list except the last one:

init :: [a]→ [a]
init [] = ⊥
init [x] = []
init (x : xs) = x : init xs

Here, ⊥ represents the failure of the function to produce a result.
(In Haskell we would not need to give this first case, but we make
it explicit here for the purposes of reasoning.)

7 2014/1/13

This example is particularly interesting as it does not require the
function being optimised to be explicitly written as an unfold at any
point. As the function in question is partial, the relevant category in
this case is CPO rather than Set.

Each call of init checks to see if the argument is empty. How-
ever, the argument of the recursive call can never be empty, as if it
were then the second case would have been matched rather than the
third. We would therefore like to perform this check only once. We
can use unfold worker-wrapper to achieve this, by essentially using
a “de-consed” list as our representation:

rep :: [a]→ (a, [a])
rep [] = ⊥
rep (x : xs) = (x , xs)

abs :: (a, [a])→ [a]
abs (x , xs) = x : xs

In this case, assumption (A) fails:

abs (rep [])
= { definition of rep }

abs ⊥
= { abs is strict }
⊥
6= []

If we were to rewrite init as an unfold, we could then prove (B).
However, we instead avoid this by using the alternative assump-
tion (C’). This expands to init ◦ abs ◦ rep = init , which we prove
by case analysis on the argument. For the empty list:

init (abs (rep []))
= { definition of rep }

init (abs ⊥)
= { abs is strict }

init ⊥
= { init is strict }
⊥

= { definition of init }
init []

For the undefined value ⊥:

init (abs (rep ⊥)
= { init , abs and rep are all strict }
⊥

Otherwise:

init (abs (rep (x : xs)))
= { definition of rep }

init (abs (x , xs))
= { definition of abs }

init (x : xs)

Using Condition (2β)
Firstly, we demonstrate a derivivation of a new worker function
that avoids writing init explicitly in terms of unfold. The only
condition that permits this is (2β), which expands to init ′ =
init ◦ abs . We can calculate the definition of init ′ simply by
applying this specification to (x , xs):

init ′ (x , xs)
= { specification of init ′ }

init (abs (x , xs))
= { definition of abs }

init (x : xs)

= { definition of init }
case (x : xs) of

[] → ⊥
[y] → []
(y : ys)→ y : init ys

= { removing redundant case }
case (x : xs) of

[y] → []
(y : ys)→ y : init ys

= { factoring out x }
case xs of

[] → []
ys → x : init ys

= { ys is nonempty }
case xs of

[] → []
(y : ys ′)→ x : init (y : ys ′)

= { definition of abs }
case xs of

[] → []
(y : ys ′)→ x : init (abs (y , ys ′))

= { specification of init ′ }
case xs of

[] → []
(y : ys ′)→ x : init ′ (y , ys ′)

As we used the specification of init ′ in its own derivation, the
above derivation only guarantees partial correctness. We should
take a moment to convince ourselves that the resulting definition
does actually satisfy the specification. In this case, both sides are
clearly total, so there is no problem. In conclusion, we have derived
an alternative definition for the function init

init = init ′ ◦ rep
where

rep [] = ⊥
rep (x : xs) = (x , xs)
init ′ (x , []) = []
init ′ (x , y : ys) = x : init ′ (y , ys)

that only performs the check for the empty list once.
Note that we derived the more efficient version of init using

worker-wrapper factorisation for unfolds without ever writing the
program in question as an unfold. This is a compelling argument for
the flexibility of the theory, but we should also note that because of
our choice of assumption and condition none of the extra structure
of unfolds is needed, as the equality chain

init ′ ◦ rep
= { (2β) }

init ◦ abs ◦ rep
= { (C’) }

init

holds regardless of whether init and init ′ are unfolds. In a sense,
because we have chosen the weakest properties, the theory gives us
less. This suggests that we should generally prefer to use stronger
properties if possible. The use of partially-correct reasoning is also
unsatisfactory, as it requires us to appeal to totality.

