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Chapter 1

Introduction

This tutorial manual was written for an atelier (i.e. a workshop) on Au-
tomatic Facial Expression Recognition as part of the 2013 Summer School
on Social Human-Robot Interaction, held on 29 August 2013 in Christ’s
College, Cambridge, UK. It is meant to be a practical introduction to au-
tomatic facial expression recognition, which I hope can serve as a starting
point for those interested in this rapidly growing area of research. So, while
I have tried to keep things simple, I have also tried to clearly point out
where I've simplified matters and where possible I have given pointers to
more advanced techniques.

The tutorial assumes you have Matlab installed, and have basic Matlab
programming skills. The package in which you’ve found this manual includes
all the necessary Matlab code, as well as the example data that we will use,
which has been taken from the MMI Facial Expression Database [7]. If
your work results in any publications and uses either the facial images or
the LGBP(-TOP) dynamic appearance descriptor code [I] I hope you will
return the courtesy to properly credit those works.

I hope this tutorial is of some use to all of you, and perhaps may even
inspire some to take up this wonderful mix of computer vision, machine
learning, and human psychology and anatomy. This manuscript will hope-
fully improve over time, so I am very happy to receive any feedback that
will allow me to improve the tutorial for future users.






Chapter 2

Tutorial - Building a Simple Smile
Detector

Face Detection

We’re going to start with face detection.

Step 1: Load an image. The first thing to do so we can play around a
little is to load an image. We’ll do that in steps. Go to the directory where
you stored this tutorial’s matlab code, for example:

cd /Users/Me/Documents/SomeDir/matlab/

All example images we will be using are in a directory relative to this,
to wit data/AU12/Positive for images including Action Unit 12 (AU12,
smiles) and data/AUl2/Negative for images without AU12. See the
Facial Action Coding System manual [2] for a complete description of Action
Units. An image can now be loaded, converted to greyscale, and displayed
as follows:

Listing 2.1: Load image

cim = imread(’../data/AUl2/Positive/6-50.png’);
im = rgb2gray(cim);

1

2

3

4 fig = figure;

5 subplot (1,2,1);
6 imshow (cim) ;

7 subplot(1,2,2);
8 imshow (im) ;

Lines 4-8 are optional, they’re just used to check that the image was
loaded correctly. Note that the variable cim holds the colour image, and
im the greyscale image. Both are needed at various stages of this tutorial.

Step 2: Fuace detection. We will detect the face using the toolbox pro-
vided by Zhu and Ramanan [§]. Their code is publicly available, and we
will be using it here because it is probably the most accurate face detector
available. Another popular face detector is that by Viola & Jones, which is
integrated in e.g. Matlab and OpenCV. While OpenCV’s detector is much
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faster, Zhu and Ramanan’s detector (ZR detector) attains higher accuracy
in most cases and can in particular deal with non-frontal head pose.

To use the ZR detector, add the face detection code to Matlab’s search
path and compile the c-code that is part of their package as follows::

addpath face-releasel.O-basic;
cd face-releasel.O-basic/
compile;

cd

The code should now be ready to detect faces. Please note that it oper-
ates on colour images. Listing below shows how to use the ZR detector
to detect faces:

Listing 2.2: Face detection

load face_pl46_small.mat;

% —— 5 levels for each octave
model.interval = 5;

% —— set up the threshold

model.thresh = min(-0.65, model.thresh);

0 N O U WwWw N =

% —— define the mapping from view-specific mixture id to
viewpoint

9 1if length (model.components)==13

10 posemap = 90:-15:-90;

11 elseif length (model.components)==18

12 posemap = [90:-15:15 0 0 0 0 0 O -15:-15:-901;

13 else

14 error (' Can not recognise this model’);

15 end

16

17 bs detect (cim, model, model.thresh);

18 bs = clipboxes (cim, Dbs);

19 bs nms_face (bs, 0.3);

20

21 figure, showboxes (cim, bs(l),posemap),title(’Highest scoring

detection’);

Please try out this code for yourself. Also try it out on a number of other
images, either from the example set or from random images downloaded from
the internet. Please note that the detector is quite slow, partly because of
the large number of poses tested. If you know beforehand what the expected
head pose in your images is, you could create new models for this with fewer
poses. This would make the detector faster.

Because this is quite a handful of code to type in all the time, we turned
it into a handy little function called zrdetectface, which is included in
this package:

load facepld46_small.mat;
bs = zrdetectface (cim, model, show);




Where show = 0 if you don’t want the results to be shown, which can
be handy if you are processing a large number of images (which we’ll do
later). Note that this function needs to be passed the face detection model
(e.g. the one stored in the file face_p146_small.mat). This avoids having to
load the model each time, which would slows things down. It would also put
constraints on the path to execute the code if we loaded the model inside
this function.

