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1 Introduction

Most references refer to the course text [HMU01]. Please, note that the 2nd
edition is quite different to the first one, which appeared in 1979 and is a classical
reference on the subject.
I have also been using [Sch99] for those notes, but note that this book is written
in German.
The on-line version of this text contains some hyperlinks to webpages that con-
tain additional information.

1.1 Examples on syntax

In PR1 and PR2 you are learning the language JAVA. Which of the following
programs are syntactically correct, i.e. will be accepted by the JAVA compiler
without error messages?

Hello-World.java

public class Hello-World {

public static void main(String argc[3]) {

System:out.println(’Hello World’);

}

}

A.java
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class A {

class B {

void C () {

{} ; {{}}

}

}

}

I hope that you are able to spot all the errors in the first program. It may be
actually surprising but the 2nd (strange looking) program is actually correct.
How do we know whether a program is syntactically correct? We would hope
that this doesn’t depend on the compiler we are using.

1.2 What is this course about?

1. Mathematical models of computation, such as:

• Finite automata,

• Pushdown automata,

• Turing machines

2. How to specify formal languages?

• Regular expressions

• Context free grammars

• Context sensitive grammars

3. The relation between 1. and 2.

1.3 Applications

• Regular expressions

Regular expressions are a convenient ways to express patterns (i.e. for
search). There are a number of tools that use regular expressions:

– grep pattern matching program (UNIX)

– sed stream editor (UNIX)

– lex A generator for lexical analyzers (UNIX)

• Grammars for programming languages.

The appendix of [GJSB00] contains a context free grammar specifying the
syntax of JAVA.

YACC is a tool that can be used to generate a C program (a parser)
from a grammar. Parser generators now also exist for other languages,
like Java CUP for Java.

• Specifying protocols

See section 2.1 (pp 38 - 45) contains a simple example of how a protocol
for electronic cash can be specified and analyzed using finite automata.
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1.4 History

1.4.1 The Chomsky Hierarchy

languages

finite automata

pushdown automata

Type 2 or context free

   
 

Type 3 or
regular languages

Type 1 or context sensitive 
languages

Decidable languages
Turing machines

Type 0 or recursively enumerable languages

All languages

Noam Chomsky introduced the Chomsky hierarchy that classifies grammars and
languages. This hierarchy can be amended by different types of machines (or
automata) that can recognize the appropriate class of languages.
Chomsky is also well known for his unusual views on society and politics.
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1.4.2 Turing machines

Alan Turing (1912-1954) introduced an abstract model of computation, which
we call Turing machines, to give a precise definition that problems can be solved
by a computer. All the machines we are introducing can be viewed as restricted
versions of Turing machines.
I recommend Andrew Hodges biography Alan Turing: the Enigma.

1.5 Languages

In this course we will use the terms language and word different than in everyday
language:

• A language is a set of words.

• A word is a sequence of symbols.

This leaves us with the question: what is a symbol? The answer is: anything,
but it has to come from an alphabet Σ that is a finite set. A common (and
important) instance is Σ = {0, 1}.
More mathematically we say: Given an alphabet Σ we define the set Σ∗ as set
of words (or sequences) over Σ: the empty word ε ∈ Σ∗ and given a symbol
x ∈ Σ and a word w ∈ Σ∗ we can form a new word xw ∈ Σ∗. These are all the
ways elements on Σ∗ can be constructed (this is called an inductive definition).
E.g. in the example Σ = {0, 1}, typical elements of Σ∗ are 0010, 00000000,ε.
Note, that we only write ε if it appears on its own, instead of 00ε we just write
00. It is also important to realize that although there are infinitely many words,
each word has a finite length.
An important operation on Σ∗ is concatenation. Confusingly, this is denoted
by an invisible operator: given w, v ∈ Σ∗ we can construct a new word wv ∈
Σ∗ simply by concatenating the two words. We can define this operation by
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primitive recursion:

εv = v

(xw)v = x(wv)

A language L is a set of words, hence L ⊆ Σ∗ or equivalently L ∈ P(Σ∗)1. Here
are some informal examples of languages:

• The set {0010, 00000000, ε} is a language over Σ = {0, 1}. This is an
example of a finite language.

• The set of words with odd length over Σ = {1}.

• The set of words that contain the same number of 0s and 1s is a language
over Σ = {0, 1}.

• The set of words that contain the same number of 0s and 1s modulo 2 (i.e.
both are even or odd) is a language over Σ = {0, 1}.

• The set of palindromes using the English alphabet, e.g. words that read
the same forwards and backwards like abba. This is a language over
{a, b, . . . , z}.

• The set of correct Java programs. This is a language over the set of
UNICODE “characters” (which correspond to numbers between 0 and
17 · 216 − 1, less some invalid subranges, 1112062 valid encodings in all).

• The set of programs that, if executed on a Windows machine, prints the
text “Hello World!” in a window. This is a language over Σ = {0, 1}.

2 Finite Automata

Finite automata correspond to a computer with a fixed finite amount of mem-
ory2. We will introduce deterministic finite automata (DFA) first and then move
to nondeterministic finite automata (NFA). An automaton will accept certain
words (sequences of symbols of a given alphabet Σ) and reject others. The set
of accepted words is called the language of the automaton. We will show that
the class of languages that are accepted by DFAs and NFAs is the same.

1 Given a set A, P(A) is the powerset of A; that is, the set of all possible subsets of A. For
example, if A = {a, b}, then P(A) = { ∅, {a}, {b}, {a, b} }. The number of elements |A| of a
set A, its cardinality, and the number of elements in its power set are related by |P(A)| = 2|A|.
Hence powerset.

2 However, that does not mean that finite automata are a good model of general purpose
computers. A computer with n bits of memory has 2n possible states. That is an absolutely
enormous number even for very modest memory sizes, say 1024 bits or more, meaning that
describing a computer using finite automata quickly becomes infeasible. We will encounter
a better model of computers later, the Turing Machines. Conceptually, they have infinite
memory, which may seem overly optimistic, but what that really means is that we consider
the memory to be large enough for the task at hand. Exactly how much memory that is
needed becomes a separate, orthogonal, issue, a separation of concerns that has proved to be
very fruitful. See also Hopcroft et al. [HMU01, p. 315] for a deeper discussion of this.
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2.1 Deterministic finite automata

2.1.1 What is a DFA?

A deterministic finite automaton (DFA) A = (Q, Σ, δ, q0, F ) is given by:

1. A finite set of states Q,

2. A finite set of input symbols Σ,

3. A transition function δ ∈ Q × Σ → Q,

4. An initial state q0 ∈ Q,

5. A set of accepting states F ⊆ Q.

As an example consider the following automaton

D = ({q0, q1, q2}, {0, 1}, δD, q0, {q2})

where

δD = {((q0, 0), q1), ((q0, 1), q0), ((q1, 0), q1), ((q1, 1), q2), ((q2, 0), q2), ((q2, 1), q2)}

The DFA may be more conveniently represented by a transition table:

0 1

→ q0 q1 q0

q1 q1 q2

∗q2 q2 q2

The table represents the function δ, i.e. to find the value of δ(q, x) we have to
look at the row labelled q and the column labelled x. The initial state is marked
by an → and all final states are marked by ∗.
Yet another, optically more inspiring, alternative are transition diagrams:

q0 q1 q2

1

0

0

1
0,1

There is an arrow into the initial state and all final states are marked by double
rings. If δ(q, x) = q′ then there is an arrow from state q to q′ that is labelled x.
We write Σ∗ for the set of words (i.e. sequences) over the alphabet Σ. This
includes the empty word that is written ε. I.e.

{0, 1}∗ = {ε, 0, 1, 00, 01, 10, 11, 000, . . .}

2.1.2 The language of a DFA

To each DFA A we associate a language L(A) ⊆ Σ∗. To see whether a word
w ∈ L(A) we put a marker in the initial state and when reading a symbol
forward the marker along the edge marked with this symbol. When we are in
an accepting state at the end of the word then w ∈ L(A), otherwise w /∈ L(A).
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In the example above we have that 0 /∈ L(D),101 ∈ L(D) and 110 /∈ L(D).
Indeed, we have

L(D) = {w | w contains the substring 01}

To be more precise we give a formal definition of L(A). First we define the

extended transition function δ̂ ∈ Q × Σ∗ → Q. Intuitively, δ̂(q, w) = q′ if
starting from state q we end up in state q′ when reading the word w. Formally,
δ̂ is defined by primitive recursion:

δ̂(q, ε) = q (1)

δ̂(q, xw) = δ̂(δ(q, x), w) (2)

Here xw stands for a non empty word whose first symbol is x and the rest is w.
E.g. if we are told that xw = 010 then this entails that x = 0 and w = 10. w
may be empty, i.e. xw = 0 entails x = 0 and w = ε.
As an example we calculate δ̂D(q0, 101) = q1:

δ̂D(q0, 101) = δ̂D(δD(q0, 1), 01) by (2)

= δ̂D(q0, 01) because δD(q0, 1) = q0

= δ̂D(δD(q0, 0), 1) by (2)

= δ̂D(q1, 1) because δD(q0, 0) = q1

= δ̂D(δD(q1, 1), ε) by (2)

= δ̂D(q2, ε) because δD(q1, 1) = q2

= q2 by (1)

Using δ̂ we may now define formally:

L(A) = {w | δ̂(q0, w) ∈ F}

Hence we have that 101 ∈ L(D) because δ̂D(q0, 101) = q2 and q2 ∈ FD.

