
G51MAL-E1

The University of Nottingham

SCHOOL OF COMPUTER SCIENCE
AND INFORMATION TECHNOLOGY

A LEVEL 1 MODULE, SPRING SEMESTER 2004-2005

MACHINES AND THEIR LANGUAGES

Time allowed TWO hours

Candidates must NOT start writing their answers until told to do so

Answer QUESTION ONE and any THREE other questions

Marks available for sections of questions are shown in
brackets in the right-hand margin.

No calculators are permitted in this examination.

Dictionaries are not allowed with one exception. Those whose first language
is not English may use a dictionary to translate between that language and
English provided that neither language is the subject of this examination.

No electronic devices capable of storing and retrieving
text, including electronic dictionaries, may be used.

DO NOT turn examination paper over until instructed to do so

G51MAL-E1 Turn Over

2 G51MAL-E1

Question 1 (Compulsory)
The following questions are multiple choice. There is at least one correct
choice but there may be several. To get all the marks you have to list all the
correct answers and none of the wrong ones.

Note: The answers below provide some explanations, mainly for the in-
correct alternatives. This is just for clarification. The answer should just be
a list of alternatives.

(a) Which of the following statements are correct?

(i) An alphabet is a finite set of symbols.

(ii) A word is a possibly infinite sequence of symbols over a given
alphabet.

(iii) A language is the set of all possible words over a given alphabet.

(iv) A regular language is always finite.

(v) A finite language is always regular.

(5)

Correct: i, v

Incorrect:

ii A word must be finite.

iii A language is a subset of the possible words.

iv Σ∗ is an example of an infinite regular language for any non-
empty alphabet Σ.

(b) Which of the following statements are correct?

(i) The empty word ε belongs to all languages.

(ii) The empty word ε is the only word in the empty language ∅.

(iii) ε ∈ {a}∗

(iv) ε ∈ ∅∗

(v) If L is a language containing at least one non-empty word, then
L∗ is an infinite language.

(5)

Correct: iii, iv, v

Incorrect:

i A language is an arbitrary subset of the possible words over a
given alphabet. This may or may not include the empty word.

ii The empty language contains no words, not even the empty one.

G51MAL-E1

3 G51MAL-E1

(c) Consider the following finite automaton A over Σ = {a, b}:

0

1

2

3

a

b

b

a
a

b

Which of the following statements about A are correct?

(i) The automaton A is a Deterministic Finite Automaton (DFA).

(ii) ε ∈ L(A)

(iii) abba ∈ L(A)

(iv) All words accepted by A contain equally many a’s and b’s.

(v) The automaton A accepts all non-empty words over Σ that con-
tain equally many a’s and b’s.

(5)

Correct: iii, iv

Incorrect:

i NFA since the transition function is not total for the states 1 and
2.

ii State 0 is not an accepting state (and there is no way to get to
an accepting state on the empty input).

v No, it does not accept aabb, for example. (The automaton accepts
(ab + ba)(ab + ba)∗.)

(d) Consider the following set W of words:

W = {ε, ab, cab, abab}

Which of the following regular expressions denote a language that
contains all words in W ? (But not necessarily only the words in W : it
is OK if the language denoted by the regular expression contains more
words.)

(i) (ε + ab + c)(ε + ab)

(ii) (ε + ab + c)(∅ + ab)

(iii) (ε + ab + c)∗

(iv) (ab + c)∗

(v) (ab∅ + c)∗

(vi) (ab)∗ + c∗

G51MAL-E1 Turn Over

4 G51MAL-E1

(5)

Correct: i, iii, iv

Incorrect:

• ii The empty word ε is not in the language. To see this, recall that
concatenation with the empty language yields the empty language
and simplify:

(ε + ab + c)(∅ + ab) = (ε + ab + c)∅ + (ε + ab + c)ab
= (ε + ab + c)ab
= ab + cab + abab

• v Concatenation with the empty language yields the empty lan-
guage, thus the r.e. can be simplified as follows:

(ab∅ + c)∗ = (∅ + c)∗ = c∗

vi The word cab is not in the language.

(Six rather than five alternatives is intentional.)

(e) Consider the following Context-Free Grammar (CFG) G:

S → X | Y C

X → aXc | B

Y → aY b | ε

B → bB | ε

C → cC | ε

S, X, Y , B, C are nonterminal symbols, S is the start symbol, and a,
b, c are terminal symbols.

Which of the following statements about the language L(G) generated
by G are correct?

