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Knowledge classification: Following School recommendation, the (sub)questions
have been classified as follows, using a subset of Bloom’s Taxonomy:

K: Knowledge

C: Comprehension

A: Application

Note that some questions are closely related to the coursework. This is
intentional and as advertised to the students; the coursework is a central
aspect of the module and as such partly examined under exam conditions.

Question 1

(a) Explain and give examples of the following kinds of compile-time error:

• lexical error

• syntax error (context-free)

• contextual error

(6)

Answer: [C]

• A lexical error occurs when the input does not conform to the
lexical syntax of a language. Examples include encountering a
character that cannot be part of any valid lexeme, or an ill-formed
string or numerical literal.

• A syntax error occurs when the input does not conform to the
context-free syntax of a language. A typical example would be un-
balanced parentheses, or missing terminating keyword, such as a
repeat without an until.

• A contextual error occurs when contextual constraints are vio-
lated. Examples include type errors, such as adding a Boolean to
an integer in a language that requires the terms of addition to
be of the same type, and a missing declaration of a variable in a
language that requires declaration before use.
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(b) Draw the parse (or derivation) tree for the following MiniTriangle
fragment. The relevant grammar is given in Appendix A. Start from
the production for “Command”.

if x[i] < 100 then

putint(k)

else

i := (-i) - 1

(9)

Answer: [A]
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(c) Consider the following context-free grammar (CFG):

S → AB | BC

A → Aa | c

B → bbB | d

C → c

S, A, B, and C are nonterminal symbols, S is the start symbol, and
a, b, c, and d are terminal symbols.

The DFA below recognizes the viable prefixes for this CFG:

S → ·AB

S → ·BC

A → ·Aa

A → ·c

B → ·bbB

B → ·d

I0

S → A ·B

A → A · a

B → ·bbB

B → ·d

I1
S → AB ·

I2

A → Aa ·

I3

B → b · bB

I4

B → bb ·B

B → ·bbB

B → ·d

I5

B → bbB ·

I6

B → d ·

I7

S → B · C

C → ·c

I8 S → BC ·

I9

C → c ·

I10

A → c ·

I11

A

b

d

B

c

B

a

b

d

b b

d

B

C

c

Show how an LR(0) shift-reduce parser parses the string caabbbbd by
completing the following table (copy it to your answer book; do not
write on the examination paper):

State Stack Input Move

I0 ǫ caabbbbd Shift
I11 c aabbbbd Reduce by A→ c
...

...
...

...
S ǫ Done

(10)
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Answer: [A]

State Stack Input Move

I0 ǫ caabbbbd Shift
I11 c aabbbbd Reduce by A→ c
I1 A aabbbbd Shift
I3 Aa abbbbd Reduce by A→ Aa
I1 A abbbbd Shift
I3 Aa bbbbd Reduce by A→ Aa
I1 A bbbbd Shift
I4 Ab bbbd Shift
I5 Abb bbd Shift
I4 Abbb bd Shift
I5 Abbbb d Shift
I7 Abbbbd ǫ Reduce by B → d
I6 AbbbbB ǫ Reduce by B → bbB
I6 AbbB ǫ Reduce by B → bbB
I2 AB ǫ Reduce by S → AB

S ǫ Done
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Question 2
Consider the language given by the following abstract syntax:

C → Commands:
skip Do nothing

| C ; C Sequencing
| x := E Assignment
| if E then C else C Conditional command
| while E do C while-loop

E → Expressions:
n Literal integer

| x Variable
| E + E Addition
| E = E Comparison

For this question, you will develop code generation functions for the above
language, targeting the Triangle Abstract Machine (TAM). See appendix B
for a specification of the TAM instructions. Assume conventional (impera-
tive) semantics for the above language constructs, along with the following:

• x is the syntactic category of variable identifiers, ranging over the 26
names a, b, . . . , z. They refer to 26 global variables stored at SB + 0
(a) to SB + 25 (z).

• The while-loop has the following semantics: the loop expression E is
evaluated; if the result is true, the loop body C is executed next and
then the process is repeated from the evaluation of the loop expression;
otherwise execution continues after the loop.

The code generation functions should be specified through code templates
in the style used in the lectures. Assume a function addr (x) that returns the
address (of the form [SB + d]) for a variable x. Further, you will have
to consider generation of fresh labels. Assume a monadic-style operation
l ← fresh to bind a variable l to a distinct label that then can be used in
jumps and as jump targets. For example:

execute [[ if E then C1 else C2 ]] = l1 ← fresh
. . .
JUMP l1
. . .

l1: . . .
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(a) Write a code generation function evaluate that generates TAM code
for evaluating an expression. The first case should start like:

evaluate [[n ]] = . . .