2.2 Nondeterministic Finite Automata

2.2.1 What is an NFA?

Nondeterministic finite automata (NFA) have transition functions that may
assign several or no states to a given state and an input symbol. They accept
a word if there is any possible transition from the one of initial states to one
of the final states. It is important to note that although NFAs have a non-
determistic transition function, it can always be determined whether or not a
word belongs to its language (w ∈ L(A)). Indeed, we shall see that every NFA
can be translated into an DFA that accepts the same language.
Here is an example of an NFA C that accepts all words over Σ = {0, 1} s.t. the
symbol before the last is 1.

q0 q1 q2

0,1

1 0,1
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A nondeterministic finite automaton (NFA) A = (Q, Σ, δ, S, F ) is given by:

1. A finite set of states Q,

2. A finite set of input symbols Σ,

3. A transition function δ ∈ Q × Σ → P(Q),

4. A set of initial state S ⊆ Q,

5. A set of accepting states F ⊆ Q.

The differences to DFAs are to have start states instead of a single one and the
type of the transition function. As an example we have that

C = ({q0, q1, q2}, {0, 1}, δC, {q0}, {q2})

where δC so given by
δC 0 1

→ q0 {q0} {q0, q1}
q1 {q2} {q2}

∗q2 ∅ ∅

Note that we diverge slightly from the definition in the book, which uses a single
initial state instead of a set of initial states. Doing so means that we can avoid
introducing ε-NFAs (see [HMU01], section 2.5).

2.2.2 The language accepted by an NFA

To see whether a word w ∈ Σ∗ is accepted by an NFA (w ∈ L(A)) we may have
to use several markers. Initially we put one marker on each initial state. Then
each time when we read a symbol we look at all the markers: we remove the
old marker and put markers at all the states that are reachable via an arrow
marked with the current input symbol (this may include the state that was
marked in the previously). Thus we may have to use several marker but it may
also happen that all markers disappear (if no appropriate arrows exist). In this
case the word is not accepted. If at the end of the word any of the final states
has a marker on it then the word is accepted.
E.g. consider the word 100 (which is not accepted by C). Initially we have

q0 q1 q2

0,1

1 0,1

After reading 1 we have to use two markers because there are two arrows from
q0 that are labelled 1:

q0 q1 q2

0,1

1 0,1
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Now after reading 0 the automaton has still got two markers, one of them in an
accepting state:

q0 q1 q2

0,1

1 0,1

However, after reading the 2nd 0 the second marker disappears because there
is no edge leaving q2 and we have:

q0 q1 q2

0,1

1 0,1

which is not accepting because no marker is in the accepting state.
To specify the extended transition function for NFAs we use an generalisation
of the union operation ∪ on sets. We define

⋃
to be the union of a (finite) set

of sets: ⋃

{A1, A2, . . . An} = A1 ∪ A2 ∪ · · · ∪ An

In the special cases of the empty sets of sets and a one element set of sets we
define: ⋃

∅ = ∅
⋃

{A} = A

As an example

⋃

{{1}, {2, 3}, {1, 3}}= {1} ∪ {2, 3} ∪ {1, 3} = {1, 2, 3}

Actually, we may define
⋃

by comprehension, which also extends the operation
to infinite sets of sets (although we don’t need this here)

⋃

B = {x | ∃A ∈ B.x ∈ A}

We define δ̂ ∈ P(Q) × Σ∗ → P(Q) with the intention that δ̂(S, w) is the set of
states that is marked after having read w starting with the initial markers given
by S.

δ̂(P, ε) = P (3)

δ̂(P, xw) = δ̂(
⋃

{δ(q, x) | q ∈ P}, w) (4)

As an example we calculate δ̂C(q0, 100) which is {q0} as we already know from
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playing with markers.

δ̂C({q0}, 100) = δ̂C(
⋃
{δC(q, 1) | q ∈ {q0}}, 00) by (4)

= δ̂C(δC(q0, 1), 00)

= δ̂C({q0, q1}, 00)

= δ̂C(
⋃
{δC(q, 0) | q ∈ {q0, q1}}, 0) by (4)

= δ̂C(δC(q0, 0) ∪ δC(q1, 0), 0)

= δ̂C({q0} ∪ {q2}, 0)

= δ̂C({q0, q2}, 0)

= δ̂C(
⋃
{δC(q, 0) | q ∈ {q0, q2}}, ε) by (4)

= δ̂C(δC(q0, 0) ∪ δC(q2, 0), 0)

= δ̂C({q0} ∪ ∅, ε)
= {q0} by (3)

Using the extended transition function we define the language of an NFA as

L(A) = {w | δ̂(S, w) ∩ F 6= ∅}

This shows that 100 /∈ L(C) because

δ̂({q0}, 100) = {q0} ∩ {q2} = ∅

2.2.3 The subset construction

DFAs can be viewed as a special case of NFAs, i.e. those for which the the there
is precisely one start state S = {q0} and the transition function returns always
one-element sets (i.e. δ(q, x) = {q′} for all q ∈ Q and x ∈ Σ).
Below we show that for every NFA we can construct a DFA that accepts the same
language. This shows that NFAs aren’t more powerful than DFAs. However, in
some cases NFAs need a lot fewer states than the corresponding DFA and they
are easier to construct.
Given an NFA A = (Q, Σ, δ, S, F ) we construct the DFA

D(A) = (P(Q), Σ, δD(A), S, FD(A))

where

δD(A)(P, x) =
⋃

{δ(q, x) | q ∈ P}

FD(A) = {P ∈ P(Q) | P ∩ F 6= ∅}

The basic idea of this construction (the subset construction) is to define a DFA
whose states are sets of states of the NFA. A final state of the DFA is a set
that contains at least a final state of the NFA. The transitions just follow the
active set of markers, i.e. a state P ∈ P(Q) corresponds to having markers on
all q ∈ S and when we follow the arrow labelled x we get the set of states that
are marked after reading x.
As an example let us consider the NFA C above. We construct a DFA D(C)

D(C) = (P({q0, q1, q2}, {0, 1}, δD(C), {q0}, FD(C))
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with δD(C) given by

δD(C) 0 1

∅ ∅ ∅
→ {q0} {q0} {q0, q1}

{q1} {q2} {q2}
∗{q2} ∅ ∅

{q0, q1} {q0, q2} {q0, q1, q2}
∗{q0, q2} {q0} {q0, q1}
∗{q1, q2} {q2} {q2}

∗{q0, q1, q2} {q0, q2} {q0, q1, q2}

and FD(C) is the set of all the states marked with ∗ above,i.e.

FD(C) = {{q2}, {q0, q2}, {q1, q2}, {q0, q1, q2}}

Looking at the transition diagram:

{q0,q2}{q0}

{q2}

{q0,q1}

0

1

{q0,q1,q2}
1

0

0

1

0

1

{}{q1,q2}
0,1 0,1

0,1

{q1}
0,1

we note that some of the states (∅, {q1}, {q2}, {q1, q2}) cannot be reached from
the initial state, which means that they can be omitted without changing the
language. Hence we obtain the following automaton:

{q0,q2}{q0} {q0,q1}

0

1

{q0,q1,q2}
1

0

0

1

0

1

We still have to convince ourselves that the DFA D(A) accepts the same lan-
guage as the NFA A, i.e. we have to show that L(A) = L(D(A)).
As a lemma we show that the extended transition functions coincide:

Lemma 2.1
δ̂D(A)(P, w) = δ̂A(P, w)

12



The result of both functions are sets of states of the NFA A: for the left hand
side because the extended transition function on NFAs returns sets of states and
for the right hand side because the states of D(A) are sets of states of A.
Proof: We show this by induction over the length of the word w, let’s write |w|
for the length of a word.

|w| = 0 Then w = ε and we have

δ̂D(A)(P, ε) = P by (1)

= δ̂A(P, ε) by (3)

|w| = n + 1 Then w = xv with |v| = n.

δ̂D(A)(P, xv) = δ̂D(A)(δD(A)(P, x), v) by (2)

= δ̂A(δD(A)(P, x), v) ind.hyp.

= δ̂A(
⋃
{δA(q, x) | q ∈ P}, v) by construction

= δ̂A(P, xv) by (4)

�

We can now use the lemma to show

Theorem 2.2
L(A) = L(D(A))

Proof:
w ∈ L(A)

⇐⇒ Definition of L(A) for NFAs

δ̂A(S, w) ∩ F 6= ∅
⇐⇒ Lemma 2.1

δ̂D(A)(S, w) ∩ F 6= ∅
⇐⇒ Definition of FD(A)

δ̂D(A)(S, w) ∈ FD(A)

⇐⇒ Definition of L(A) for DFAs
w ∈ LD(A)

�

Corollary 2.3 NFAs and DFAs recognize the same class of languages.

Proof: We have noticed that DFAs are just a special case of NFAs. On the
other hand the subset construction introduced above shows that for every NFA
we can find a DFA that recognizes the same language. �

3 Regular expressions

Given an alphabet Σ a language is a set of words L ⊆ Σ∗. So far we were able to
describe languages either by using set theory (i.e. enumeration or comprehen-
sion) or by an automaton. In this section we shall introduce regular expressions
as an elegant and concise way to describe languages. We shall see that the
languages definable by regular expressions are precisely the same as those ac-
cepted by deterministic or nondeterministic finite automata. These languages
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are called regular languages or (according to the Chomsky hierarchy) Type 3
languages.
As already mentioned in the introduction regular expressions are used to de-
fine patterns in programs such as grep. grep gets as an argument a regular
expression and then filters out all those lines from a file that match the regular
expression, where matching means that the line contains a substring that is in
the language assigned to the regular expression. It is interesting to note that
even in the case when we search for a specific word (this is a special case of a
regular expresion) programs like grep are more efficient than a naive implemen-
tation of word search.
To find out more about grep have a look at the UNIX manual page and play
around with grep. Note that the syntax grep uses is slightly different from the
one we use here. grep also use some convenient shorthands that are not relevant
for a theoretical analysis of regular expressions because they do not extend the
class of languages.

3.1 What are regular expressions?

Given an alphabet Σ (e.g. Σ = {a, b, c, . . . , z}), the syntax (i.e., form) of regular
expressions over Σ is defined inductively as follows:

1. ∅ is a regular expression.

2. ε is a regular expression.