Using Condition (1)
If we write init explicitly as an unfold, this example can also use
condition (1). The unfold for (possibly finite) lists is:

unfold :: (a → Maybe (b, a))→ a → [b]
unfold f x = case f x of

8 2014/1/13

Nothing → []
Just (b, x ′)→ b : unfold f x ′

Using this, we can define init as follows:

init :: [a]→ [a]
init = unfold f

where
f :: [a]→ Maybe (a, [a])
f [] = ⊥
f [x] = Nothing
f (x : xs) = Just (x , xs)

In order to construct a function g such that init = unfold g ◦
rep, where rep is defined as before, we use worker-wrapper factori-
sation. Condition (1) gives us the explicit definition g = F rep ◦
f ◦ abs . Instantiating this for our particular F, we have:

g x = case f (abs x) of
Nothing → Nothing
Just (y , x ′)→ Just (y , rep x ′)

We attempt to simplify this, noting that the type of x is (a, [a]).
We calculate g separately for the input (a, [])

g (a, [])
= { definition of g }
case f (abs (a, [])) of

Nothing → Nothing
Just (y , x ′)→ Just (y , rep x ′)

= { definition of abs }
case f [a] of

Nothing → Nothing
Just (y , x ′)→ Just (y , rep x ′)

= { f [a] = Nothing , cases }
Nothing

and for (a, as), where as is non-empty:

g (a, as)
= { definition of g }
case f (abs (a, as)) of

Nothing → Nothing
Just (y , x ′)→ Just (y , rep x ′)

= { definition of abs }
case f (a : as) of

Nothing → Nothing
Just (y , x ′)→ Just (y , rep x ′)

= { f (a : as) = Just (a, as) when as nonempty, cases }
Just (a, rep as)

= { as is nonempty, let as = a ′ : as ′ }
Just (a, rep (a ′ : as ′))

= { definition of rep }
Just (a, (a ′, as ′))

We thus obtain the following definition of g :

g (a, []) = Nothing
g (a, a ′ : as) = Just (a, (a ′, as))

Because we are working in CPO, we must also consider the
behaviour of the function g on the input (a,⊥):

g (a,⊥)
= { specification of g }
case f (abs (a,⊥)) of

Nothing → Nothing
Just (y , x ′)→ Just (y , rep x ′)

= { definition of abs }

case f (a : ⊥) of
Nothing → Nothing
Just (y , x ′)→ Just (y , rep x ′)

= { f cannot pattern match on a : ⊥ }
case ⊥ of

Nothing → Nothing
Just (y , x ′)→ Just (y , rep x ′)

= { case exhaustion }
⊥

However, because g is defined by pattern matching on the second
component of the tuple, the equation g (a,⊥) = ⊥ clearly holds.
Therefore, the above definition of g satisfies worker-wrapper con-
dition (1) and so the factorisation

init = unfold g ◦ rep

is correct. Note that unfold g is precisely the init ′ function that we
derived above, now defined as an unfold.

While we had to write init explicitly as an unfold to perform
this derivation, the calculation of the improved program was more
straightforward than before, and largely mechanical.

Remarks
This above example shows that the same optimised function can
sometimes be obtained using different approaches. It is worth not-
ing that this particular optimisation is also an instance of call-
pattern specialisation [23], as implemented in the Glasgow Haskell
Compiler. However, neither one of these approaches subsumes the
other, it simply happens in this case that they coincide.

6.4 Example: Flattening a Tree
Our final example concerns the left-to-right traversal of a binary
tree. The naı̈ve way to implement such a traversal is as follows,
which corresponds to expressing the function as a fold:

data Tree a = Null | Fork (Tree a) a (Tree a)

flatten :: Tree a → [a]
flatten Null = []
flatten (Fork t1 x t2) = flatten t1 ++ [x] ++ flatten t2

However, this approach takes time quadratic in the number of
nodes. By fusing this definition with id = unfold out , we can
transform the function into an unfold. Here is the fusion condition:

(out ◦ flatten) t = case g t of
Nothing → Nothing
Just (x , t ′)→ Just (x ,flatten t ′)

By writing a function removemin satisfying the specification of g ,
we obtain the following new definition of flatten:

flatten :: Tree a → [a]
flatten = unfold removemin

where removemin Null = Nothing
removemin (Fork t1 x t2) =

case removemin t1 of
Nothing → Just (x , t2)
Just (y , t1 ′)→ Just (y ,Fork t1 ′ x t2)

This approach takes time proportional to n ∗ l, where n is the
number of nodes and l is the leftwards depth of the tree, i.e. the
depth of the deepest node counting only left branches.