Face Registration

We want our appearance descriptors to encode changes in appearance caused
by facial expression, not by changes in head position or differences between
individuals. In the face registration step, we therefore try to normalise for
head pose by removing any in-plane head rotation.

Note that what we will do here is only a very basic approach to intra-
person registration, and will virtually not address inter-person registration
at all, besides a scaling based on the distance between the eyes. A slightly
more advanced approach would also take into account the location of other
major facial features such as the nose, mouth, and chin. Ideally you would
also normalise for out-of-plane head pose and to a greater extent for identity
than we do here, but that is for a large part still active research.

To normalise for the scale of the face what we will do here is simply
setting the distance between the eyes to a fixed value (100 pixels here). To
normalise for in-plane head pose we make sure that the angle between the
line that connects the eyes and the horizontal is equal to zero, which is a
roundabout way of saying we’re turning the face upright.

The following code should give us a registered face:

Listing 2.3: Face registration

1 function f = zrregisterface (im, bs)

2 %Register face using Zhu and Ramanan’s face detection results

3 $POST: this implementation will result in rotation artefacts,
but it makes

4 %the code more clear. Consider it an exercise to remove the
black

5 $triangular areas created by imrotate

6

7 % —— Get right and left eye coordinates from the boxes
8 re = [mean(bs.xy (15,1, 31)), mean(bs.xy(15,[2,41))1;
9 le = [mean(bs.xy (26, [1, 3])), mean(bs.xy(26,[2,4]1))1;
10 nose = [mean(bs.xy(1,[1, 3])), mean(bs.xy(1l,[2,4]1))];

11
12

oe

—— Scale the face

13 d = sqgrt(sum((re-le)."2));

14 s = 100/d;

15 f = imresize (im, s);

16 re = sxre; % — right/left eye coords in new space
17 le = sxle;

18 nose = round(sxnose);

19

20 % —— Center face on the nose

21 f = f(nose(2)-100:nose(2)+99, nose(l)-100:nose(1l)+99);
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22

23 % —-— Determine angle with horizontal and rotate image

24 alpha = atan2(-(le(2)-re(2)), le(l)-re(l));

25 f = imrotate(f, -alphax57.2958, ’crop’); % - Specify ’crop’

to not change point coords
26
27
28 end

Again, we’ve turned this into a function so you can call it directly:

f = zrregisterface(im, bs);

where im is a greyscale image, and bs is the Zhu and Ramanan face
detection result. f stores what we call the face box, it should be 200x200
pixels and have the eyes horizontally aligned. You can use the matlab built-
in function imshow to check if £ indeed contains the registered face.

The code in listing[2.3| uses only one point for the left eye, and one for the
right. This means that even small errors in the localisation of those points
will result in large registration errors. A simple but efficient improvement
would be to use more points for the registration. Note that you can only
use stable facial points for this, that is, facial points that don’t move due to
facial expression, only due to rigid head motion.

Local Gabor Binary Pattern Appearance Descriptors

Using the greyscale image directly is not optimal for a number of reasons,
such as high dimensionality, high Lambertian variation with illumination
changes, and a high sensitivity to small face misalignments. Finding the
right appearance descriptors is an active research field. One of the most
successful recent developments are Local Gabor Binary Patterns (LGBP)
for static faces [I}, 4], and its dynamic extension LGBP from Three Orthog-
onal Planes (LGBP-TOP), that can encode facial actions as well as static
appearance changes.
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Figure 2.1: Local Gabor Binary Patterns (LGBP)

For this tutorial we will be working with the static variant only, because
that only requires the data to be individual images. For TOP or other dy-



namic appearance descriptors, one would need consecutive images to create
images from. As Almaev & Valstar pointed out recently, the dynamic ap-
pearance descriptors are more accurate and more robust to alignment errors
[1], so if you're going to be serious about expression recognition I would
recommend you do use that. The LGBP and LGBP-TOP matlab imple-
mentations are provided with this tutorial. An overview of LGBP-TOP is
provided in Fig.

To provide some alignment robustness and reduce the dimensionality of
the problem, we split the face into 4 x 4 blocks, and obtain a histogram
of the descriptor output per block, which are in turn concatenated into a
single feature vector (see Fig. [2.1]). Given the face f, you can get this feature
vector as follows:

addpath LGBP-TOP;
gb = [2, 3, 3, 2.1, 0.55, 1.2];
x = LGBP (f, [4 4], gb);

Y
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Figure 2.2: Local Gabor Binary Patterns from Three Orthogonal Planes
(LGBP-TOP)

Note that the number of blocks to use is a design parameter, which
should be found using either cross-validation or a separate validation set.
The number of blocks is proportional to the number of features and therefore
to the amount of training data you have. If you have few training data, you
should keep the number of blocks low. For the same reason the number
of Gabor scales and orientations has been reduced to 2 and 3, respectively,
compared to the paper on LGBP-TOP.