3. For each x ∈ Σ, x is a regular expression. E.g. in the example all small
letters are regular expressions3.

4. If E and F are regular expressions then E + F is a regular expression.

5. If E and F are regular expressions then EF (i.e. just one after the other)
is a regular expression.

6. If E is a regular expression then E∗ is a regular expression.

7. If E is a regular expression then (E) is a regular expression.

These are all regular expressions.
Here are some examples for regular expressions:

• ε

• hallo

• hallo + hello

• h(a + e)llo

• a∗b∗

• (ε + b)(ab)∗(ε + a)

3 We use boldface to emphasize the difference between the symbol a and the regular ex-
pression a that, as we will see, denotes the one-word language {a}. Symbols and words are
typeset using a type-writer font in this and the next section (and on occasion later on as well)
to further emphasize the difference.
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As in arithmetic, there are some conventions regarding how to read regular
expressions:

• ∗ binds stronger than sequence and +. E.g. we read ab∗ as a(b∗). We
have to use parentheses to enforce the other reading (ab)∗.

• Sequencing binds stronger than +. E.g. we read ab + cd as (ab) + (bc).
To enforce another reading we have to use parentheses as in a(b + c)d.

3.2 The meaning of regular expressions

We now know what regular expressions are but what do they mean?
For this purpose, we shall first define an operation on languages called the Kleene
star. Given a language L ⊆ Σ∗ we define

L∗ = {w0w1 . . . wn−1 | n ∈ N ∧ ∀i < n.wi ∈ L}

Intuitively, L∗ contains all the words that can be formed by concatenating an
arbitrary number of words in L. This includes the empty word since the number
may be 0.
As an example consider L = {a, ab} ⊆ {a, b}∗:

L∗ = {ε, a, ab, aab, aba, aaab, aaba, . . . }

Note that we use the same symbol for this operation as in Σ∗. However, there
is a subtle difference: Σ is a set of symbols whereas L ⊆ Σ∗ is a set of words,
i.e. a language.
Alternatively (and more abstractly) one may describe L∗ as the least language
(with respect to ⊆) that contains L and the empty word and is closed under
concatenation:

w ∈ L∗ ∧ v ∈ L∗ =⇒ wv ∈ L∗

In the previous section, we defined the syntax of regular expressions, their form.
We now proceed to define the semantics of regular expressions; i.e., what they
mean, what language a regular expression stands for. To each regular expression
E over Σ we assign a language L(E) ⊆ Σ∗. We do this by induction over the
definition of the syntax :

1. L(∅) = ∅

2. L(ε) = {ε}

3. L(x) = {x} where x ∈ Σ.

4. L(E + F ) = L(E) ∪ L(F )

5. L(EF ) = {wv | w ∈ L(E) ∧ v ∈ L(F )}

6. L(E∗) = L(E)∗

7. L((E)) = L(E)

15



Subtle points: in 1 the symbol ∅ is used both as a regular expression (as in
L(∅)) and as the empty set (∅ = {}), i.e. the empty language. Similarly, ε in
2 is used in two ways: both as a regular expression and as a word (the empty
word). In 6, the ∗-operator is used both to construct regular expressions and
as an operation on languages. Such overloading of notation is quite common.
Which alternative is meant only becomes clear from the context; there is no
generally agreed mathematical notation4 to make this difference explicit.
Let us now calculate what the examples of regular expressions from the previous
section mean, i.e. what are the langauges they define:

ε

L(ε) = {ε}

By 2.

hallo

Let’s just look at L(ha). We know from 3:

L(h) = {h}

L(a) = {a}

Hence by 5:

L(ha) = {wv | w ∈ {h} ∧ v ∈ {a}}

= {ha}

Continuing the same reasoning we obtain:

L(hallo) = {hallo}

hallo + hello

From the previous point we know that:

L(hallo) = {hallo}

L(hello) = {hello}

Hence by using 4 we get:

L(hallo + hello) = {hallo} ∪ {hello}}

= {hallo, hello}

h(a + e)llo

Using 3 and 4 we know

L(a + e) = {a, e}

4 This is different in programming, e.g. in JAVA we use ". . . " to signal that we mean
things literally.
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Hence using 5 we obtain:

L(h(a + e)llo) = {uvw | u ∈ L(h) ∧ v ∈ L(a + e) ∧ w ∈ L(llo)}

= {uvw | u ∈ {h} ∧ v ∈ {a, e} ∧ w ∈ {llo}}

= {hallo, hello}

a∗b∗

Let us introduce the following notation:

wi = ww . . . w
︸ ︷︷ ︸

i times

Now using 6 we know that

L(a∗) = {w0w1 . . . wn−1 | n ∈ N ∧ ∀i < n.wi ∈ L(a)}

= {w0w1 . . . wn−1 | n ∈ N ∧ ∀i < n.wi ∈ {a}}

= {an | n ∈ N}

and hence using 5 we conclude

L(a∗b∗) = {uv | u ∈ L(a∗) ∧ v ∈ L(b∗)}

= {uv | u ∈ {an | n ∈ N} ∧ v ∈ {bm | m ∈ N}}

= {anbm | m, n ∈ N}

I.e. L(a∗b∗) is the set of all words that start with a (possibly empty)
sequence of a’s followed by a (possibly empty) sequence of b’s.

(ε + b)(ab)∗(ε + a)

Let’s analyze the parts:

L(ε + b) = {ε, b}

L((ab)∗) = {(ab)i | i ∈ N}

L(ε + b) = {ε, b}

Hence, we have

L((ε + b)(ab)∗(ε + a)) = {u(ab)iv | u ∈ {ε, b} ∧ i ∈ N ∧ v ∈ {ε, a}}

In english: L((ε+b)(ab)∗(ε+a)) is the set of (possibly empty) sequences
of interchanging a’s and b’s.

3.3 Translating regular expressions into NFAs

Theorem 3.1 For each regular expression E we can construct ab NFA N(E)
s.t. L(N(E)) = L(E), i.e. the automaton accepts the language described by the
regular expression.

Proof:
We do this again by induction on the syntax of regular expressions:
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1. N(∅):

N(0)

which will reject everything (it has got no final states) and hence

L(N(∅)) = ∅

= L(∅)

2. N(ε):

N(  )ε

This automaton accepts the empty word but rejects everything else, hence:

L(N(ε)) = {ε}

= L(ε)

3. N(x):

18



x

N(x)

This automaton only accepts the word x, hence:

L(N(x)) = {x}

= L(x)

4. N(E + F ):

We merge the diagrams for N(E) and N(F ) into one:

N(E)

N(F)

N(E+F)

I.e. given

N(E) = (QE , Σ, δE , SE, FE)

N(F ) = (QF , Σ, δF , SF , FF )

Now we use the disjoint union operation on sets (see the MCS lecture
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notes [Alt01], section 4.1)

QE+F = QE + QF

δE+F ((0, q), x) = {(0, q′) | q′ ∈ δE(q, x)}

δE+F ((1, q)), x = {(1, q′) | q′ ∈ δF (q, x)}

SE+F = SE + SF

FE+F = FE + FF

N(E + F ) = (QE+F , Σ, δE+F , SE+F , FE+F )

The disjoint union just signals that we are not going to identify states,
even if they accidently happen to have the same name.

Just thinking of the game with markers you should be able to convince
yourself that

L(N(E + F )) = L(N(E)) ∪ L(N(F ))

Moreover to show that

L(N(E + F )) = L(E + F )

we are allowed to assume that

L(N(E)) = L(E)

L(N(F )) = L(F )

that’s what is meant by induction over the syntax of regular expressions.

Now putting everything together:

L(N(E + F )) = L(N(E)) ∪ L(N(F ))

= L(E) ∪ L(F )

= L(E + F )

5. N(EF ):

We want to put the two automata N(E) and N(F ) in series. We do this
by connecting the final states of N(E) with the initial states of N(F ) in
a way explained below.

N(F)N(E)

N(EF)
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In this diagram I only depicted one initial and one final state of each of
the automata although they may be several of them.

Here is how we construct N(EF ) from N(E) and N(F ):

N(E) = (QE , Σ, δE , SE, FE)

N(F ) = (QF , Σ, δF , SF , FF )

• The states of N(EF ) are the disjoint union of the states of N(E)
and N(F ):

QEF = QE + QF

• The transition function of N(EF ) contains all the transitions of N(E)
and N(F ) (as for N(E +F )) and for each state q of N(E) that has a
transition to a final state of N(E) we add a transition with the same
label to all the initial states of N(F ):

δEF ((0, q), x) = {(0, q′) | q′ ∈ δE(q, x)}

∪ {(1, q′′) | ∃q′.q′ ∈ FE ∧ q′ ∈ δE(q, x) ∧ q′′ ∈ SE}

δEF ((1, q)) = {(1, q′) | q′ ∈ δF (q))}

• The initial states of N(EF ) are the initial states of N(E), and the
initial states of N(F ) if there is an initial state of N(E) that is also
a final state:

SEF = {(0, q) | q ∈ SE} ∪ {(1, q) | q ∈ SF ∧ SE ∩ FE 6= ∅}

• The final states of N(EF ) are the final states of N(F ):

FEF = {(1, q) | q ∈ FF }

We now set
N(EF ) = (QEF , Σ, δEF , SEF , ZEF )

I hope that you are able to convince yourself that

L(N(EF )) = {uv | u ∈ L(N(E)) ∧ v ∈ L(N(F ))

and hence we can reason

L(N(EF )) = {uv | u ∈ L(N(E)) ∧ v ∈ L(N(F )) = {uv | u ∈ L(E) ∧ v ∈ L(F )

= L(EF )

6. N(E∗):

We construct N(E∗) from N(E) by merging initial and final states of
N(E) in a way similar to the previous construction and we add a new
state ∗ that is initial and final.
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N(E)

N(E*)

*

Given

N(E) = (QE , Σ, δE , SE, FE)

we construct N(E∗).

• We add one extra state ∗:

QE∗ = QE + {∗}

• NE
∗ inherits all transitions form NE and for each state that has an

arrow to the final state labelled x we also add an arrow to all the
initial states labelled x.