However, we can use our worker-wrapper theory to improve
this further, exploiting the isomorphism between lists of rose trees
(trees with an arbitrary number of children for each node) and
binary trees. First we define the type of rose trees:

9 2014/1/13

data RoseTree a = RoseTree a [RoseTree a]

Now we define a version of flatten for lists of rose trees, in which
the list acts as a priority queue of the elements in the original tree,
so that at each stage we remove the root of the first tree in the queue,
and push all its children onto the front of the queue:

flatten ′ :: [RoseTree a]→ [a]
flatten ′ = unfold g

where g [] = Nothing
g (RoseTree x ts1 : ts2) = Just (x , ts1 ++ ts2)

We define rep and abs functions to convert between this priority
queue representation and the original binary tree representation.

rep :: Tree a → [RoseTree a]
rep = reverse ◦ listify

where listify Null = []
listify (Fork t1 x t2) =

RoseTree x (rep t2) : listify t1

abs :: [RoseTree a]→ Tree a
abs = delistify ◦ reverse

where delistify [] = Null
delistify (RoseTree x ts1 : ts2) =

Fork (delistify ts2) x (abs ts1)

Essentially, rep pulls apart a tree along its left branch into a list,
while abs puts the tree back together. The use of reverse is neces-
sary to ensure that the leftmost node is at the head of the list.

The result is an alternate definition flatten = flatten ′◦rep that
has comparable performance on balanced trees, but much better
performance on trees with long left branches.

We now verify the correctness of this new definition using our
worker-wrapper theorem. Firstly, we show that assumption (A)
holds, i.e. abs ◦ rep = id . To do this we note that because
reverse is self-inverse, abs ◦ rep = delistify ◦ listify . We prove
delistify ◦ listify = id by induction on trees. First, the base case:

delistify (listify Null)
= { definition of listify }

delistify []
= { definition of delistify }

Null

Then the inductive case:

delistify (listify (Fork t1 x t2))
= { definition of listify }

delistify (RoseTree x (rep t2) : listify t1)
= { definition of delistify }

Fork (delistify (listify t1)) x (abs (rep t2))
= { abs ◦ rep = delistify ◦ listify }

Fork (delistify (listify t1)) x (delistify (listify t2))
= { inductive hypothesis }

Fork t1 x t2

Now we must prove that g satisfies one of the worker-wrapper
specifications. We choose condition (2) to verify, in this case:

removemin (abs ts) =
case g ts of

Nothing → Nothing
Just (x , ts ′)→ Just (x , abs ts ′)

We verify this equation by induction on the length of the priority
queue. For the base case when the queue is empty, we have:

removemin (abs [])
= { definition of abs }

removemin Null
= { definition of removemin }

Nothing
= { g [] = Nothing }
case g [] of

Nothing → Nothing
Just (x , ts ′)→ Just (x , abs ts ′)

For the inductive case, rather than RoseTree x ts1 : ts2 we use
ts1 ++ [RoseTree x ts2], as abs reverses its argument:

removemin (abs (ts1 ++ [RoseTree x ts2]))
= { definition of abs }

removemin (delistify
(RoseTree x ts2 : reverse ts1))

= { definition of delistify }
removemin (Fork (delistify (reverse ts1))

x
(abs ts2))

= { abs = delistify ◦ reverse }
removemin (Fork (abs ts1) x (abs ts2))

= { definition of removemin }
case removemin (abs ts1) of

Nothing → Just (x , abs ts2)
Just (y , t1 ′) →

Just (y ,Fork t1 ′ x (abs ts2))
= { inductive hypothesis }
case

case (g ts1) of
Nothing → Nothing
Just (y , ts1 ′)→ Just (y , abs ts1 ′)

of
Nothing → Just (x , abs ts2)
Just (y , t1 ′) →

Just (y ,Fork t1 ′ x (abs ts2))
= { case of case, pattern matching }
case g ts1 of

Nothing → Just (x , abs ts2)
Just (y , ts1 ′)→

Just (y ,Fork (abs ts1 ′) x (abs ts2))
= { definition of abs }
case g ts1 of

Nothing → Just (x , abs ts2)
Just (y , ts1 ′)→

Just (y ,Fork (delistify (reverse ts1 ′))
x
(abs ts2))

= { definition of abs }
case g ts1 of

Nothing → Just (x , abs ts2)
Just (y , ts1 ′)→

Just (y , abs (ts1 ′ ++ [RoseTree x ts2]))

