
G51MAL
Machines and Their Languages

Lecture 1
Administrative Details and Introduction

Henrik Nilsson

University of Nottingham, UK

G51MALMachines and Their LanguagesLecture 1 – p.1/38

Finding People and Information (1)

• Henrik Nilsson
Room B47, Computer Science Building
e-mail: nhn@cs.nott.ac.uk
tel: 0115 846 6506

• Teaching Assistants:
- Ondrej Rypacek

e-mail: oxr@cs.nott.ac.uk
- Wouter Swierstra (head TA)

e-mail: wss@cs.nott.ac.uk

G51MALMachines and Their LanguagesLecture 1 – p.2/38

Finding People and Information (2)

• Main module web page:
www.cs.nott.ac.uk/~nhn/G51MAL

• Coursework/Tutorial web page:
www.cs.nott.ac.uk/~wss/teaching/mal

G51MALMachines and Their LanguagesLecture 1 – p.3/38

Contacting Me

• I will be available immediately after each
lecture for course-related matters.

• Make an appointment if necessary.
• Please keep e-mail traffic to a minimum.

G51MALMachines and Their LanguagesLecture 1 – p.4/38

Aims of the Course
• To familiarize you with key Computer Science

concepts in central areas like
- Automata Theory
- Formal Languages
- Models of Computation
- Complexity Theory

• To equip you with tools with wide applicability
in the fields of CS and IT, e.g. for
- Complier Construction
- Text Processing
- XML

G51MALMachines and Their LanguagesLecture 1 – p.5/38

Organization

• Lectures: Two per week.
• Tutorials: Weekly in small (≈ 15 students)

groups.
You are expected to participate regularly!

• Coursework: Weekly compulsory exercises.
Marked and then discussed during tutorials.

• Assessment: 2 hour exam in May/June,
100% of the mark.

G51MALMachines and Their LanguagesLecture 1 – p.6/38

Literature
• Main reference: Hopcroft, Motwani, & Ullman.

Introduction to Automata Theory, Languages,
and Computation, 2nd edition, Addison
Wesley, 2001.

• Dr. Thorsten Altenkirch’s G51MAL updated
lecture notes.

• Your own notes from the lectures!
• Possibly a new version of the lecture notes

later.
• Supplementary material, e.g. slides, sample

program code.
G51MALMachines and Their LanguagesLecture 1 – p.7/38

Literature (2)

G51MALMachines and Their LanguagesLecture 1 – p.8/38

Literature (3)

If you are curious about an important application
area you might want to check out:

Alfred V Aho, Ravi Sethi, Jeffrey D. Ullman.
Compilers — Principles, Techniques, and
Tools, Addison-Wesley, 1986.
(The “Dragon Book”.)

G51MALMachines and Their LanguagesLecture 1 – p.9/38

Literature (4)

G51MALMachines and Their LanguagesLecture 1 – p.10/38

Content

1. Mathematical models of computation, such
as:
- Finite automata
- Pushdown automata
- Turing machines

2. How to specify formal languages?
- Regular expressions
- Context free grammars
- Context sensitive grammars

3. The relation between 1 and 2.
G51MALMachines and Their LanguagesLecture 1 – p.11/38

Why Study Automata Theory?

Finite automata are a useful model for important
kinds of hardware and software:

• Software for designing and checking digital
circuits.

• Lexical analyzer of compilers.
• Finding words and patterns in large bodies of

text, e.g. in web pages.
• Verification of systems with finite number of

states, e.g. communication protocols.

G51MALMachines and Their LanguagesLecture 1 – p.12/38

Why Study Automata Theory? (2)

The study of Finite Automata and Formal
Languages are intimately connected. Methods
for specifying formal languages are very
important in many areas of CS, e.g.:

• Context Free Grammars are very useful
when designing software that processes data
with recursive structure, like the parser in a
compiler.

• Regular Expressions are very useful for
specifying lexical aspects of programming
languages and search patterns.

G51MALMachines and Their LanguagesLecture 1 – p.13/38

Why Study Automata Theory? (3)

Automata are essential for the study of the limits
of computation. Two issues:

• What can a computer do at all? (Decidability)
• What can a computer do efficiently?

(Intractability)

G51MALMachines and Their LanguagesLecture 1 – p.14/38

Example: Regular Expressions (1)

Suppose you need to locate a piece of text in a
directory containing a large number of files of
various kinds. You recall only that the text
mentions the year 1900-something.

