
A Brief Introduction to
Functional Reactive Programming

and Yampa
FoP Away Day 17 January 2007

Henrik Nilsson

School of Computer Science and Information Technology

University of Nottingham, UK

FoPAD: Brief Introduction to FRP & Yampa – p.1/14



Functional Reactive Programming

What is Functional Reactive Programming (FRP)?
• Umbrella-term for functional approach to

programming reactive systems.

FoPAD: Brief Introduction to FRP & Yampa – p.2/14



Functional Reactive Programming

What is Functional Reactive Programming (FRP)?
• Umbrella-term for functional approach to

programming reactive systems.
• Originated from Functional Reactive

Animation (Fran) (Elliott & Hudak).

FoPAD: Brief Introduction to FRP & Yampa – p.2/14



Functional Reactive Programming

What is Functional Reactive Programming (FRP)?
• Umbrella-term for functional approach to

programming reactive systems.
• Originated from Functional Reactive

Animation (Fran) (Elliott & Hudak).
• Has evolved in a number of directions and

into different concrete implementations.

FoPAD: Brief Introduction to FRP & Yampa – p.2/14



Functional Reactive Programming

What is Functional Reactive Programming (FRP)?
• Umbrella-term for functional approach to

programming reactive systems.
• Originated from Functional Reactive

Animation (Fran) (Elliott & Hudak).
• Has evolved in a number of directions and

into different concrete implementations.
• Yampa: An FRP implementation in the form

of a Haskell combinator library , a.k.a.
Domain-Specific Embedded Language
(DSEL).

FoPAD: Brief Introduction to FRP & Yampa – p.2/14



Signal functions

Key concept: functions on signals .

FoPAD: Brief Introduction to FRP & Yampa – p.3/14



Signal functions

Key concept: functions on signals .

Intuition:

Signal α ≈ Time → α

x :: Signal T1
y :: Signal T2
SF α β ≈ Signal α → Signal β

f :: SF T1 T2

FoPAD: Brief Introduction to FRP & Yampa – p.3/14



Signal functions

Key concept: functions on signals .

Intuition:

Signal α ≈ Time → α

x :: Signal T1
y :: Signal T2
SF α β ≈ Signal α → Signal β

f :: SF T1 T2

Additionally, causality required: output at time t

must be determined by input on interval [0, t].
FoPAD: Brief Introduction to FRP & Yampa – p.3/14



Signal functions and state

Alternative view:

FoPAD: Brief Introduction to FRP & Yampa – p.4/14



Signal functions and state

Alternative view:

Signal functions can encapsulate state .

state(t) summarizes input history x(t′), t′ ∈ [0, t].

FoPAD: Brief Introduction to FRP & Yampa – p.4/14



Signal functions and state

Alternative view:

Signal functions can encapsulate state .

state(t) summarizes input history x(t′), t′ ∈ [0, t].

From this perspective, signal functions are:
• stateful if y(t) depends on x(t) and state(t)

• stateless if y(t) depends only on x(t)

FoPAD: Brief Introduction to FRP & Yampa – p.4/14



Programming with signal functions

In Yampa, systems are described by combining
signal functions (forming new signal functions).

FoPAD: Brief Introduction to FRP & Yampa – p.5/14



Programming with signal functions

In Yampa, systems are described by combining
signal functions (forming new signal functions).

For example, serial composition:

FoPAD: Brief Introduction to FRP & Yampa – p.5/14



Programming with signal functions

In Yampa, systems are described by combining
signal functions (forming new signal functions).

For example, serial composition:

A combinator can be defined that captures this
idea:

(≫) :: SF a b → SF b c → SF a c

FoPAD: Brief Introduction to FRP & Yampa – p.5/14



Programming with signal functions (2)

What about larger networks?
How many combinators are needed?

FoPAD: Brief Introduction to FRP & Yampa – p.6/14



Programming with signal functions (2)

What about larger networks?
How many combinators are needed?

John Hughes’s Arrow framework provides a
good answer!

FoPAD: Brief Introduction to FRP & Yampa – p.6/14



The Arrow framework (1)

These diagrams convey the general idea:

arrf
≫

firstf loopf

first :: SF a b → SF (a, c) (b, c)

loop :: SF (a, c) (b, c)→ SF a b

FoPAD: Brief Introduction to FRP & Yampa – p.7/14



The Arrow framework (2)

Some derived combinators:

secondf
f ∗∗∗ g

f&&&g
FoPAD: Brief Introduction to FRP & Yampa – p.8/14



Example: Constructing a network

FoPAD: Brief Introduction to FRP & Yampa – p.9/14



Example: Constructing a network

FoPAD: Brief Introduction to FRP & Yampa – p.9/14



Example: Constructing a network

loop (arr (λ(x , y)→ ((x , y), x ))

≫ (fst f

≫ (arr (λ(x , y)→ (x , (x , y))) ≫ (g ∗∗∗ h))))

FoPAD: Brief Introduction to FRP & Yampa – p.9/14



The Arrow notation

FoPAD: Brief Introduction to FRP & Yampa – p.10/14



The Arrow notation

FoPAD: Brief Introduction to FRP & Yampa – p.10/14



The Arrow notation

proc x → do

rec

u ← f −≺ (x , v)

y ← g−≺ u

v ← h−≺ (u, x )

returnA−≺ y

FoPAD: Brief Introduction to FRP & Yampa – p.10/14



How does it work?

• Essentially:

newtype SF a b =

SF (DeltaTime → a → (SF a b, b))

FoPAD: Brief Introduction to FRP & Yampa – p.11/14



How does it work?

• Essentially:

newtype SF a b =

SF (DeltaTime → a → (SF a b, b))

• A top-level loop, reactimate , drives the
computation.

FoPAD: Brief Introduction to FRP & Yampa – p.11/14



How does it work?

• Essentially:

newtype SF a b =

SF (DeltaTime → a → (SF a b, b))

• A top-level loop, reactimate , drives the
computation.

Note that the system representation in principle
is reconstructed at every time step.

FoPAD: Brief Introduction to FRP & Yampa – p.11/14



Related languages and paradigms

FRP/Yampa related to:
• Synchronous dataflow languages, like

Esterel, Lucid Synchrone.

FoPAD: Brief Introduction to FRP & Yampa – p.12/14



Related languages and paradigms

FRP/Yampa related to:
• Synchronous dataflow languages, like

Esterel, Lucid Synchrone.
• Modeling languages, like Simulink, Modelica.

FoPAD: Brief Introduction to FRP & Yampa – p.12/14



What makes Yampa interesting?

• First class reactive components (signal
functions).

FoPAD: Brief Introduction to FRP & Yampa – p.13/14



What makes Yampa interesting?

• First class reactive components (signal
functions).

• Supports hybrid (mixed continuous and
discrete time) systems: option type Event
represents discrete-time signals.

FoPAD: Brief Introduction to FRP & Yampa – p.13/14



What makes Yampa interesting?

• First class reactive components (signal
functions).

• Supports hybrid (mixed continuous and
discrete time) systems: option type Event
represents discrete-time signals.

• Supports dynamic system structure through
switching combinators :

FoPAD: Brief Introduction to FRP & Yampa – p.13/14



Example: Space Invaders

FoPAD: Brief Introduction to FRP & Yampa – p.14/14


	Functional Reactive Programming
	Signal functions
	Signal functions and state
	Programming with signal functions
	Programming with signal functions (2)
	The Arrow framework (1)
	The Arrow framework (2)
	Example: Constructing a network
	The Arrow notation
	How does it work?
	Related languages and paradigms
	What makes Yampa interesting?
	Example: Space Invaders