δE∗((0, q), x) ={(0, q′) | q′ ∈ δE(q, x)}

∪ {(0, q′) | δE(q, x) ∩ FE 6= ∅ ∧ q′ ∈ SE}

• The initial states of N(E∗) are the initial states of N(E) and ∗:

SE∗ = {(0, q) | q ∈ SE} ∪ {(1, ∗)}

• The final states of NE∗ are the final states of NE and ∗:

FE∗ = {(0, q) | q ∈ FE} ∪ {(1, ∗)}

We define
N(E∗) = (QE∗ , Σ, δE∗ , SE∗ , FE∗)

We claim that

L(N(E∗)) = {w0w1 . . . wn−1 | n ∈ N ∧ ∀i < n.wi ∈ L(N(E))}
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since we can run through the automaton an arbitrary number of times.
The new state ∗ allows us also to accept the empty sequence. Hence:

L(N(E∗)) = {w0w1 . . . wn−1 | n ∈ N ∧ ∀i < n.wi ∈ L(N(E))}

= L(N(E))∗

= L(E)∗

= L(E∗)

7. N((E)) = N(E)

I.e. using brackets does not change anything.

�

As an example we construct N(a∗b∗). First we construct N(a):

a

N(a)

Now we have to apply the ∗-construction and we obtain:

a

N(a*)

a

N(b∗) is just the same and we get
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a

N(a*)

a

N(b*)

b

b

and now we have to serialize the two automata and we get:

b

a

N(a*b*)

b

a

a

a

Now, you may observe that this automaton, though correct, is unnecessary
complicated, since we could have just used

a

a b

However, we shall not be concerned with minimality at the moment.

3.4 Summing up . . .

From the previous section we know that a language given by regular expression is
also recognized by a NFA. What about the other way: Can a language recognized
by a finite automaton (DFA or NFA) also be described by a regular expression?
The answer is yes:

Theorem 3.2 (Theorem 3.4, page 91) Given a DFA A there is a regular
expression R(A) that recognizes the same language L(A) = L(R(A)).

We omit the proof (which can be found in the [HMU01] on pp.91-93). However,
we conclude:

Corollary 3.3 Given a language L ⊆ Σ∗ the following is equivalent:
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1. L is given by a regular expression.

2. L is the language accepted by an NFA.

3. L is the language acceped by a DFA.

Proof: We have that 1. =⇒ 2 by theorem 3.1. We know that 2. =⇒ 3. by2.2
and 3. =⇒ 1. by 3.2. �

As indicated in the introduction: the languages that are characterized by any of
the three equivalent conditions are called regular languages or type-3-languages.

4 Showing that a language is not regular

Regular languages are languages that can be recognized by a computer with
finite (i.e. fixed) memory. Such a computer corresponds to a DFA. However,
there are many languages that cannot be recognized using only finite memory.
A simple example is the language

L = {0n1n | n ∈ N}

i.e. the language of words that start with a number of 0s followed by the same
number of 1s. Note that this is different from L(0∗1∗), which is the language of
words of a sequences of 0s followed by a sequence of 1s but not necessarily of
the same length. (We know this to be regular because it is given by a regular
expression.)
Why can L not be recognized by a computer with fixed finite memory? Assume
we have 32 Megabytes of memory, that is we have 32∗1024∗1024∗8 = 268435456
bits. Such a computer corresponds to an enormous DFA with 2268435456 states
(imagine you have to draw the transition diagram). However, the computer can
only count until 2268435456 if we feed it any more 0s in the beginning it will get
confused! Hence, you need an unbounded amount of memory to recognize n.
We shall now show a general theorem called the pumping lemma that allows us
to prove that a certain language is not regular.

4.1 The pumping lemma

Theorem 4.1 Given a regular language L, then there is a number n ∈ N such
that all words w ∈ L that are longer than n (|w| ≥ n) can be split into three
words w = xyz s.t.

1. y 6= ε

2. |xy| ≤ n

3. for all k ∈ N we have xykz ∈ L.

Proof: For a regular language L there exists a DFA A s.t. L = L(A). Let us
assume that A has got n states. Now if A accepts a word w with |w| ≥ n it
must have visited a state q twice:
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x

y

z
q

We choose q s.t. it is the first cycle, hence |xy| ≤ n. We also know that y is non
empty (otherwise there is no cycle).
Now, consider what happens if we feed a word of the form xyiz to the automaton,
i.e. s instead of y it contains an arbitrary number of repetitions of y, including
the case i = 0, i.e. y is just left out. The automaton has to accept all such
words and hence xyiz ∈ L

�

4.2 Applying the pumping lemma

Theorem 4.2 The language L = {0n1n | n ∈ N} is not regular.

Proof: Assume L would be regular. We will show that this leads to contradic-
tion using the pumping lemma.
Now by the pumping lemma there is an n such that we can split each word that
is longer than n such that the properties given by the pumping lemma hold.
Consider 0n1n ∈ L, this is certainly longer than n. We have that xyz = 0n1n

and we know that |xy| ≤ n, hence y can only contain 0s, and since y 6= ε it must
contain at least one 0. Now according to the pumping lemma xy0z ∈ L but this
cannot be the case because it contains at least one 0 less but the same number
of 1s as 0n1n.
Hence, our assumption that L is regular must have been wrong.

�

It is easy to see that the language

{1n | n is even}

is regular (just construct the appropriate DFA or use a regular expression).
However what about

{1n | n is a square}

where by saying n is a square we mean that is there is an k ∈ N s.t. n = k2. We
may try as we like there is no way to find out whether we have a got a square
number of 1s by only using finite memory. And indeed:

Theorem 4.3 The language L = {1n | n is a square} is not regular.

Proof: We apply the same strategy as above. Assume L is regular then there is
a number n such we can split all longer words according to the pumping lemma.
Let’s take w = 1n

2

this is certainly long enough. By the pumping lemma we
know that we can split w = xyz s.t. the conditions of the pumping lemma hold.
In particular we know that

1 ≤ |y| ≤ |xy| ≤ n

Using the 3rd condition we know that

xyyz ∈ L
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that is |xyyz| is a square. However we know that

n2 = |w|

= |xyz|

< |xyyz| since 1 ≤ |y| = |xyz| + |y|

≤ n2 + n since |y| ≤ n

< n2 + 2n + 1

= (n + 1)2

To summarize we have
n2 < |xyyz| < (n + 1)2

That is |xyyz| lies between two subsequent squares. But then it cannot be a
square itself, and hence we have a contradiction to xyyz ∈ L.
We conclude L is not regular. �

Given a word w ∈ Σ∗ we write wR for the word read backwards. I.e. abcR =
bca. Formally this can be defined as

εR = ε

(xw)R = wRx

We use this to define the language of even length palindromes

Lpali = {wwR | w ∈ Σ∗

I.e. for Σ = {a, b} we have abba ∈ Lpali}. Using the intuition that finite
automata can only use finite memory it should be clear that this language is
not regular, because one has to remember the first half of the word to check
whether the 2nd half is the same word read backwards. Indeed, we can show:

Theorem 4.4 Given Σ = {a, b} we have that Lpali is not regular.

Proof: We use the pumping lemma: We assume that Lpali is regular. Now
given a pumping number n we construct w = anbban ∈ Lpali, this word is
certainly longer than n. From the pumping lemma we know that there is a
splitting of the word w = xyz s.t. |xy| ≤ n and hence y may only contain a’s
and since y 6= ε at least one. We conclude that xz ∈ Lpali where xz = ambban

where m < n. However, this word cannot be a palindrome since only the first
half contains any a’s.
Hence our assumption Lpali is regular must be wrong. �

The proof works for any alphabet with at least 2 different symbols. However, if
Σ contains only one symbol as in Σ = {1} then Lpali is the language of an even
number of 1s and this is regular Lpali = (11)∗.

5 Context free grammars

We will now introduce context free grammars (CFGs) as a formalism to define
languages. CFGs are more general than regular expressions, i.e. there are
more languages definable by CFGs (called type-2-languages). We will define the
corresponding notion of automata, the push down automata (PDA) later.
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5.1 What is a context-free grammar?

A context-free grammar G = (V, Σ, S, P ) is given by

• A finite set V of variables or nonterminal symbols.

• A finite set Σ of symbols or terminal symbols. We assume that the sets
V and Σ are disjoint.

• A start symbol S ∈ V .

• A finite set P ⊆ V × (V ∪T )∗ of productions. A production (A, α), where
A ∈ V and α ∈ (V ∪T )∗ is a sequence of terminals and variables, is written
as A → α.

As an example we define a grammar for the language of arithmetic expressions
over a (using only + and ∗), i.e. elements of this language are a + (a ∗ a) or
(a + a) ∗ (a + a). However words like a + +a or )(a are not in the language.
We define G = ({E, T, F}, {(, ), a, +, ∗}, E, P ) where P is given by:

P = {E → T

E → E + T

T → F

T → T ∗ F

F → a

F → (E)}

To save space we may combine all the rules with the same left hand side, i.e.
we write

P = {E → T | E + T

T → F | T ∗ F

F → a | (E)

5.2 The language of a grammar

How do we check whether a word w ∈ Σ∗ is in the language of the grammar?
We start with the start symbol E and use one production V → α to replace the
nonterminal symbol by the α until we have no nonterminal symbols left. This
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is called a derivation. I.e. in the example G:

E ⇒
G

E + T

⇒
G

T + T

⇒
G

F + T

⇒
G

a + T

⇒
G

a + F

⇒
G

a + (E)

⇒
G

a + (T )

⇒
G

a + (T ∗ F )

⇒
G

a + (F ∗ F )

⇒
G

a + (a ∗ F )

⇒
G

a + (a ∗ a)

Note that ⇒
G

here stands for the relation derives in one step in grammar G and

has nothing to do with implication. When the grammar used it is clear from the
context, it is conventional to drop the subscript G and simply use ⇒, meaning
derives in one step. In the example above we have always replaced the leftmost
nonterminal symbol. This is called a leftmost derivation. However, this is not
necessary: in general, we are free to pick any non-terminal for replacement.
An alternative would be to always pick the rightmost one, which results in
a rightmost derivation. Or we could pick whichever nonterminal seems more
convenient to expand. The symbols ⇒

lm
and ⇒

rm
are sometimes used to indicate

leftmost and rightmost derivation steps, respectively.
Given any grammar G = (V, Σ, S, P ) we define the relation derives in one step
in grammar G as follows:

⇒
G

⊆ (V ∪ T )∗ × (V ∪ T )∗

αV γ ⇒
G

αβγ ⇐⇒ V → β ∈ P

The relation derives in grammar G is defined as5:
∗

⇒
G

⊆ (V ∪ T )∗ × (V ∪ T )∗

α0
∗

⇒
G

αn ⇐⇒ α ⇒
G

α1 ⇒
G

. . . αn−1 ⇒
G

αn

This includes the case α
∗

⇒
G

α because n can be 0.