The following UNIX-command will do the trick:

grep "19[0-9][0-9]" *.txt

G51MALMachines and Their LanguagesLecture 1 – p.15/38

Example: Regular Expressions (2)

The result is a list of names of files containing
text matching the pattern, together with the
matching text lines:

history.txt: In 1933 it became
notes.txt: later on, around 1995,

G51MALMachines and Their LanguagesLecture 1 – p.16/38

Example: The Halting Problem (1)

Consider the following program. Does it
terminate for all values of n ≥ 1?

while (n > 1) {
if even(n) {

n = n / 2;
} else {

n = n * 3 + 1;
}

}

G51MALMachines and Their LanguagesLecture 1 – p.17/38

Example: The Halting Problem (2)

Not as easy to answer as it might first seem.

Say we start with n = 7, for example:

7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5,
16, 8, 4, 2, 1

In fact, for all numbers that have been tried
(a lot!), it does terminate . . .

. . . but no one has ever been able to prove that it
always terminates!

G51MALMachines and Their LanguagesLecture 1 – p.18/38

Example: The Halting Problem (3)

Then the following important decidability result
should perhaps not come as a total surprise:

It is impossible to write a program that
decides if another, arbitrary, program
terminates (halts) or not.

What might be surprising is that it is possible to
prove such a result. This was first done by the
British mathematician Alan Turing.

G51MALMachines and Their LanguagesLecture 1 – p.19/38

Alan Turing (1)

Alan Turing (1912–1954):
• Introduced an abstract model of computation,

Turing Machines, to give a precice definition
of what problems that can be solved by a
computer.

• Instrumental in the success of British code
breaking efforts during WWII.

• Thorsten recommends Andrew Hodges
biography Alan Turing: the Enigma.

G51MALMachines and Their LanguagesLecture 1 – p.20/38

Alan Turing (2)

G51MALMachines and Their LanguagesLecture 1 – p.21/38

Noam Chomsky (1)

Noam Chomsky (1928–):
• American linguist who introduced Context

Free Grammars in an attempt to describe
natural languages formally.

• Also introduced the Chomsky Hierarchy
which classifies grammars and languages
and their descriptive power.

• Chomsky is also widely known for his
controversial political views and his criticism
of the foreign policy of U.S. governments.

G51MALMachines and Their LanguagesLecture 1 – p.22/38

Noam Chomsky (2)

G51MALMachines and Their LanguagesLecture 1 – p.23/38

The Chomsky Hierarchy

languages

finite automata

pushdown automata

Type 2 or context free

Type 3 or
regular languages

Type 1 or context sensitive
languages

Decidable languages
Turing machines

Type 0 or recursively enumerable languages

All languages

G51MALMachines and Their LanguagesLecture 1 – p.24/38

Languages

The terms language and word are used in a
strict technical sense in this course:

• A language is a set of words.
• A word is a sequence (or string) of symbols.

ε denotes the empty word, the sequence of zero
symbols.

G51MALMachines and Their LanguagesLecture 1 – p.25/38

Symbols and Alphabets

What is a symbol, then?

Anything, but it has to come from an alphabet Σ
which is a finite set.

A common (and important) instance is
Σ = {0, 1}.

ε, the empty word, is never an symbol of an
alphabet.

G51MALMachines and Their LanguagesLecture 1 – p.26/38

Alphabet, Word, and Language

alphabet Σ = {a, b}

words over Σ ε, a, b, aa, ab, ba, bb,

aaa, aab, aba, abb, baa, bab, . . .

languages ∅, {ε}, {a}, {b}, {a, aa},

{ε, a, aa, aaa},

{an|n ≥ 0},

{anbn|n ≥ 0, n even}

Note the distinction between ε, ∅, and {ε}!

G51MALMachines and Their LanguagesLecture 1 – p.27/38

All Words over an Alphabet (1)

Given an alphabet Σ we define the set Σ∗ as set
of words (or sequences) over Σ:

• The empty word ε ∈ Σ∗.
• given a symbol x ∈ Σ and a word w ∈ Σ∗,

xw ∈ Σ∗.
• These are all elements in Σ∗.

This is called an inductive definition.

G51MALMachines and Their LanguagesLecture 1 – p.28/38

All Words over an Alphabet (2)
Example: Given Σ = {0, 1}, some elements of Σ∗

are
• ε (the empty word)
• 0, 1

• 00, 10, 01, 11

• 000, 100, 010, 110, 010, 110, 011, 111

• . . .