(i) aabbcc ∈ L(G)

(ii) {aibjck | i, j, k ∈ N} ⊆ L(G)

(iii) {aibicj | i, j ∈ N} ⊆ L(G)

(iv) {aibici | i ∈ N} ⊆ L(G)

(v) L(G) = {aibici | i ∈ N}

(5)

The language denoted by the CFG is

L(G) = {aibjci} ∪ {aibicj}

Thus, correct: i, iii, iv

Incorrect:

G51MAL-E1

5 G51MAL-E1

ii E.g. abbccc is not in L(G).

v E.g. aabbccc is in L(G).

Question 2

(a) Given the following NFA N over the alphabet Σ = {a, b, c}, construct
a DFA D(N) that accepts the same language as N by applying the
subset construction:

0 1 2 3

a, b, c

a b a, b, c

To save work, consider only the reachable part of D(N). Clearly show
your calculations, e.g. in a state-transition table. Do not forget to
indicate the initial state and the final states of the resulting DFA
D(N). (12)

The DFA states are sets of NFA states. Any DFA state containing an
accepting NFA state is accepting. → marks an initial state, ∗ a final
one.

δD(N) a b c

→ {0} = X {0, 1} {0} {0}
{0, 1} = Y {0, 1} {0, 2} {0}
{0, 2} = Z {0, 1, 3} {0, 3} {0, 3}

∗ {0, 1, 3} = U {0, 1} {0, 2} {0}
∗ {0, 3} = V {0, 1} {0} {0}

Now we can draw the transition diagram:

X Y Z

U

V

b, c

a

c

a

b

a b

b, c

a

c

a

b, c

G51MAL-E1 Turn Over

6 G51MAL-E1

(b) Construct a finite automaton (DFA or NFA) that accepts the language
of correct binary (base 2) additions (and no other strings) according
to the following. We consider addition of two binary numbers of equal
but arbitrary length. For example:

1001
+0011

1100

We represent an addition by the string of binary digits (0 or 1) obtained
by reading the digits top-down, column by column, from left to right.
The example above is thus represented by the string 101001010110.
We assume that the summands have been padded with 0’s to the left
to make them as long as the result, if necessary. For example, the
addition

01
+11

100

is represented by the string 001010110. To simplify the problem slightly,
the empty string ε is considered representing a correct binary addition
(two zero-length summands yield a zero-length result). (13)

Key idea: When we encounter a digit from the sum, it will be clear
whether or not the addition in the next column must result in a carry
if the addition is to be correct. If not, we just go back to the start
state (which is accepting). Otherwise, we go to an “expect carry” state
which is like the start state, except that it is not accepting and that
what constitutes a correct sequence of digits is adjusted to reflect the
expected carry.

The following transition diagram represents a 10-state NFA that im-
plements this idea. A is the initial and only accepting state. F is the
“expect carry state”.

G51MAL-E1

7 G51MAL-E1

A

B

C

D

E

F

G

H

I

J

0

1

0

1

0

1

0

1

0

1

1

0

1

0

1

0

Question 3

(a) Classify the following languages as regular, context-free, or neither.
Justify your answer by providing, where possible and reasonable, a
regular expression or a context-free grammar denoting the language in
question. Otherwise justify by giving a short (informal but convincing)
argument.

(i) All words over Σ = {a, b, c} in which every a is immediately
followed by a b.

(ii) All words over Σ = {a, b, c} in which every a is eventually fol-
lowed by a b.

(iii) {aibicjdj | i, j ∈ N}

(iv) {aibjcidj | i, j ∈ N}

(v) All legal sequences of moves in the game of Chess.

(10)

(i) Regular: (ab + b + c)∗

(ii) Regular: (a(a + c)∗b + b + c)∗

(iii) Context free:
S → AB

A → aAb | ε

B → cBd | ε

G51MAL-E1 Turn Over

8 G51MAL-E1

(iv) Not context free (and thus not regular). A production for guaran-
teeing the balance between the a’s and the c’s will necessarily look
something like A → aAc | B. But once the B is reached, there is
no way to enforce that the number of b’s matches the number of
d’s that follow the string derived from A. The situation is similar
if one sets out to initially maintain the balance between the b’s
and the d’s.

Another argument: a PDA has only one stack and thus cannot
count two different things simultaneously and independently.

(v) Regular since the number of chess states (ways of placing pieces
on the board) is finite and since the legal moves is uniquely de-
termined by the current state.

(b) Systematically construct an NFA accepting the language denoted by
the following regular expression by following the graphical construction
described in the lectures/lecture notes:

(a + b)∗(c + d)

The alphabet is Σ = {a, b, c, d}.

Your answer should clearly show what you are doing. In particular,
in addition to the final NFA, the answer should include at least two
intermediate stages of the construction. However, states only have to
be named in the final NFA. Also, feel free to tidy up the final NFA by
removing “dead ends”, but be sure to explain what you are doing.