We now say that the language of a grammar L(G) ⊆ Σ∗ is given by all words
(over Σ) that can be derived in any number of steps, i.e.

L(G) = {w ∈ Σ∗ | S
∗

⇒
G

w}

A language that can be given by a context-free grammar is called a context-free
language (CFL).

5 ∗
⇒
G

is the transitive-reflexive closure of ⇒
G

.
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5.3 More examples

Some of the languages that we have shown not to be regular are actually context-
free.
The language {0n1n | n ∈ N} is given by the following grammar

G = ({S}, {0, 1}, S, {S → ε | 0S1})

Also the language of palindromes

{wwR | w ∈ {a, b}∗}

turns out to be context-free;

G = ({S}, {a, b}, S, {S → ε | aSa | bSb})

We also note that

Theorem 5.1 All regular languages are context-free.

We don’t give a proof here - the idea is that regular expressions can be translated
into (special) context-free grammars, i.e. a∗b∗ can be translated into

G = ({A, B}, {a, b}, {A → aA | B, B → bB | ε)

(Extensions of) context free grammars are used in computer linguistics to de-
scribe natural languages. As an example consider

Σ = {the, dog, cat, that, bites, barks, catches}

we use the grammar G = ({S, N, NP, V I, V T, V P}, Σ, S, P ) where

S → NP V P

N → cat | dog

NP → the N | NP that V P

V I → barks | bites

V T → bites | catches

V P → V I | V T NP

that allows us to derive interesting sentences like

the dog that catches the cat that bites barks

An important example for context-free languages is the syntax of programming
languages. We have already mentioned appendix of [GJSB00] that uses a for-
malism slightly different from the one introduced here. Another example is the
toy language used in the compilers course [Nil05].
Note that not all syntactic aspects of programming languages are captured by
the context free grammar, i.e. the fact that a variable has to be declared before
used and the type correctness of expressions are not captured. However, at
least in the area of programming languages, it is common practice to use the
notion of “syntactically correct” in the more limited sense of “conforming to the
context-free grammar of the language”. Aspects such as type-correctness are
considered separately.
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5.4 Parse trees

With each derivation we also associate a derivation tree that shows the structure
of the derivation. As an example consider the tree associated with the derivation
of a + (a ∗ a) given before:

T

a

F

a

FT

a

F

E

+ T

F

( E )

T

*

The top of the tree (called its root) is labelled with start symbol, the other nodes
are labelled with nonterminal symbols and the leaves are labelled by terminal
symbols. The word that is derived can be read off from the leaves of the tree.
The important property of a parse tree is that the ancestors of an internal node
correspond to a production in the grammar.

5.5 Ambiguity

We say that a grammar G is ambiguous if there is a word w ∈ L(G) for which
there is more than one parse tree, or, equivalently, more than one leftmost
derivation or more than one rightmost derivation. This is usually a bad thing
because it entails that there is more than one way to interpret a word (i.e. it
leads to semantical ambiguity).
As an example consider the following alternative grammar for arithmetical ex-
pressions: We define G′ = ({E}, {(, ), a, +, ∗}, E, P ′) where P ′ is given by:

P ′ = {E → E + E | E ∗ E | a | (E)}
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This grammar is shorter and requires only one variable instead of 4. Moreover
it generates the same language, i.e. we have L(G) = L(G′). But it is ambigous:
Consider a + a ∗ a we have the following parse trees:

E

E * E

E + E

a a

a a

E

E E

E E

a a

+

*

Each parse tree correspond to a different way to read the expression, i.e. the
first one corresponds to (a+a) ∗a and the second one to a+(a ∗a). Depending
on which one is chosen an expression like 2 + 2 ∗ 3 may evaluate to 12 or to 8.
Informally, we agree that ∗ binds more than + and hence the 2nd reading is the
intended one 6.
This is actually achieved by the first grammar which only allows the 2nd reading:

F

a F

a

F

a

E

E

T

+ T

T *

6 Pushdown Automata

We will now consider a new notion of automata Pushdown Automata (PDA).
PDAs are finite automata with a stack, i.e. a data structure that can be used
to store an arbitrary number of symbols (hence PDAs have an infinite set of
states) but which can be only accessed in a last-in-first-out (LIFO) fashion.
The languages that can be recognized by PDA are precisely the context free
languages.

6 Strictly speaking, this is just a natural and often convenient convention, since it implies
that the meaning of the whole can be understood in terms of the meaning of the parts in the
obvious way implied by the structure of the tree. However, sometimes, in real compilers, it
might be necessary or convenient to parse things in a way that does not reflect the semantics
as directly. But then the parse tree is usually transformed later into a simplified, internal
version (an Abstract Syntax Tree), the structure of which reflects the intended semantics as
described here.
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6.1 What is a Pushdown Automaton?

A Pushdown Automaton P = (Q, Σ, Γ, δ, q0, Z0, F ) is given by the following
data

• A finite set Q of states,

• A finite set Σ of input symbols (the alphabet),

• A finite set Γ of stack symbols,

• A transition function

δ ∈ Q × (Σ ∪ {ε})× Γ → Pfin(Q × Γ∗)

Here Pfin(A) are the finite subsets of a set, i.e. this can be defined as

Pfin(A) = {X | X ⊆ A ∧ X is finite.}

Thus, PDAs are in general nondeterministic, since they may have a choice
of transitions from any state. However, there are always only finitely many
choices.

• An initial state q0 ∈ Q,

• An initial stack symbol Z0 ∈ Γ,

• A set of final states F ⊆ Q.

As an example we consider a PDA P that recognizes the language of even length
palindromes over Σ = {0, 1} — L = {wwR | w ∈ {0, 1}∗}. Intuitively, this PDA
pushes the input symbols on the stack until it guesses that it is in the middle
and then it compares the input with what is on the stack, popping of symbols
from the stack as it goes. If it reaches the end of the input precisely at the time
when the stack is empty, it accepts.

P0 = ({q0, q1, q2}, {0, 1}, {0, 1, #}, δ, q0, #, {q2})

where δ is given by the following equations:

δ(q0, 0, #) = {(q0, 0#)}
δ(q0, 1, #) = {(q0, 1#)}
δ(q0, 0, 0) = {(q0, 00)}
δ(q0, 1, 0) = {(q0, 10)}
δ(q0, 0, 1) = {(q0, 01)}
δ(q0, 1, 1) = {(q0, 11)}
δ(q0, ε, #) = {(q1, #)}
δ(q0, ε, 0) = {(q1, 0)}
δ(q0, ε, 1) = {(q1, 1)}
δ(q1, 0, 0) = {(q1, ε)}
δ(q1, 1, 1) = {(q1, ε)}
δ(q1, ε, #) = {(q2, ε)}
δ(q, w, z) = ∅ everywhere else
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To save space we may abbreviate this by writing:

δ(q0, x, z) = {(q0, xz)}
δ(q0, ε, z) = {(q1, z)}
δ(q1, x, x) = {(q1, ε)}
δ(q1, ε, #) = {(q2, ε)}
δ(q, x, z) = ∅ everywhere else

where q ∈ Q, x ∈ Σ, z ∈ Γ. We obtain the previous table by expanding all the
possibilities for q, x, z.
We draw the transition diagram of P by labelling each transition with a triple
x, Z, γ with x ∈ Σ, Z ∈ Γ, γ ∈ Γ∗:

q0 q1 q2

x,z,xz x,x, ε

ε, z,z ε,#,ε

6.2 How does a PDA work?

At any time the state of the computation of a PDA P = (Q, Σ, Γ, δ, q0, Z0, F ) is
given by:

• the state q ∈ Q the PDA is in,

• the input string w ∈ Σ∗ that still has to be processed,

• the contents of the stack γ ∈ Γ∗.

Such a triple (q, w, γ) ∈ Q×Σ∗×Γ∗ is called an Instantaneous Description (ID).
We define a relation `

P
⊆ ID × ID between IDs that describes how the PDA can

change from one ID to the next one. Since PDAs in general are nondeterministic
this is a relation (not a function), i.e. there may be more than one possibility.
There are two possibilities for `

P
:

1. (q, xw, zγ) `
P

(q′, w, αγ) if (q′, α) ∈ δ(q, x, z)

2. (q, w, zγ) `
P

(q′, w, αγ) if (q′, α) ∈ δ(q, ε, z)

In the first case the PDA reads an input symbol and consults the transition
function δ to calculate a possible new state q′ and a sequence of stack symbols
α that replaces the currend symbol on the top z.
In the second case the PDA ignores the input and silently moves into a new
state and modifies the stack as above. The input is unchanged.
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Consider the word 0110 — what are possible sequences of IDs for P0 starting
with (q0, 0110, #) ?

(q0, 0110, #) `
P0

(q0, 110, 0#) 1. with (q0, 0#) ∈ δ(q0, 0, #)

`
P0

(q0, 10, 10#) 1. with (q0, 10) ∈ δ(q0, 1, 0)

`
P0

(q1, 10, 10#) 2. with (q1, 1) ∈ δ(q0, ε, 1)

`
P0

(q1, 0, 0#) 1. with (q1, ε) ∈ δ(q1, 1, 1)

`
P0

(q1, ε, #) 1. with (q1, ε) ∈ δ(q1, 0, 0)

`
P0

(q2, ε, ε) 2. with (q2, ε) ∈ δ(q1, ε, #)

We write (q, w, γ)
∗

`
P

(q′, w′, γ) if the PDA can move from (q, w, γ) to (q′, w′, γ′)

in a (possibly empty) sequence of moves. Above we have shown that

(q0, 0110, #)
∗

`
P0

(q2, ε, ε).