We are just applying the inductive definition.

Note: although there are infinitely many words in
Σ∗, each word has a finite length!

G51MALMachines and Their LanguagesLecture 1 – p.29/38

Concatenation of Words (1)

An important operation on Σ∗ is concatenation:

given w, v ∈ Σ∗, their concatenation
wv ∈ Σ∗.

For example, concatenation of ab and ba yields
abba.

This operation can be defined by primitive
recursion:

εv = v

(xw)v = x(wv)

G51MALMachines and Their LanguagesLecture 1 – p.30/38

Concatenation of Words (2)

Concatenation is associative and has unit ε:

u(vw) = (uv)w

εu = u = uε

where u, v, w are words.

G51MALMachines and Their LanguagesLecture 1 – p.31/38

Languages Revisited

The notion of a language L of a set of words over
an alphabet Σ can now be made precise:

• L ⊆ Σ∗, or equivalently
• L ∈ P(Σ∗).

G51MALMachines and Their LanguagesLecture 1 – p.32/38

Examples of Languages (1)

Some examples of languages:
• The set {0010, 00000000, ε} is a language over

Σ = {0, 1}.
This is an example of a finite language.

• The set of words with odd length over
Σ = {1}.

• The set of words that contain the same
number of 0s and 1s is a language over
Σ = {0, 1}.

G51MALMachines and Their LanguagesLecture 1 – p.33/38

Examples of Languages (2)

• The set of words which contain the same
number of 0s and 1s modulo 2 (i.e. both are
even or odd) is a language over Σ = {0, 1}.

• The set of palindromes using the English
alphabet, e.g. words which read the same
forwards and backwards like abba. This is a
language over {a, b, . . . , z}.

• The set of correct Java programs. This is a
language over the set of UNICODE
characters.

G51MALMachines and Their LanguagesLecture 1 – p.34/38

Examples of Languages (3)

• The set of programs that, if executed
successfully on a Windows machine, prints
the text “Hello World!” in a window. This is a
language over Σ = {0, 1}.

G51MALMachines and Their LanguagesLecture 1 – p.35/38

Concatenation of Languages (1)

Concatenation of words is extended to
languages by:

MN = {uv |u ∈ M ∧ v ∈ N}

Example:

M = {ε, a, aa}

N = {b, c}

MN = {uv |u ∈ {ε, a, aa} ∧ v ∈ {b, c}}

= {εb, εc, ab, ac, aab, aac}

= {b, c, ab, ac, aab, aac}

G51MALMachines and Their LanguagesLecture 1 – p.36/38

Concatenation of Languages (2)

• Concatenation of languages is associative:

L(MN) = (LM)N

• Concatenation of languages has zero ∅:

L∅ = ∅ = ∅L

• Concatenation of languages has unit {ε}:

L{ε} = L = {ε}L

G51MALMachines and Their LanguagesLecture 1 – p.37/38

Concatenation of Languages (3)

• Concatenation distributes through set union:

L(M ∪ N) = LM ∪ LN

(L ∪ M)N = LN ∪ MN

But note e.g. L(M ∩ N) 6= LM ∩ LN !
For example, with L = {ε, a}, M = {ε}, N = {a},
we have

L(M ∩ N) = L∅ = ∅

LM ∩ LN = {ε, a} ∩ {a, aa} = {a}
G51MALMachines and Their LanguagesLecture 1 – p.38/38

	Finding People and Information (1)
	Finding People and Information (2)
	Contacting Me
	Aims of the Course
	Organization
	Literature
	Literature (2)
	Literature (3)
	Literature (4)
	Content
	Why Study Automata Theory?
	Why Study Automata Theory? (2)
	Why Study Automata Theory? (3)
	Example: Regular Expressions (1)
	Example: Regular Expressions (2)
	Example: The Halting Problem (1)
	Example: The Halting Problem (2)
	Example: The Halting Problem (3)
	Alan Turing (1)
	Alan Turing (2)
	Noam Chomsky (1)
	Noam Chomsky (2)
	The Chomsky Hierarchy
	Languages
	Symbols and Alphabets
	Alphabet, Word, and Language
	All Words over an Alphabet (1)
	All Words over an Alphabet (2)
	Concatenation of Words (1)
	Concatenation of Words (2)
	Languages Revisited
	Examples of Languages (1)
	Examples of Languages (2)
	Examples of Languages (3)
	Concatenation of Languages (1)
	Concatenation of Languages (2)
	Concatenation of Languages (3)