(5) Work structurally, from the smallest
constituent subexpressions towards to overall regular expression. Since
they are simple enough, we start with NFAs for (a + b):

q1

q2

q3

q4

a

b

and (c + d):

q5

q6

q7

q8

c

d

G51MAL-E1

9 G51MAL-E1

Then form an NFA for (a + b)∗:

q1

q2

q3

q4

q9

a

a

a

b

b

b

Concatenate the NFAs for (a + b)∗ and (c + d), keeping in mind that
there is a start state that is also final in the first NFA (since ε belong
to the language), meaning that the initial states of the second NFA
are kept as initial states. Don’t forget to change the accepting states of
first the NFA to non-accepting ones:

q1

q2

q3

q4

q9

a

a

a

b

b

b

q5

q6

q7

q8

c

d

a

a

b

b

Finally, remove “dead ends”:

G51MAL-E1 Turn Over

10 G51MAL-E1

q1

q2

a

a

b

b

q5

q6

q7

q8

c

d

a

a

b

b

(c) Use the Pumping Lemma for regular languages to show that the fol-
lowing language is not regular:

{aibjck | i, j, k ∈ N, k = min(i, j)}

(10)

Call the given language L. Assume it is regular. Then, according to
the pumping lemma for regular expressions, there is a constant n such
that any string w ∈ L which has length at least n (|w| ≥ n) can be
divided into three parts w = xyz as follows:

1. |xy| ≤ n

2. |y| > 0

3. xyiz ∈ L for any natural number i

Consider a string w = anbncn. As min(n, n) = n, we clearly have
w ∈ L. Moreover, the length of w is |w| = 3n ≥ n. The pumping lemma
for regular languages therefore applies, and our w, as any sufficiently
long string in the language, can be divided into three parts w = xyz

accordingly.

Since |xy| ≤ n, it must be the case that y = ak for 0 < k ≤ n due to
the way w was chosen and condition 2 on the division into parts.

Now, consider condition 3. It should hold for any i. Pick i = 0 for
example. xy0z = a(n−k)bncn. Since k > 0, n − k < n. Therefore
min(n − k, n) = n − k < n. But the string xy0z has n c’s. That is
too many, and thus it cannot belong to L. We have a contradiction,
and thus our initial assumption that L is regular must be wrong. Thus
L is not regular, QED.

Question 4

G51MAL-E1

11 G51MAL-E1

(a) The following is a context-free grammar (CFG) for Boolean expres-
sions:

E → E ∧ E

| E ∨ E

| ¬E

| (E)

| t

| f

E is a nonterminal and the start symbol, ∧, ∨, ¬, (,), t, and f are
terminals.

Show that this grammar is ambiguous. (5)

A CFG is ambiguous if at least one word in the described language has
more than one parse tree. To show that a grammar is ambiguous pick
a word in the language that has two parse trees and show these two
trees. For the given language, t ∧ t ∧ t is a word that has two parse
trees:

E

E

E

t

∧ E

t

∧ E

t

E

E

t

∧ E

E

t

∧ E

t

An equivalent way is to show that the word in question either has two
leftmost derivations or two rightmost derivations. It is NOT enough
to just show two different derivations, as merely permuting the order in
which non-terminals are expanded does not affect the structure of the
corresponding parse tree. Here are two different leftmost derivations.
The first one, corresponding to the first tree:

E ⇒
lm

E ∧ E

⇒
lm

E ∧ E ∧ E

⇒
lm

t ∧ E ∧ E

⇒
lm

t ∧ t ∧ E

⇒
lm

t ∧ t ∧ t

G51MAL-E1 Turn Over

12 G51MAL-E1

The second one, corresponding to the second tree:

E ⇒
lm

E ∧ E

⇒
lm

t ∧ E

⇒
lm

t ∧ E ∧ E

⇒
lm

t ∧ t ∧ E

⇒
lm

t ∧ t ∧ t

(b) Construct an unambiguous version of the context-free grammar for
Boolean expressions given above by making it reflect the following
operator precedence conventions:

• ¬ has the highest precedence

• ∧ has the next highest precedence

• ∨ has the lowest precedence

For example, t∨¬f∧t should be interpreted as t∨((¬f)∧t). As long as
the grammar is unambiguous, you can choose whether or not to accept
expressions that would need conventions about operator associativity
to disambiguate them, like t ∨ t ∨ t. (10)

Here is a version that assumes that the binary operators are non-
associative. (Thus the language accepted is not quite the same as for
the ambiguous grammar. But that’s OK according to the problem state-
ment.)