Building a smile detector

We have now dealt with all the computer-vision aspects of our smile detector
- face detection, registration, and feature extraction. We now need to cre-
ate a machine learning model, or hypothesis, that can distinguish between
images with or without smiles.

To do so, we will use supervised learning, which means that we need to
collect a set of training data of positive examples (images with smiles) and
negative examples (images with any expression but smiles). Because the
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focus of this tutorial isn’t on machine learning, we will use a simple non-
parametric model, k-Nearest Neighbours (kNN). Of course, if you wish you
can replace this later with a more suitable classifier such as Support Vector
Machines (SVM).

But first, let’s collect all the positive and negative data. To do so, we
need to loop over all images in the Positive and Negative directories.

The following code does exactly that:

Listing 2.4: Collect dataset

1 function [x, y] = collectTrainingSet (d)
2 $PRE - d is the directory with training data, organised by
having all

3 %$positive examples in a sub-directory called ’Positive’, and
the negative

4 %$examples in a sub-directory called ’Negative’
5
6 dpos = [d, ’'/Positive/’];
7 dneg = [d, ’/Negative/’];
8
9 dir_pos = dir([dpos, "*.png’1]1);
10 dir_neg = dir([dneg, 'x.png’]);
11
12 % —— Load model for face detection
13 load face_pl46_small.mat;
14 fig = figure;
15 set (fig, ’'Position’, [216 335 1093 420]);
16
17 % —-— Set Gabor filter options:
18 gb = [2, 3, 3, 2.1, 0.55, 1.2]1;
19
20 n = 5664; % - Dimensionality of our features (hardcoded for
speed)
21 m = length(dir_pos) + length(dir_negqg);
22 x = zeros(m,n); % - Empty feature matrix
23 y = zeros(m,1l); % - Empty label matrix
24 j = 0;
25 for i = l:length(dir_pos)
26 j o= J+1;
27 fn = [dpos, dir_pos (i) .name];
28 cim = imread(fn);
29 subplot (1, 3, 1), imshow(cim), title(’Input image’);
30 im = rgb2gray(cim);
31 [bs, posemap] = zrdetectface(cim, model, 0); % — Don’
t visualise face det
32 subplot (1,3,2);
33 showboxes (cim, bs(1l),posemap),title(’Zhu & Ramanan face
detection’);
34 f = zrregisterface(im, bs);
35 subplot (1,3,3), imshow(f), title(’Registered image’);
36 hold on;
37 M = size(f,1);
38 N = size(f,2);
39 for k = 1:50:M
40 Ix = [1 NJ;
41 Iy = [k kI;
42 plot (Ix,Iy,’Color’,’w’,’LineStyle’,’'~-");

43 plot (Ix,Iy,’Color’,’k’,’LineStyle’,”:");



44
45
46
47
48
49
50
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52
53
54
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65
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67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91 end

end

for

end
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end

for k = 1:50:N
Ix = [k k];
Iy = [1 M];
plot (Ix,Iy,’Color’,’w’,’LineStyle’,’"-");
plot (Ix,Iy,’Color’,’k’,’"LineStyle’,’:");
end
hold off;
drawnow;
x(j,:) = LGBP (£, [4 4], gb);
y(3i,1) = 1;

i = l:length(dir_negqg)

j = 3+1;
fn = [dneg, dir_neg(i).name];
cim = imread(fn);

subplot (1, 3, 1), imshow(cim), title(’Input image’);

im = rgb2gray (cim);

bs = zrdetectface(cim, model, 0); % — Don’t wvisualise
face det

subplot (1,3,2);

showboxes (cim, bs(l),posemap),title(’Zhu & Ramanan face
detection’);

f = zrregisterface(im, bs);
subplot (1,3,3), imshow(f), title(’Registered image’);
hold on;
M = size(f,1);
N = size(f,2);
for k = 1:50:M
Ix [1 NJ;
Iy = [k k];

plot (Ix,Iy,’Color’,’w’,’LineStyle’,’'~-");
plot (Ix,Iy,’Color’,’k’,’LineStyle’,”:");
end

for k = 1:50:N
Ix = [k k];
Iy = [1 M];
plot (Ix,Iy,’Color’,’w’,’LineStyle’,’=");
plot (Ix,Iy,’Color’,’k’, " LineStyle’,’:");
end

hold off;

drawnow;

x(j,:) = LGBP(f, [4 4], gb);
y(3,1) = -1;

You will notice that the registration is not always perfect. This is because
the Zhu & Ramanan method, while being very good for face detection, isn’t

that well suited for facial point localisation.

