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Finding People and Information (1)

• Henrik Nilsson
Room B47, Computer Science Building
e-mail: nhn@cs.nott.ac.uk
tel: 0115 846 6506

• Teaching Assistants:
- Ondrej Rypacek

e-mail: oxr@cs.nott.ac.uk
- Wouter Swierstra (head TA)

e-mail: wss@cs.nott.ac.uk
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Finding People and Information (2)

• Main module web page:
www.cs.nott.ac.uk/~nhn/G51MAL

• Coursework/Tutorial web page:
www.cs.nott.ac.uk/~wss/teaching/mal
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Contacting Me

• I will be available immediately after each
lecture for course-related matters.

• Make an appointment if necessary.
• Please keep e-mail traffic to a minimum.
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Aims of the Course
• To familiarize you with key Computer Science

concepts in central areas like
- Automata Theory
- Formal Languages
- Models of Computation
- Complexity Theory

• To equip you with tools with wide applicability
in the fields of CS and IT, e.g. for
- Complier Construction
- Text Processing
- XML
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Organization

• Lectures: Two per week.
• Tutorials: Weekly in small (≈ 15 students)

groups.
You are expected to participate regularly!

• Coursework: Weekly compulsory exercises.
Marked and then discussed during tutorials.

• Assessment: 2 hour exam in May/June,
100% of the mark.
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Literature
• Main reference: Hopcroft, Motwani, & Ullman.

Introduction to Automata Theory, Languages,
and Computation, 2nd edition, Addison
Wesley, 2001.

• Dr. Thorsten Altenkirch’s G51MAL updated
lecture notes.

• Your own notes from the lectures!
• Possibly a new version of the lecture notes

later.
• Supplementary material, e.g. slides, sample

program code.
G51MALMachines and Their LanguagesLecture 1 – p.7/38

Literature (2)
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Literature (3)

If you are curious about an important application
area you might want to check out:

Alfred V Aho, Ravi Sethi, Jeffrey D. Ullman.
Compilers — Principles, Techniques, and
Tools, Addison-Wesley, 1986.
(The “Dragon Book”.)
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Literature (4)
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Content

1. Mathematical models of computation, such
as:
- Finite automata
- Pushdown automata
- Turing machines

2. How to specify formal languages?
- Regular expressions
- Context free grammars
- Context sensitive grammars

3. The relation between 1 and 2.
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Why Study Automata Theory?

Finite automata are a useful model for important
kinds of hardware and software:

• Software for designing and checking digital
circuits.

• Lexical analyzer of compilers.
• Finding words and patterns in large bodies of

text, e.g. in web pages.
• Verification of systems with finite number of

states, e.g. communication protocols.
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Why Study Automata Theory? (2)

The study of Finite Automata and Formal
Languages are intimately connected. Methods
for specifying formal languages are very
important in many areas of CS, e.g.:

• Context Free Grammars are very useful
when designing software that processes data
with recursive structure, like the parser in a
compiler.

• Regular Expressions are very useful for
specifying lexical aspects of programming
languages and search patterns.
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Why Study Automata Theory? (3)

Automata are essential for the study of the limits
of computation. Two issues:

• What can a computer do at all? (Decidability)
• What can a computer do efficiently?

(Intractability)
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Example: Regular Expressions (1)

Suppose you need to locate a piece of text in a
directory containing a large number of files of
various kinds. You recall only that the text
mentions the year 1900-something.

The following UNIX-command will do the trick:

grep "19[0-9][0-9]" *.txt
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Example: Regular Expressions (2)

The result is a list of names of files containing
text matching the pattern, together with the
matching text lines:

history.txt: In 1933 it became
notes.txt: later on, around 1995,
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Example: The Halting Problem (1)

Consider the following program. Does it
terminate for all values of n ≥ 1?

while (n > 1) {
if even(n) {

n = n / 2;
} else {

n = n * 3 + 1;
}

}
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Example: The Halting Problem (2)

Not as easy to answer as it might first seem.

Say we start with n = 7, for example:

7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5,
16, 8, 4, 2, 1

In fact, for all numbers that have been tried
(a lot!), it does terminate . . .

. . . but no one has ever been able to prove that it
always terminates!
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Example: The Halting Problem (3)

Then the following important decidability result
should perhaps not come as a total surprise:

It is impossible to write a program that
decides if another, arbitrary, program
terminates (halts) or not.

What might be surprising is that it is possible to
prove such a result. This was first done by the
British mathematician Alan Turing.
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Alan Turing (1)

Alan Turing (1912–1954):
• Introduced an abstract model of computation,

Turing Machines, to give a precice definition
of what problems that can be solved by a
computer.

• Instrumental in the success of British code
breaking efforts during WWII.