E → E1 ∨ E1 | E1

E1 → E2 ∧ E2 | E2

E2 → ¬E2 | (E) | t | f

The problem does not state whether using many logical negations im-
mediately after one another should be OK or not (e.g. ¬¬¬t). The
above grammar does allow that. The following grammar does not:

E → E1 ∨ E1 | E1

E1 → E2 ∧ E2 | E2

E2 → ¬E3 | E3

E3 → (E) | t | f

The grammar is unambiguous either way, so both versions are fine.

G51MAL-E1

13 G51MAL-E1

(c) Draw the derivation trees according to your unambiguous grammar
for the following two expressions:

(i) ¬t ∨ f

(ii) ¬(f ∨ t) ∨ ¬f ∧ t

(5)

Parse trees according to the first grammar above. Parse tree for ¬t∨f :

E

E1

E2

¬ E2

t

∨ E1

E2

f

Parse tree for ¬(f ∨ t) ∨ ¬f ∧ t:

E

E1

E2

(E

E1

E2

f

∨ E1

E2

t

)

∨ E1

E2

¬ E2

f

∧ E2

t

(d) The binary operators ∧ and ∨ can be considered to be:

• left-associative; i.e. an expression like t∨t∨t would be interpreted
as (t ∨ t) ∨ t

• right-associative; i.e. an expression like t ∨ t ∨ t would be inter-
preted as t ∨ (t ∨ t)

• non-associative; i.e. ruling out expressions like t ∨ t ∨ t

G51MAL-E1 Turn Over

14 G51MAL-E1

Explain what is the case for your grammar and why, and how to change
your grammar for the other possibilities. (5)

Left-associative: make the productions for the binary operators left re-
cursive:

E → E ∨ E1

E1 → E1 ∧ E2

Right-associative: make the productions for the binary operators right
recursive:

E → E1 ∨ E

E1 → E2 ∧ E1

Non-associative: do not make the productions for the binary operators
directly recursive, as in the original grammar.

Question 5
Consider the following Pushdown Automaton (PDA) P :

P = (Q = {q0, q1}, Σ = {a, b, c}, Γ = {a,#}, δ, q0, Z0 = #, F = {q1})

where the transition function δ is given by

δ(q0, a,#) = {(q0, a#)}

δ(q0, c,#) = {(q0,#)}

δ(q0, a, a) = {(q0, aa)}

δ(q0, b, a) = {(q0, ε)}

δ(q0, c, a) = {(q0, a)}

δ(q0, ε,#) = {(q1,#)}

δ(q, w, z) = ∅ everywhere else

Acceptance is by final state.

(a) Which of the following words are accepted by the PDA P ?

(i) acabbc

(ii) cbcac

(iii) ε

For those words that are accepted, provide a sequence of Instantaneous
Descriptions (IDs) leading to an accepting configuration as evidence.
For those words that are not accepted, explain why there is no sequence
of IDs leading to an accepting configuration. (12)

G51MAL-E1

15 G51MAL-E1

(i) The word acabbc is accepted. ID sequence:

(q0, acabbc,#) ` (q0, cabbc, a#)

` (q0, abbc, a#)

` (q0, bbc, aa#)

` (q0, bc, a#)

` (q0, c,#)

` (q0, ε,#)

` (q1, ε,#)

The word is accepted because q1 is an accepting state and since
all input has been read. (Marking: 5 points.)

(ii) The word cbcac is not accepted. On seeing c in state q0 with # on
top of the stack, there are two possibilities. The PDA can either
read and discard the c, staying in q0, or it can move to q1 without
reading the c.

We observe that the machine gets stuck as soon as state q1 is
reached.

Thus, if we want to accept a string starting with a c, the first
transition must be to read and discard that c:

(q0, cbcac,#) ` (q0, bcac,#)

We are now in state q0, reading a b, with # on top of the stack.
The only possibility here is to move to q1 without reading any
input:

` (q1, bcac,#)

But this is a stuck configuration! And since all input has not been
read, it is not an accepting configuration.

Thus there are no sequences of IDs leading to an accepting con-
figuration. (Marking: 5 points.)

(iii) The word ε is accepted:

(q0, ε,#) ` (q1, ε,#)

This is an accepting configuration since q1 is an accepting state
and since all input (none!) has been read. (Marking: 2 points.)

(b) Describe the language accepted by P in English in one sentence. (5)

Strings over Σ = {a, b, c} where a acts as an opening parenthesis, b as
a closing parenthesis, and parentheses has to be balanced in the usual
fashion.