However, this is not the only possible sequence of IDs for this input. E.g. the
PDA may just guess the middle wrong:

(q0, 0110, #) `
P0

(q0, 110, 0#) 1. with (q0, 0#) ∈ δ(q0, 0, #)

`
P0

(q1, 110, 0#) 2. with (q1, 0) ∈ δ(q0, ε, 0)

We have shown (q0, 0110, #)
∗

`
P0

(q1, 110, 0#). Here the PDA gets stuck as there

is no state after (q1, 110, 0#).
If we start with a word that is not in the language L (like 0011) then the
automaton will always get stuck before reaching a final state.

6.3 The language of a PDA

There are two ways to define the language of a PDA P = (Q, Σ, Γ, δ, q0, Z0, F )
(L(P ) ⊆ Σ∗) because there are two notions of acceptance:

Acceptance by final state

L(P ) = {w | (q0, w, Z0)
∗

`
P

(q, ε, γ) ∧ q ∈ F}

That is the PDA accepts the word w if there is any sequence of IDs starting
from (q0, w, Z0) and leading to (q, ε, γ), where q ∈ F is one of the final
states. Here it doesn’t play a role what the contents of the stack are at
the end.

In our example the PDA P0 would accept 0110 because (q0, 0110, #)
∗

`
P0

(q2, ε, ε) and q2 ∈ F . Hence we conclude 0110 ∈ L(P0).

On the other hand since there is no successful sequence of IDs starting
with (q0, 0011, #) we know that 0011 /∈ L(P0).
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Acceptance by empty stack

L(P ) = {w | (q0, w, Z0)
∗

`
P

(q, ε, ε)}

That is the PDA accepts the word w if there is any sequence of IDs starting
from (q0, w, Z0) and leading to (q, ε, ε), in this case the final state plays no
role.

If we specify a PDA for acceptance by empty stack we will leave out the
set of final states F and just use P = (Q, Σ, Γ, δ, q0, Z0).

Our example automaton P0 also works if we leave out F and use accep-
tance by empty stack.

We can always turn a PDA that uses one acceptance method into one that uses
the other. Hence, both acceptance criteria specify the same class of languages.

6.4 Deterministic PDAs

We have introduced PDAs as nondeterministic machines that may have several
alternatives how to continue. We now define Deterministic Pushdown Automata
(DPDA) as those that never have a choice.
To be precise we say that a PDA P = (Q, Σ, Γ, δ, q0, Z0, F ) is deterministic (is
a DPDA) iff

|δ(q, x, z)| + |δ(q, ε, z)| ≤ 1

Remember, that |X | stands for the number of elements in a finite set X .
That is: a DPDA may get stuck but it has never any choice.
In our example the automaton P0 is not deterministic, e.g. we have δ(q0, 0, #) =
{(q0, 0#)} and δ(q0, ε, #) = {(q1, #)} and hence |δ(q0, 0, #)| + |δ(q0, ε, #)| = 2.
Unlike the situation for finite automata, there is in general no way to translate a
nondeterministic PDA into a deterministic one. Indeed, there is no DPDA that
recognizes the language L! Nondeterministic PDAs are more powerful
than deterministic PDAs.
However, we can define a similar language L′ over Σ = {0, 1, $} that can be
recognized by a deterministic PDA:

L′ = {w$wR | w ∈ {0, 1}∗}

That is L′ contains palindroms with a marker $ in the middle, e.g. 01$10 ∈ L′.
We define a DPDA P ′ for L′:

P ′ = ({q0, q1, q2}, {0, 1, $}, {0, 1, #}, δ′, q0, #, {q2})

where δ′ is given by:

δ′(q0, x, z) = {(q0, xz)} x ∈ {0, 1}, z ∈ {0, 1, #}
δ′(q0, $, z) = {(q1, z)} z ∈ {0, 1, #}
δ′(q1, x, x) = {(q1, ε)} x ∈ {0, 1}
δ′(q1, ε, #) = {(q2, ε)}
δ′(q, x, z) = ∅ everywhere else

Here is its transition graph:
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q0 q1 q2

x,z,xz x,x, ε

ε,#,ε$,z,z

We can check that this automaton is deterministic. In particular the 3rd and
4th line cannot overlap because # is not an input symbol.
Different to PDAs in general the two acceptance methods are not equivalent for
DPDAs — acceptance by final state makes it possible to define a bigger class of
langauges. Hence, we shall always use acceptance by final state for DPDAs.

6.5 Context free grammars and push-down-automata

Theorem 6.1 For a language L ⊆ Σ∗ the following two statements are equiv-
alent:

1. L is given by a CFG G, L = L(G).

2. L is the language of a PDA P , L = L(P ).

To summarize: Context Free Languages (CFLs) can be described by a Context
Free Grammar (CFG) and can be processed by a pushdown automaton.
We will he only show how to construct a PDA from a grammar - the other
direction is shown in [HMU01] (6.3.2, pp. 241).
Given a CFG G = (V, Σ, S, P ), we define a PDA

P (G) = ({q0}, Σ, V ∪ Σ, δ, q0, S)

where δ is defined as follows:

δ(q0, ε, A) = {(q0, α) | A → α ∈ P} for all A ∈ V
δ(q0, a, a) = {(q0, ε)} for all a ∈ Σ.

We haven’t given a set of final states because we use acceptance by empty stack.
Yes, we use only one state!
Take as an example

G = ({E, T, F}, {(, ), a, +, *}, E, P )

where the set of productions P are given by

E → T | E +T

T → F | T *F

F → a | (E )

we define

P (G) = ({q0}, {(, ), a, +, *}, {E, T, F, (, ), a, +, *}, δ, q0, E)
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where

δ(q0, ε, E) = {(q0, T ), (q0, E+T )}

δ(q0, ε, T ) = {(q0, F ), (q0, T*F )}

δ(q0, ε, F ) = {(q0, a), (q0, (E))}

δ(q0, (, () = {(q0, ε)}

δ(q0, ), )) = {(q0, ε)}

δ(q0, a, a) = {(q0, ε)}

δ(q0, +, +) = {(q0, ε)}

δ(q0, *, *) = {(q0, ε)}

δ(q, x, z) = ∅ everywhere else

How does the P (G) accept a+(a*a)?

(q0, a+(a*a), E) ` (q0, a+(a*a), E+T )

` (q0, a+(a*a), T+T )

` (q0, a+(a*a), F+T )

` (q0, a+(a*a), a+T )

` (q0, +(a*a), +T )

` (q0, (a*a), T )

` (q0, (a*a), F )

` (q0, (a*a), (E))

` (q0, a*a), E))

` (q0, a*a), T))

` (q0, a*a), T*F ))

` (q0, a*a), F*F ))

` (q0, a*a), a*F ))

` (q0, *a), *F))

` (q0, a), F))

` (q0, a), a))

` (q0, ), ))

` (q0, ε, ε)

Hence a+(a*a) ∈ L(P (G)).
This above example illustrates the general idea:

w ∈ L(G) ⇐⇒ S
∗

⇒ w

⇐⇒ (q0, w, S)
∗

` (q0, ε, ε)

⇐⇒ w ∈ L(P (G))

The automaton we have constructed is very non-deterministic: Whenever we
have a choice between different rules the automaton may silently choose one of
the alternatives.
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7 How to implement a recursive descent parser

A parser is a program that processes input defined by a context-free grammar.
The translation given in the previous section is not very useful in the design
of such a program because of the non-determinism. Here I show how for a
certain class of grammars this non-determinism can be eliminated and using
the example of arithmetical expressions I will show how a JAVA-program can
be constructed that parses and evaluates expressions.

7.1 What is a LL(1) grammar ?

The basic idea of a recursive descent parser is to use the current input symbol
to decide which alternative to choose. Grammars that have the property that
it is possible to do this are called LL(1) grammars.
First we introduce an end marker $, for a given G = (V, Σ, S, P ) we define the
augmented grammar G$ = (V ′, Σ′, S′, P ′) where

• V ′ = V ∪ {S′} where S′ is chosen s.t. S′ /∈ V ∪ Σ,

• Σ′ = Σ ∪ {$} where $ is chosen s.t. $ /∈ V ∪ Σ,

• P ′ = P ∪ {S′ → S$}

The idea is that
L(G$) = {w$ | w ∈ L(G)}

Now for each nonterminal symbol A ∈ V ′ ∪ Σ′ we define

First(A) = {a | a ∈ Σ ∧ A
∗

⇒ aβ}

Follow(A) = {a | a ∈ Σ ∧ S ′ ∗

⇒ αAaβ}

i.e. First(A) is the set of terminal symbols with which a word derived from A
may start and Follow(A) is the set of symbols that may occur directly after A.
We use the augmented grammar to have a marker for the end of the word.
For each production A → α ∈ P we define the set Lookahead(A → α) that is
the set of symbols that indicate that we are in this alternative.

Lookahead(A → B1B2 . . . Bn) =
⋃

{First(Bi) | ∀1 ≤ k < i.Bk

∗

⇒ ε}

∪

{

Follow(A) if B1B2 . . . Bk

∗

⇒ ε
∅ otherwise

We now say a grammar G is LL(1), iff for each pair A → α, A → β ∈ P with
α 6= β it is the case that Lookahead(A → α) ∩ Lookahead(A → β) = ∅

7.2 How to calculate First and Follow

We have to determine whether A
∗

⇒ ε. If there are no ε-production we know
that the answer is always negative, otherwise

• If A → ε ∈ P we know that A
∗

⇒ ε.

• If A → B1B2 . . . Bn where all Bi are nonterminal symbols and for all
1 ≤ i ≤ n: Bi

∗

⇒ ε then we also know A
∗

⇒ ε.
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We calculate First and Follow in a similar fashion:

• First(a) = {a} if a ∈ Σ.

• If A → B1B2 . . . Bn and there is an i ≤ n s.t. ∀1 ≤ k < i.Bk

∗

⇒ ε then we
add First(Bi) to First(A).

And for Follow:

• $ ∈ Follow(S) where S is the original start symbol.