• Thorsten recommends Andrew Hodges
biography Alan Turing: the Enigma.
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Alan Turing (2)
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Noam Chomsky (1)

Noam Chomsky (1928–):
• American linguist who introduced Context

Free Grammars in an attempt to describe
natural languages formally.

• Also introduced the Chomsky Hierarchy
which classifies grammars and languages
and their descriptive power.

• Chomsky is also widely known for his
controversial political views and his criticism
of the foreign policy of U.S. governments.
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Noam Chomsky (2)
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The Chomsky Hierarchy

languages

finite automata

pushdown automata

Type 2 or context free

   
 

Type 3 or
regular languages

Type 1 or context sensitive 
languages

Decidable languages
Turing machines

Type 0 or recursively enumerable languages

All languages
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Languages

The terms language and word are used in a
strict technical sense in this course:

• A language is a set of words.
• A word is a sequence (or string) of symbols.

ε denotes the empty word, the sequence of zero
symbols.
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Symbols and Alphabets

What is a symbol, then?

Anything, but it has to come from an alphabet Σ
which is a finite set.

A common (and important) instance is
Σ = {0, 1}.

ε, the empty word, is never an symbol of an
alphabet.
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Alphabet, Word, and Language

alphabet Σ = {a, b}

words over Σ ε, a, b, aa, ab, ba, bb,

aaa, aab, aba, abb, baa, bab, . . .

languages ∅, {ε}, {a}, {b}, {a, aa},

{ε, a, aa, aaa},

{an|n ≥ 0},

{anbn|n ≥ 0, n even}

Note the distinction between ε, ∅, and {ε}!
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All Words over an Alphabet (1)

Given an alphabet Σ we define the set Σ∗ as set
of words (or sequences) over Σ:

• The empty word ε ∈ Σ∗.
• given a symbol x ∈ Σ and a word w ∈ Σ∗,

xw ∈ Σ∗.
• These are all elements in Σ∗.

This is called an inductive definition.
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All Words over an Alphabet (2)
Example: Given Σ = {0, 1}, some elements of Σ∗

are
• ε (the empty word)
• 0, 1

• 00, 10, 01, 11

• 000, 100, 010, 110, 010, 110, 011, 111

• . . .

We are just applying the inductive definition.

Note: although there are infinitely many words in
Σ∗, each word has a finite length!
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Concatenation of Words (1)

An important operation on Σ∗ is concatenation:

given w, v ∈ Σ∗, their concatenation
wv ∈ Σ∗.

For example, concatenation of ab and ba yields
abba.

This operation can be defined by primitive
recursion:

εv = v

(xw)v = x(wv)
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Concatenation of Words (2)

Concatenation is associative and has unit ε:

u(vw) = (uv)w

εu = u = uε

where u, v, w are words.
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Languages Revisited

The notion of a language L of a set of words over
an alphabet Σ can now be made precise:

• L ⊆ Σ∗, or equivalently
• L ∈ P(Σ∗).
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Examples of Languages (1)

Some examples of languages:
• The set {0010, 00000000, ε} is a language over

Σ = {0, 1}.
This is an example of a finite language.

• The set of words with odd length over
Σ = {1}.

• The set of words that contain the same
number of 0s and 1s is a language over
Σ = {0, 1}.

G51MALMachines and Their LanguagesLecture 1 – p.33/38

Examples of Languages (2)

• The set of words which contain the same
number of 0s and 1s modulo 2 (i.e. both are
even or odd) is a language over Σ = {0, 1}.

• The set of palindromes using the English
alphabet, e.g. words which read the same
forwards and backwards like abba. This is a
language over {a, b, . . . , z}.

• The set of correct Java programs. This is a
language over the set of UNICODE
characters.
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Examples of Languages (3)

• The set of programs that, if executed
successfully on a Windows machine, prints
the text “Hello World!” in a window. This is a
language over Σ = {0, 1}.
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Concatenation of Languages (1)

Concatenation of words is extended to
languages by:

MN = {uv |u ∈ M ∧ v ∈ N}

Example:

M = {ε, a, aa}

N = {b, c}

MN = {uv |u ∈ {ε, a, aa} ∧ v ∈ {b, c}}

= {εb, εc, ab, ac, aab, aac}

= {b, c, ab, ac, aab, aac}
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Concatenation of Languages (2)

• Concatenation of languages is associative:

L(MN) = (LM)N

• Concatenation of languages has zero ∅:

L∅ = ∅ = ∅L

• Concatenation of languages has unit {ε}:

L{ε} = L = {ε}L
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Concatenation of Languages (3)

• Concatenation distributes through set union:

L(M ∪ N) = LM ∪ LN

(L ∪ M)N = LN ∪ MN

But note e.g. L(M ∩ N) 6= LM ∩ LN !
For example, with L = {ε, a}, M = {ε}, N = {a},
we have

L(M ∩ N) = L∅ = ∅

LM ∩ LN = {ε, a} ∩ {a, aa} = {a}
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