G51MAL-E1 Turn Over

16 G51MAL-E1

(c) Explain how to modify P to make it accept by empty stack instead of
accepting by final state (without changing the accepted language). (2)

One possibility is to replace the equation

δ(q0, ε,#) = δ(q1,#)

with
δ(q0, ε,#) = δ(q1, ε)

or even
δ(q0, ε,#) = δ(q0, ε)

(getting rid of one state).

Either way, this gives the PDA the possibility to completely empty the
stack when it is in a state where the “parentheses” seen so far has
balanced out. If the PDA makes that move in a state where all input
has been read it will enter an accepting configuration (and block), just
as the given PDA does when entering state q1.

(d) What does it mean for a PDA to be deterministic? State the formal
condition and explain what it means. Is P deterministic? Justify your
answer! (6)

That the PDA never has any choice. Formally:

|δ(q, x, z)| + |δ(q, ε, z)| ≤ 1

for all q ∈ Q, x ∈ Σ, and z ∈ Γ.

P is not deterministic as it has a choice in state q0 when # is the top
stack symbol for input symbols a and c. Formally, we have e.g.

|δ(q0, a,#)| + |δ(q0, ε,#)| = 1 + 1 = 2

which is not less than or equal to 1.

Question 6

(a) What is a Turing Machine (TM)? Your account does not have to be
formal, but it should be comprehensive and clearly outline the central
ideas. (5)

A Turing Machine is a mathematical model of a general computer.
It consists of finite control plus an infinite tape for storage of the in-
put, the output, and any other data needed during a computation. The
tape is divided into cells, each cell is capable of storing one symbol.
A read/write head scans one cell of the tape, and depending on the
symbol in that cell and the state of the finite control, the TM updates
the scanned symbol with a new symbol (possibly the same as before),
moves the head one step left or right, and changes state.

G51MAL-E1

17 G51MAL-E1

(b) Outline a strategy for constructing a TM that accepts the language

{ambncmdn | m,n ∈ N}

(5)

If an a is being read, overwrite it with a marking symbol not in the
input alphabet, say X, move to the right until a corresponding c is
found, but only moving across first a’s, then b’s, then X’s if any, mark
that as well, and then move left until we find the first remaining a, and
repeat. If at any point a c cannot be found, stop in a non-accepting
state.

If there was no a to begin with, or once there are no remaining a’s, we
do as above for b and d.

If the machine has reached a state where the last remaining a and b has
been matched with a corresponding c or d, the TM is in a state where it
is scanning left for a remaining a or b. But instead of finding one, it is
going to encounter a blank symbol to the left of the portion of the tape
where the input initially was written. At this point, the machine starts
scanning right. If it only reads X’s before the first blank symbol to the
right of the portion of the tape where the input was stored is found,
the TM moves to an accepting state and stops. Otherwise it stops in a
non-accepting state.

(c) Explain and relate the following terms in the context of Turing Ma-
chines: recursive, recursively-enumerable, decidable, undecidable. (5)

A recursive language is a language that is accepted by a Turing Ma-
chine that always halts. This is the same as saying that the language
is decidable (or that the problem represented by the language is decid-
able).

A recursively enumerable language is a language that is accepted by a
Turing Machine that does not necessarily halt for input not belonging
to the language.

A language that is not recursive is undecidable. The undecidable lan-
guages thus includes the recursively enumerable (or semi-decidable)
languages and those languages which are not even recursively-enumerable.

(d) What is the Church-Turing thesis? Give a brief explanation. (5)

The unproven assumption that any reasonable notion of what ”compu-
tation” means is equivalent to what a Turing machine can compute.

(e) One could argue that a computer is really a finite state automaton
since any computer only has a finite memory. Is this a useful charac-
terization? Provide a good argument for your position. (5)

G51MAL-E1 Turn Over

18 G51MAL-E1

Arguing either way is fine as long as the argument is good!

Here is my position:

Even a very modest real computer has far too many states for an FA
characterization to provide any useful model of its behaviour. If one
does not accept that, then note that it would be possible to design and
program a computer in such a way that it dynamically can ask for
more memory should the need arise (e.g. by making additional storage
resources available over a network). Then, given given some time, the
computer would always have as much memory as it needs, which for
practical purposes is the same as an unbounded amount of memory.
Again, a finite automaton is not a useful characterization.

(If one wants to push the argument, one could say that the resources
on the Earth are limited, and thus it is conceivable that a program
might need more memory than actually could be constructed using the
resources available on the Earth. But nothing in principle stops us from
moving beyond the Earth. So ultimately what is going to set the limit is
what we are prepared/can afford to do to extend the memory, and for
how long we can wait for the final answer, not that it is theoretically
impossible to extend the memory.)

G51MAL-E1 End