• If there is a production A → αBβ then everything in First(β) is in
Follow(B).

• If there is a production A → αBβ with β
∗

⇒ ε then everything in Follow(A)
is also in Follow(B).

7.3 Constructing an LL(1) grammar

Let’s have a look at the grammar G for arithmetical expressions again. G =
({E, T, F}, {(, ), a, +, ∗}, E, P ) where

P = {E → T | E + T

T → F | T ∗ F

F → a | (E)

We don’t need the Follow-sets in the moment because the empty word doesn’t
occur in the grammar. For the nonterminal symbols we have

First(F ) = {a, (}

First(T ) = {a, (}

First(E) = {a, (}

and now it is easy to see that most of the Lookahead-sets agree, e.g.

Lookahead(E → T ) = {a, (}

Lookahead(E → E + T ) = {a, (}

Lookahead(T → F ) = {a, (}

Lookahead(T → T ∗ F ) = {a, (}

Lookahead(F → a) = {a}

Lookahead(F → (E)) = {(}

Hence the grammar G is not LL(1).
However, luckily there is an alternative grammar G′ that defines the same lan-
guage: G′ = ({E, E′, T, T ′, F}, {(, ), a, +, ∗}, E, P ′) where

P ′ = {E → TE′

E′ → +TE′ | ε

T → FT ′

T ′ → *FT ′ | ε

F → a | (E)
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Since we have ε-productions we do need the Follow-sets.

First(E) = First(T ) = First(F ) = {a, (}

First(E′) = {+}

First(T ′) = {*}

Follow(E) = Follow(E ′) = {), $}

Follow(T ) = Follow(T ′) = {+, ), $}

Follow(F ) = {+, *, ), $}

Now we calculate the Lookahead-sets:

Lookahead(E → TE ′) = {a, (}

Lookahead(E′ → +TE′) = {+}

Lookahead(E′ → ε) = Follow(E′) = {), $}

Lookahead(T → +FT ′) = {a, (}

Lookahead(T ′ → *FT ′) = {*}

Lookahead(T ′ → ε) = Follow(T ′) = {+, ), $}

Lookahead(F → a) = {a}

Lookahead(F → (E)) = {(}

Hence the grammar G′ is LL(1).

7.4 How to implement the parser

We can now implement a parser - one way would be to construct a deterministic
PDA. However, using JAVA we can implement the parser using recursion - here
the internal JAVA stack plays the role of the stack of the PDA.
First of all we have to separate the input into tokens that are the terminal sym-
bols of our grammar. To keep things simple I assume that tokens are separated
by blanks, i.e. one has to type

( a + a ) * a

for (a+a)*a. This has the advantage that we can use java.util.StringTokenizer.
In a real implementation tokenizing is usually done by using finite automata.
I don’t want to get lost in java details - in the main program I read a line and
produce a tokenizer:

String line=in.readLine();

st = new StringTokenizer(line+" $");

The tokenizer st and the current token are static variables. I implement the
convenience method next taht assigns the next token to curr.

static StringTokenizer st;

static String curr;

static void next() {
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try {

curr=st.nextToken().intern();

} catch( NoSuchElementException e) {

curr=null;

}

}

We also implement a convenience method error(String) to report an error
and terminate the program.
Now we can translate all productions into methods using the Lookahead sets to
determine which alternative to choose. E.g. we translate

E′ → +TE′ | ε

into (using E1 for E′ to follow JAVA rules):

static void parseE1() {
if (curr=="+") {

next();

parseT();

parseE1();

} else if(curr==")" || curr=="$" ) {
} else {

error("Unexpected :"+curr);

}

The basic idea is to

• Translate each occurrence of a non terminal symbol into a test that this
symbol has been read and a call of next().

• Translate each nonterminal symbol into a call of the method with the same
name.

• If you have to decide between different productions use the lookahead sets
to determine which one to use.

• If you find that there is no way to continue call error().

We initiate the parsing process by calling next() to read the first symbol and
then call parseE(). If after processing parseE() we are at the end marker,
then the parsing has been successful.

next();

parseE();

if(curr=="$") {
System.out.println("OK ");

} else {
error("End expected");

}

The complete parser can be found at
http://www.cs.nott.ac.uk/~txa/g51mal/ParseE0.java.
Actually, we can be a bit more realistic and turn the parser into a simple eval-
uator by
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• Replace a by any integer. I.e. we use

Integer.valueOf(curr).intValue();

to translate the current token into a number. JAVA will raise an exception
if this fails.

• Calculate the value of the expression read. I.e. we have to change the
method interfaces:

static int parseE()

static int parseE1(int x)

static int parseT()

static int parseT1(int x)

static int parseF()

The idea behind parseE1 and parseT1 is to pass the result calculated
so far and leave it to the method to incorporate the missing part of the
expression. I.e. in the case of parseE1

static int parseE1(int x) {
if (curr=="+") {

next();

int y = parseT();

return parseE1(x+y);

} else if(curr==")" || curr=="$" ) {
return x;

} else {
error("Unexpected :"+curr);

return x;

}
}

Here is the complete program with evaluation
http://www.cs.nott.ac.uk/~txa/g51mal/ParseE.java.
We can run the program and observe that it handles precedence of operators
and brackets properly:

[txa@jacob misc]$ java ParseE

3 + 4 * 5

OK 23

[txa@jacob misc]$ java ParseE

( 3 + 4 ) * 5

OK 35
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7.5 Beyond hand-written parsers — use parser generators

The restriction to LL(1) has a number of disadvantages: In many case a natural
(and unambiguous) grammar like G has to be changed. There are some cases
where this is actually impossible, i.e. although the language is deterministic
there is no LL(1) grammar for this.
Luckily, there is a more powerful approach, called LR(1). LL(1) proceeds from
top to bottom, when we are looking at the parse tree, hence this is called top-
down parsing. In contrast LR(1) proceeds from bottom to top, i.e. it tries to
construct the parse tree from the bottom upwards.
The disadvantage with LR(1) and the related approach LALR(1) (which is
slightly less powerful but much more efficient) is that it is very hard to construct
LR-parsers by hand. Hence there are automated tools that get the grammar as
an input and produce a parser as the output. One of the first of those parser
generators was YACC for C. Nowadays one can find parser generators for many
languages such as JAVA CUP for Java [Hud99] and Happy for Haskell [Mar01].
However, there are also very serious tools based on LL(k) parsing technology,
such as ANTLR (ANother Tool for Language Recognition) [Par05], that over-
come some of the problems of basic LL parsing and that provides as much
automation as any other parser generator tool. It is true that a grammar still
may have to be changed a little bit to parseable, but that is true for LR parsing
too. In practice, once one become familiar with a tool, it is not that hard to
write a grammar in such a way so as to avoid the most common pitfalls from the
outset. Additionally, most tools provide mechanics such as declarative specifi-
cation of disambiguation rules that allows grammars to be written in a natural
way without worrying too much about the details of the underlying parsing
technology. Today, when it comes to choosing a tool, the underlying parsing
technology is probably less important than other factors such as tool quality,
supported development languages, feature set, etc.

8 Turing machines and the rest

A Turing machine (TM) is a generalization of a PDA that uses a tape instead of
a stack. Turing machines are an abstract version of a computer - they have been
used to define formally what is computable. There are a number of alternative
approaches to formalize the concept of computability (e.g. called the λ-calculus,
or µ-recursive functions, . . . ) but they can all shown to be equivalent. That this
is the case for any reasonable notion of computation is called the Church-Turing
Thesis.
On the other side there is a generalization of context free grammars called phrase
structure grammars or just grammars. Here we allow several symbols on the
left hand side of a production, e.g. we may define the context in which a rule is
applicable. Languages definable by grammars correspond precisely to the ones
that may be accepted by a Turing machine and those are called Type-0-languages
or the recursively enumerable languages (or semidecidable languages)
Turing machines behave different from the previous machine classes we have
seen: they may run forever, without stopping. To say that a language is accepted
by a Turing machine means that the TM will stop in an accepting state for each
word that is in the language. However, if the word is not in the language the
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Turing machine may stop in a non-accepting state or loop forever. In this case
we can never be sure whether the given word is in the language - i.e. the Turing
machine doesn’t decide the word problem.
We say a language is recursive (or decidable), if there is a TM that will always
stop. There are type-0-languages that are not recursive — the most famous one
is the halting problem. This is the language of encodings of Turing machines
that will always stop.
There is no type of grammars that captures all recursive languages (and for
theoretical reasons there cannot be one). However there is a subset of recursive
languages that are called context-sensitive languages. They are given by context-
sensitive grammars : grammars where the left hand side of a production is always
shorter than the right hand side. Context sensitive languages on the other hand
correspond to linear bounded TMs, these are those TMs that use only a tape
whose length can be given by a linear function over the length of the input.

8.1 What is a Turing machine?

A Turing machine M = (Q, Σ, Γ, δ, q0, B, F ) is given by the following data

• A finite set Q of states,

• A finite set Σ of symbols (the alphabet),

• A finite set Γ of tape symbols s.t. Σ ⊆ Γ. This is the case because we use
the tape also for the input.

• A transition function

δ ∈ Q × Γ → {stop} ∪ Q × Γ × {L, R}

The transition function defines how the function behaves if is in state q
and the symbol on the tape is x. If δ(q, x) = stop then the machine stops
otherwise if δ(q, x) = (q′, y, d) the machines gets into state q′, writes y on
the tape (replacing x) and moves left if d = L or right, if d = R

• An initial state q0 ∈ Q,

• The blank symbol B ∈ Γ but B /∈ Σ. In the beginning only a finite section
of the tape containing the input is not blank.

• A set of final states F ⊆ Q.