We must prove that this last expression is equal to

case g (ts1 ++ [RoseTree x ts2]) of
Nothing → Nothing
Just (y , ts ′)→ Just (y , abs ts ′)

which we do by case analysis on ts1. When ts1 = [], we have:

case g [] of
Nothing → Just (x , abs ts2)
Just (y , ts1 ′)→

Just (y , abs (ts1 ′ ++ [RoseTree x ts2]))
= { definition of g , case }

10 2014/1/13

Just (x , abs ts2)
= { case }
case Just (x , ts2) of

Nothing → Nothing
Just (y , ts ′) → Just (y , abs ts ′)

= { definition of g }
case g [RoseTree x ts2] of

Nothing → Nothing
Just (y , ts ′) → Just (y , abs ts ′)

= { [] identity of ++ }
case g ([] ++ [RoseTree x ts2]) of

Nothing → Nothing
Just (y , ts ′) → Just (y , abs ts ′)

In turn, when ts1 = RoseTree z ts3 : ts4 :

case g (RoseTree z ts3 : ts4) of
Nothing → Just (x , abs ts2)
Just (y , ts1 ′)→

Just (y , abs (ts1 ′ ++ [RoseTree x ts2]))
= { definition of g , case }

Just (z , abs (ts3 ++ ts4 ++ [RoseTree x ts2]))
= { case }
case Just (z , ts3 ++ ts4 ++ [RoseTree x ts2]) of

Nothing → Nothing
Just (y , ts ′) → Just (y , abs ts ′)

= { definition of g }
case g (RoseTree z ts3 : (ts4 ++ [RoseTree x ts2])) of

Nothing → Nothing
Just (y , ts ′) → Just (y , abs ts ′)

Therefore, condition (2) and assumption (A) are satisfied, and
hence the following worker-wrapper factorisation is valid:

flatten = flatten ′ ◦ rep

We conclude by noting that while this result can be obtained from
fusion alone, the necessary proof is very involved, requiring a
lemma about the relationship between removemin and abs . The
worker-wrapper proof, while long, is mechanical. For comparison,
the fusion-based proof is available on the web at http://www.cs.
nott.ac.uk/~jph/flatten_fusion.pdf.

7. Related Work
We have divided the related work into four categories. The first
two relate to the history of the unfold operator in programming
languages and category theory respectively. The third relates to the
use of fusion in program optimisation, while the fourth relates to
applications of program factorisation.

7.1 Unfold in Programming Languages
The use of unfold in programming is a lot more recent than
that of fold. While fold-like operations trace their history back
to APL [16], the earliest unfold-like mechanism appears to be in
Miranda list comprehensions [27], which have a special “. .” syntax
that can be used to express unfold-like computations without the
need for explicit recursion. However, in Miranda there was no ded-
icated unfold operator such as the one in Haskell, which became
part of the standard library in Haskell 98 [22].

The unfold operator seems to first appear in a recognisable form
in 1988 in Introduction to Functional Programming by Bird and
Wadler [1], where it is defined in terms of map, takeWhile and
iterate . No direct recursive definition is given, and it only appears
on a single page. Meijer, Fokkinga and Paterson noted in 1991 that
the unfold operator from [1] was categorically dual to fold [18].

In 1998, Gibbons and Jones published the paper The Under-
Appreciated Unfold [9], which gave the inspiration for the title
of this paper. The paper argued that unfold was an underutilised
programming tool, and justified this by presenting algorithms for
breadth-first traversal using both fold and unfold, arguing that the
unfold-based algorithms were clearer.

7.2 Unfold in Category Theory
It seems that categorical unfolds (also known as anamorphisms)
were largely developed in parallel to unfold in programming lan-
guages. The earliest mention of categorical unfold appears to be in
Hagino’s 1987 PhD thesis A Categorical Programming Language
[13] and subsequently in Malcolm’s 1990 thesis Algebraic Data
Types and Program Transformation [17]. Interestingly, neither of
these make any linguistic distinction between folds and unfolds,
using the same terminology to refer to both. It seems that this dis-
tinction was not made until Meijer et al.’s 1991 paper Functional
Programming with Bananas, Lenses, Envelopes and Barbed Wire
[18], which concerned folds and unfolds in CPO and essentially
unified the programming language work with the categorical work.

7.3 Program Fusion
In functional programming, many successful program optimisa-
tions are based upon fusion, in which separate parts of a program
are fused together to eliminate intermediate data structures. Fusion
was first introduced by Wadler in 1990 by the name of deforestation
[31]. Since then, it has been widely explored, especially in regards
to specific recursion patterns.