A Dbetter method of doing

registration is by applying the Project-Out Cascaded Regression facial point
localisation technique of Tzimiropoulos [5]. Code for this is online available:
http://www.cs.nott.ac.uk/~yzt/code/PO_CR_code_vl.zip


http://www.cs.nott.ac.uk/~yzt/code/PO_CR_code_v1.zip
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The codes takes a rather long time to execute. For your convenience,

we’ve run it for you earlier, and included the results in this package as x.m
and y.m for the features and labels, respectively. Load them as follows:

load x;
load vy;

The training data is now stored in the variables x and y.

Let’s see how good our data is at predicting whether a smile is present or
not using kKNN. To do so, we are going to do leave-one-out cross validation.
In this process we will split our data in as many folds as we have instances,
and in every fold we ’train’ our system on all folds but the single fold (and
thus instance) that we will test on. We repeat this iteratively until all folds
are used as the test fold exactly once, and we thus have a prediction on all
our data, and all predictions on instances are obtained without observing
that particular instance during training.

The code in listing [2.5] shows how this is done.

Listing 2.5: Leave one out cross validation

1 function [p, c] = crosvalknn_loo(x, vy, k, P)

2 $IN: x: features

3% y: labels

4% k: number of nearest-neigbhours to use in kNN voting
5 % P: number of principal components to retain

6 $OUT: p: class predictions

7% c: classification rate

8

9 n = size(y,1);

10 p = zeros(size(y));

=
N

if "exist ('P’, ’'var’)

13 P = 5;

14 end

15

16 % —— Apply PCA to reduce dimensionality

17 [U, mu, "] = pca(x’'); % — Piotr’s toolbox uses inverse
definition of r/c

18 Xk = pcaApply(x’, U, mu, P);

19 Xk = Xk’;

20

21 % —— Start cross validation!

22 for i = 1:n

23 I = setdiff(l:n, 1i);

24 X1 = Xk(I, :);

25 Y1 = y(I);

26 X2 = Xk(i, :);

27 idx = knnsearch(X1,X2,’dist’,’cityblock’,’k’,k);

28 p(i) = sign(mean (Y1l (idx)));

29 end

30

31 p(p==0) = -1; % - Matlab says sign(0) == 0

32 c = sum(p == y)/n; % — Classification rate

33

34 end
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This will show, that with £k =1 and P = 9, we will get a classification
accuracy of 94%. Try this for yourself, varying for example the variable k and
P. Also inspect the code and observe how the dimensionality of the original
problem is reduced by applying Principal Component Analysis (PCA). PCA
is a simple linear method for dimensionality reduction that does not take
the labels of the data into account, purely the variance of the data. If you
are thinking of improving the approach we outlined here, replacing PCA
might be another thing you can do.

Note that we use Piotr’s machine learning toolbox for PCA, as it employs
a more intuitive way of using PCA than Matlab’s built-in functions. To use
it, you have to add the toolbox to the Matlab search path:

addpath ’Piotr Toolbox/toolbox/classify/’;
addpath ’"Piotr Toolbox/toolbox/matlab/’;

Discussion and further exercises

The leave-one-out cross validation results with the first five principal com-
ponents and kNN, £ = 1 sounds rather good, but really this result should
be viewed in the context of this tutorial. Firstly, a naive classifier would get
as high as 66% simply by predicting all instances to be of the negative class.
Secondly, if you looked at the data, you may have noticed that there are a
rather large number of images for each person included. This means that
it’s likely that for every test image there will be a close match in the training
data. If you want to see how well the approach followed here generalises to
unseen people, you will have to do a subject independent evaluation, e.g.
leave-one-subject-out.

Another simplification is that we use posed, large intensity smiles from
frontal faces. In reality, smiles vary in intensity, they are often mixed with
other Action Units, and head pose is rarely frontal. AU detection is still
very much an unsolved problem, as a recent challenge pointed out [6].

On the other hand, we used very little data to ’train’ our system, and
we used a very simple non-parametric classifier. Also, while the Zhu and
Ramanan face detector is very good at finding faces, it’s performance at
locating facial points is not that good, as you may have noticed (at least not
when using the particular model used here). You could switch to a better
facial point detector such as that published by Martinez et al. [3]. The
point detection results on this set are included in the folder. An interesting
exercise would be to use the facial points on this dataset and create a simple
geometric feature approach, where you employ the locations of the facial
points to detect a smile.

Another good exercise would be to use a more complex classifier that is
known to attain very good results, such as Support Vector Machines (SVMs).
Note that this is a parametric classifier, with a few parameters that need to
be optimised such as the slack variable C' and one or more kernel parameters,
depending on the kernel you choose. An important thing to bear in mind
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here is that to attain systems that can generalise well to unseen subjects it
is of paramount importance that the parameters are optimised in a subject-
independent manner as well. Usually this means creating cross-validation
loops where all data of a subject is included in a single fold. Unfortunately
popular machine learning tools such as WEKA do not allow you to do this,
which means that you will always get sub-optimal results if you choose to
use that.
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