In [HMU01] the transition function is defined without the stop option as δ ∈
Q×Γ → Q×Γ×{L, R}. However they allow δ to be undefined, which correspond
to our function returning stop.
This defines deterministic Turing machines, for non-deterministic TMs we change
the transition function to

δ ∈ Q × Γ → P(Q × Γ × {L, R})

Here stop corresponds to δ returning an empty set. As for finite automata
(and unlike for PDAs) there is no difference in the strength of deterministic or
non-deterministic TMs.
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As for PDAs we define instantaneous descriptions ID for Turing machines. We
have ID = Γ∗ ×Q×Γ∗ where (γL, q, γR) ∈ ID means that the TM is in state Q
and left from the head the non-blank part of the tape is γL and starting with
the head itself and all the non-blank symbols to the right is γR.
We define the next state relation `

M
similar as for PDAs:

1. (γL, q, xγR) `
M

(γLy, q′, γR) if δ(q, x) = (q′, y, R)

2. (γLz, q, xγR) `
M

(γL, q′, zyγR) if δ(q, x) = (q′, y, L)

3. (ε, q, xγR) `
M

(ε, q′, ByγR) if δ(q, x) = (q′, y, L)

4. (γL, q, ε) `
M

(γLy, q′, ε) if δ(q, B) = (q′, y, R)

5. (γLz, q, ε) `
M

(γL, q′, zy) if δ(q, B) = (q′, y, L)

6. (ε, q, ε) `
M

(ε, q′, By) if δ(q, B) = (q′, y, L)

The cases 3 to 6 are only needed to deal with the situation of having reached
the end of the non-blank part of the tape.
We say that a TM M accepts a word if it goes into an accepting state, i.e. the
language of a TM is defined as

L(M) = {w ∈ Σ∗ | (ε, q0, w)
∗

`
M

(γL, q′, γR) ∧ q′ ∈ F}

I.e. the TM stops automatically if it goes into an accepting state. However, it
may also stop in a non-accepting state if δ returns stop - in this case the word
is rejected.
A TM M decides a language if it accepts it and it never loops (in the negative
case).
To illustrate this we define a TM M that accepts the language L = {anbncn |
n ∈ N} — this is a language that cannot be recognized by a PDA or be defined
by a CFG.
We define M = (Q, Σ, Γ, δ, q0, B, F ) by

• Q = {q0, q1, q2, q3, q4, q5, q6}

• Σ = {a, b, c}

• Γ = Σ ∪ {X, Y, Z,  }
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• δ is given by

δ(q0,  ) = ( , q6, R)

δ(q0, a) = (X, q1, R)

δ(q1, a) = (a, q1, R)

δ(q1, Y ) = (Y, q1, R)

δ(q1, b) = (Y, q2, R)

δ(q2, b) = (b, q2, R)

δ(q2, Z) = (Z, q2, R)

δ(q2, c) = (Z, q3, R)

δ(q3,  ) = ( , q5, L)

δ(q3, c) = (c, q4, L)

δ(q4, Z) = (Z, q4, L)

δ(q4, b) = (b, q4, L)

δ(q4, Y ) = (Y, q4, L)

δ(q4, a) = (a, q4, L)

δ(q4, X) = (X, q0, R)

δ(q5, Z) = (Z, q5, L)

δ(q5, Y ) = (Y, q5, L)

δ(q5, X) = (X, q6, R)

δ(q, x) = stop everywhere else

• q0 = q0

• B =  

• F = {q6}

The machine replaces an a by X (q0) and then looks for the first b replaces it by
Y (q1) and looks for the first c and replaces it by a Z (q2). If there are more c’s
left it moves left to the next a (q4) and repeats the cycle. Otherwise it checks
whether there are no a’s and b’s left (q5) and if so goes in an accepting state
(q6).
Graphically the machine can be represented by the following transition diagram,
where the edges are labelled by (read-symbol,write-symbol,move-direction):

Y,Y,L

Z,Z,L
b,b,L

a,a,L

q0 q1 q2 q3

q4
q5

q6

a,X,R b,Y,R c,Z,R

a,a,R
Y,Y,R

b,b,R
Z,Z,R

c,c,LX,X,R

 , ,L

Z,Z,L
Y,Y,L

X,X,R
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E.g. consider the sequence of IDs on aabbcc:

(ε, q0, aabbcc) ` (X, q1, abbcc)

` (Xa, q1, bbcc)

` (XaY, q2, bcc)

` (XaYb, q2, cc)

` (XaYbZ, q3, c)

` (XaYb, q4, Zc)

` (XaY, q4, bZc)

` (Xa, q4, YbZc)

` (X, q4, aYbZc)

` (ε, q4, XaYbZc)

` (X, q0, aYbZc)

` (XX, q1, YbZc)

` (XXY, q1, bZc)

` (XXYY, q2, Zc)

` (XXYYZ, q2, c)

` (XXYYZZ, q3, ε)

` (XXYYZ, q5, Z )

` (XXYY, q5, ZZ )

` (XXY, q5, YZZ )

` (XX, q5, YYZZ )

` (X, q5, XYYZZ )

` (XX, q6, YYZZ )

We see that M accepts aabbcc. Since M never loops it does actually decide L.

8.2 Grammars and context-sensitivity

Grammars G = (V, Σ, S, P ) are defined as context-free grammars before with
the only difference that there may be several symbols on the left-hand side of a
production, i.e. P ⊆ (V ∪ T )+ × (V ∪ T )∗. Here (V ∪ T )+ means that at least

one symbol has to present. The relation derives ⇒
G

(and
∗

⇒
G

) is defined as before

⇒
G

⊆ (V ∪ T )∗ × (V ∪ T )∗

αβγ ⇒
G

αβ′γ ⇐⇒ β → β′ ∈ P

and as before the language of G is defined as

L(G) = {w ∈ Σ∗ | S
∗

⇒
G

w}

We say that a grammar is context-sensitive (or type 1) if the left hand side of a
production is at least as long as the right hand side. That is for each α → β ∈ P
we have |α| ≤ |β|
Here is an example of a context sensitive grammar: G = (V, Σ, S, P ) with
L(G) = {{anbncn | n ∈ N ∧ n ≥ 1}. where
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• V = {S, B, C}

• Σ = {a, b, c}

•

P = {S → aSBC

S → aBC

aB → ab

CB → BC

bB → bb

bC → bc

cC → cc}

We present without proof:

Theorem 8.1 For a language L ⊆ Σ∗ the following is equivalent:

1. L is accepted by a Turing machine M , i.e. L = L(M)

2. L is given by a grammar G, i.e. L = L(G)

Theorem 8.2 For a language L ⊆ Σ∗ the following is equivalent:

1. L is accepted by a Turing machine M , i.e. L = L(M) such that the length
of the tape is bounded by a linear function in the length of the input, i.e.
|γL| + |γR| ≤ f(x) where f(x) = ax + b with a, b ∈ N.

2. L is given by a context sensitive grammar G, i.e. L = L(G)

8.3 The halting problem

Turing showed that there are languages that are accepted by a TM (i.e. type 0
languages) but that are undecidable. The technical details of this construction
are quite involved but the basic idea is quite simple and is closely related to
Russell’s paradox, which we have seen in MCS.
Let’s fix a simple alphabet Σ = {0, 1}. As computer scientist we are well aware
that everything can be coded up in bits and hence we accept that there is an
encoding of TMs in binary. I.e. given a TM M we write dMe ∈ {0, 1}∗ for its
binary encoding. We assume that the encoding contains its length s.t. we know
when subsequent input on the tape starts.
Now we define the following language

Lhalt = {dMew | M halts on input w.}

It is easy (although the details are quite daunting) to define a TM that accepts
this language: we just simulate M and accept if M stops.
However, Turing showed that there is no TM that decides this language. To
see this let us assume that there is a TM H that decides L. Now using H we
construct a new TM F that is a bit obnoxious: F on input x runs H on xx. If
H says yes then F goes into a loop otherwise (H says no) F stops.
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The question is what happens if I run F on dF e? Let us assume it terminates,
then H applied to dF edF e returns yes and hence we must conclude that F on
dF e loops??? On the other hand if F with input dF e loops then H applied to
dF edF e will stop and reject and hence we have to conclude that F on dF e will
stop?????
This is a contradiction and hence we must conclude that our assumption that
there is a TM H that decides Lhalt is false. We say Lhalt is undecidable.
We haven shown that a Turing machine cannot decide whether a program (for
a Turing machine) halts. Maybe we could find a more powerful programming
language that overcomes this problem? It turns out that all computational
formalisms (i.e. programming languages) that can actually be implemented are
equal in power and can be simulated by each other — this observation is called
the Church-Turing thesis because it was first formulated by Alonzo Church and
Alan Turing in the 30ies.

8.4 Back to Chomsky

At the end of the course we should have another look at the Chomsky hierarchy,
which classifies languages based on sublasses of grammars, or equivalently by
different types of automata that recognize them

languages

finite automata

pushdown automata

Type 2 or context free

   
 

Type 3 or
regular languages

Type 1 or context sensitive 
languages

Decidable languages
Turing machines

Type 0 or recursively enumerable languages

All languages

We have worked our way from the bottom to the top of the hierarchy: start-
ing with finite automata, i.e. computation with fixed amount of memory via
pushdown automata (finite automata with a stack) to Turing machines (finite
automata with a tape). Correspondigly we have introduced different grammat-
ical formalisms: regular expressions, context-free grammars and grammars.
Note that at each level there are languages that are on the next level but not
on the previous: {anbn | n ∈ N} is level 2 but not level 3; {anbncn} is level 1
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but not level 2 and the Halting problem is level 0 but not level 1.
We could have gone the other way: starting with Turing machines and grammars
and then introduce restrictions on them. I.e. Turing machines that only use
their tapes as a stack, and Turing machines that never use the tape apart for
reading the input. Again correspondingly we can define restrictions on the
grammar sise: first introduce context-free grammars and then grammars where
all productions are of the form A → aB or A → a, with A, B non-terminal
symbols and a, b are terminals. These grammars correspond precisely to regular
expressions (I leave this as an exercise).
I believe that Chomsky introduced his herarchy as a classification of grammars
and that the relation to automata was only observed a bit later. This is maybe
the reason why he introduced the Type-1 level, which is not so interesting from
an automata point of view (unless you are into computational complexity, i.e.
resource use - here linear use of memory). It is also the reason why on the other
hand the decidable languages do not constitute a level: there is no corresponding
grammatical formalism (we can even prove this).
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