A particularly successful example is foldr /build fusion, in
which list-producers are defined in terms of a function build while
list-consumers are defined in terms of foldr . Introduced by Gill,
Launchbury and Peyton Jones [11], this pattern has been the sub-
ject of much research [2, 26, 30] and is implemented in GHC.

A more recent innovation by Coutts, Leshchinsky and Stew-
art is stream fusion, a way to optimise list-processing functions
by changing the representation of lists [4]. This approach makes
essential use of an unfold-like operator, and is related to worker-
wrapper factorisation as it involves a change of intermediate data
type. However, stream fusion utilises the recursive structure of the
underlying data, whereas our approach does not.

7.4 Program Factorisation
Compared to fusion-based techniques, program factorisation or
“fission” seems far less well-explored. Gibbons’ 2006 paper, Fis-
sion for Program Comprehension [7], presents an application of
this idea which differs from our work in two ways. Firstly, Gibbons
does not concern himself with program optimisation; rather, his in-
tended use is understanding an already-written program by break-
ing it down into the combination of separate parts that are easier
to comprehend. Secondly, while Gibbons’ approach is based upon
applying fusion in reverse, the proof of our approach to program
factorisation actually involves a forward application of fusion.

8. Conclusion
In this paper, we have presented a novel approach to optimising
programs written in the form of an unfold, showing how a useful
approach comes from the commonly-used idea of generalising a
coinductive hypothesis. We have provided a general factorisation
theorem that can be used either to guide the derivation of an opti-
mised program or to prove such a program correct, resulting in a
technique that we believe has wide applicability. We demonstrated
the utility of our technique with a collection of examples.

11 2014/1/13

8.1 Further Work
We have only considered programs in the form of an unfold, but
there are other corecursive patterns that can be considered. One
example is apomorphisms [29], which capture the idea of primi-
tive corecursion, allowing construction of the result to short-cut by
producing the remainder of the result in a single step. The apomor-
phism operator for streams can be defined as follows:

apo h t x = h x : case t x of
Left x ′ → apo h t x ′

Right xs → xs

Apomorphisms have their own fusion law, so it seems likely that
they would have a useful worker-wrapper factorisation theorem.

Another possible direction is to adapt our method to deal with
circular definitions. For example, we can write a circular definition
of the infinite stream of Fibonacci numbers:

fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

Coinductive techniques can be used to reason about circular defini-
tions like this one, but whether a factorisation theorem analogous
to ours exists for such definitions remains to be seen.

We could also consider extending this work to monadic and
comonadic unfolds. Monadic unfolds [21] are of particular interest;
consider the monadic unfold operator for streams:

unfoldM :: Monad m ⇒ (a → m (b, a))→
a → m (Stream b)

unfoldM f x = do (b, x ′)← f x
bs ← unfoldM f x ′

return (b : bs)

Any monad with a strict bind operator will fail to produce a re-
sult, instead simply bottoming out. Intuitively, the problem is that
an infinite number of effects must be applied before the final result
can be produced. Thus we see that there is a fundamental differ-
ence between ordinary and monadic unfolds that raises interesting
questions concerning the worker-wrapper theory.

The theory we have presented is concerned with correctness. In
order to reason about efficiency gains, we also need an operational
theory, for which purposes we are currently exploring the use
of improvement theory [19]. Finally, while we have noted that
the proofs are often mechanical, we have yet to consider how
our new theory may be mechanised. A team at the University
of Kansas is currently working on the implementation of various
worker-wrapper theories as an extension to the Glasgow Haskell
Compiler [5, 25], with promising initial results.

Acknowledgments
The authors would like to thank Richard Bird for assistance with
tracing the history of the unfold operator. We would also like to
thank Philippa Cowderoy for the observation in section 6.4 that the
unfold-based flatten could be derived from the fold-based flatten .

References
[1] R. Bird and P. Wadler. Introduction to Functional Programming.

Prentice Hall International Series in Computer Science. 1988.

[2] O. Chitil. Type Inference Builds a Short Cut to Deforestation. In ICFP
’99. ACM, 1999.

[3] T. Coquand. Infinite Objects in Type Theory. In TYPES ’93, volume
806 of Lecture Notes in Computer Science. Springer, 1993.

[4] D. Coutts, R. Leshchinskiy, and D. Stewart. Stream Fusion: From Lists
to Streams to Nothing at All. In ICFP ’07. ACM, 2007.

[5] A. Farmer, A. Gill, E. Komp, and N. Sculthorpe. The HERMIT in
the Machine: A Plugin for the Interactive Transformation of GHC

Core Language Programs. In Haskell Symposium (Haskell ’12). ACM,
2012.

[6] P. J. Freyd. Remarks on Algebraically Compact Categories. In Ap-
plications of Categories in Computer Science, volume 177 of Lon-
don Mathematical Society Lecture Note Series. Cambridge University
Press, 1992.

[7] J. Gibbons. Fission for Program Comprehension. In MPC ’06, volume
4014 of Lecture Notes in Computer Science. Springer, 2006.

[8] J. Gibbons and G. Hutton. Proof Methods for Corecursive Programs.
Fundamenta Informaticae Special Issue on Program Transformation,
66(4), April-May 2005.

[9] J. Gibbons and G. Jones. The Under-Appreciated Unfold. In ICFP
’98. ACM, 1998.

[10] A. Gill and G. Hutton. The Worker/Wrapper Transformation. Journal
of Functional Programming, 19(2), Mar. 2009.

[11] A. J. Gill, J. Launchbury, and S. L. Peyton Jones. A Short Cut to
Deforestation. In FPCA ’93. Springer, 1993.

[12] A. D. Gordon. A Tutorial on Co-induction and Functional Program-
ming. In In Glasgow Functional Programming Workshop. Springer,
1994.

[13] T. Hagino. A Categorical Programming Language. PhD thesis,
Department of Computer Science, University of Edinburgh, 1987.

[14] R. Hinze. Functional Pearl: Streams and Unique Fixed Points. In
ICFP ’08, New York, NY, USA, 2008.

[15] G. Hutton, M. Jaskelioff, and A. Gill. Factorising Folds for Faster
Functions. Journal of Functional Programming Special Issue on
Generic Programming, 20(3&4), June 2010.

[16] K. E. Iverson. A Programming Language. Wiley, 1962.
[17] G. Malcolm. Algebraic Data Types and Program Transformation. PhD

thesis, Rijksuniversiteit Groningen, 1990.
[18] E. Meijer, M. M. Fokkinga, and R. Paterson. Functional Programming

with Bananas, Lenses, Envelopes and Barbed Wire. In FPCA ’91,
volume 523 of Lecture Notes in Computer Science. Springer, 1991.

[19] A. Moran and D. Sands. Improvement in a Lazy Context: An Oper-
ational Theory for Call-by-Need. In POPL ’99, pages 43–56. ACM,
1999.

[20] L. S. Moss and N. Danner. On the Foundations of Corecursion. Logic
Journal of the IGPL, 5(2), 1997.

[21] A. Pardo. Monadic Corecursion — Definition, Fusion Laws, and
Applications. Electr. Notes Theor. Comput. Sci., 11, 1998.

[22] S. Peyton Jones, editor. Haskell 98 Language and Libraries: The
Revised Report. Cambridge University Press, 2003.

[23] S. Peyton Jones. Call-Pattern Specialisation for Haskell Programs. In
ICFP ’07. ACM, 2007.

[24] N. Sculthorpe and G. Hutton. Work It, Wrap It, Fix It, Fold It.
Submitted to the Journal of Functional Programming, 2013.

[25] N. Sculthorpe, A. Farmer, and A. Gill. The HERMIT in the Tree:
Mechanizing Program Transformations in the GHC Core Language.
In Draft Proceedings of Implementation and Application of Functional
Languages (IFL ’12), 2012.

[26] A. Takano and E. Meijer. Shortcut Deforestation in Calculational
Form. In FPCA ’95. Springer, 1995.

[27] D. A. Turner. Miranda System Manual. Research Software Ltd.,
Canterbury, England, 1989. Available online at http://miranda.org.uk/.

[28] D. A. Turner. Elementary Strong Functional Programming. In FPLE
’95, volume 1022 of Lecture Notes in Computer Science. Springer,
1995.

[29] T. Uustalu and V. Vene. Primitive (Co)Recursion and Course-of-
Value (Co)Iteration, Categorically. Informatica, Lith. Acad. Sci., 10
(1), 1999.

[30] J. Voigtländer. Proving Correctness via Free Theorems: The Case of
the destroy/build-Rule. In PEPM ’08. ACM, 2008.

[31] P. Wadler. Deforestation: Transforming Programs to Eliminate Trees.
Theor. Comput. Sci., 73(2), 1990.

12 2014/1/13