(4)

Answer: [A] The following function generates code for the specified
expressions:

evaluate [[n ]] = LOADL n
evaluate [[x ]] = LOAD addr (x)
evaluate [[E1 + E2 ]] = evaluate E1

evaluate E2

ADD

evaluate [[E1 = E2 ]] = evaluate E1

evaluate E2

EQL

Marking: 1 mark for each case.
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(b) Write a code generation function execute that generates TAM code
for executing commands. It should handle the five forms of commands
specified by the abstract syntax above. (12)

Answer: [A]

execute [[ skip ]] = ǫ
execute [[C1 ; C2 ]] = execute C1

execute C2

execute [[x := E ]] = evaluate E
STORE addr (x)

execute [[ if E then C1 else C2 ]] = else ← fresh
endif ← fresh
evaluate E
JUMPIFZ else
execute C1

JUMP endif
else: execute C2

endif :
execute [[ while E do C ]] = loop ← fresh

out ← fresh
loop: evaluate E

JUMPIFZ out
execute C
JUMP loop

out:

Marking: 1 mark each for skip, sequence; 2 for assignment; 4 marks
for conditional; 4 marks for while-loop.
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(c) Now assume we wish to extend the language with the commands
break and continue :

C → Commands:
| . . .
| break Terminate innermost loop
| continue Continue with next loop iteration

The semantics is that break will terminate the innermost loop, with
execution continuing immediately after the loop, while continue will
skip whatever remains of the loop body, and continue execution di-
rectly with the next loop iteration.

Modify and extend execute to generate code for the extended language.
Note that execute will need (an) extra argument(s) for contextual in-
formation to keep track of the current innermost loop. You may assume
that using break or continue outside any loop is a static error. Thus
your code generator does not need to handle that case. Your answer
should include the modified execute cases for if and while, as well as
the cases for the two new commands. (9)

Answer: [A]

execute bl cl [[ if E then C1 else C2 ]] = else ← fresh
endif ← fresh
evaluate E
JUMPIFZ else
execute bl cl C1

JUMP endif
else: execute bl cl C2

endif :
execute bl cl [[ while E do C ]] = loop ← fresh

out ← fresh
loop: evaluate E

JUMPIFZ out
execute out loop C
JUMP loop

out:
execute bl cl [[ break ]] = JUMP bl
execute bl cl [[ continue ]] = JUMP cl

Marking: 3 marks for getting the general idea; 2 marks for correct calls
to execute in case for if; 2 marks for correct call to execute in case
for while; 1 mark each for correct code for break and continue.
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Question 3
This question concerns code improvement (optimisation) and internal rep-
resentations that facilitate analysis and code improvement.

(a) Explain the code improvement technique common subexpression elim-
ination, illustrating with an example. Also discuss when the technique
cannot be applied, again illustrating with an example. (6)

Answer: [K] The idea is to avoid evaluating the “same expression”
more than once. For example, the statements:

x1 := y1 + 7 * z + 42;
x2 := y2 + 7 * z + 42;

can be transformed to:

t := 7 * z + 42;
x1 := y1 + t;
x2 := y2 + t;

thus avoiding evaluating 7 * z + 42 twice.

However, it has to be ensured that the expressions actually have the
same meaning and not just are syntactically the same, and that they
do not have any side effects as eliminating an effect generally will
change the meaning of a program. For example, in

let x = y + 1 in let y = 10 in let z = y + 1

the two expressions y + 1 are not the same as they refer to two dif-
ferent variables that both happen to have the name y. For an example
involving effects, consider a C-like increment operation applied to a
variable: i++. Computing this expression only once and replacing mul-
tiple occurrences of it by the result will clearly change the meaning of
the program.
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(b) Show how the following program fragment involving a C-like for-loop
might be transformed by means of loop unrolling in a situation where
the loop bound n is not statically known:

b[0] := a[0];

for (i := 1; i < n; i++) do

b[i] := b[i-1] + a[i];

Also discuss the potential advantages and disadvantages of this trans-
formation. (9)

Answer: [K,A]

b[0] := a[0];

for (i := 1; i < ((n-1)/2)*2; i := i + 2) do begin

b[i] := b[i-1] + a[i];

b[i + 1] := b[i] + a[i + 1]

end;

if (i < n) then begin

b[i] := b[i-1] + a[i];

i++ end;

Benefits include that the number of iterations are reduced (here halved),
meaning fewer jumps (which can be expensive) and a larger loop body
that may open up for other optimisation’s and improved register allo-
cation. Drawbacks include that the code becomes larger, which could
have an impact on cache performance.
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(c) Transform the following code fragment into static single assignment
(SSA) form:

a := 0;

b := 1;

i := 2;

while i < n do begin

c := a + b;

a := b;

b := c;

i := i + 1

end

(10)

Answer: [A]

a1 := 0;

b1 := 1;

i1 := 2;

while (i2 = φ(i1,i3), a2 = φ(a1,a3), b2 = φ(b1,b3), i2 < n) do begin

c := a2 + b2;
a3 := b2;
b3 := c;

i3 := i2 + 1

end
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Appendix A: MiniTriangle Grammars
This appendix contains the grammars for the MiniTriangle lexical, concrete,
and abstract syntax. The following typographical conventions are used to
distinguish between terminals and non-terminals:

• nonterminals are written like this

• terminals are written like this

• terminals with variable spelling and special symbols are written like
this

MiniTriangle Lexical Syntax:

Program → (Token | Separator )∗

Token → Keyword | Identifier | IntegerLiteral | Operator
| , | ; | : | := | = | ( | ) | [ | ] | eot

Keyword → begin | const | do | else | end | fun | if | in
| let | out | proc | then | var | while

Identifier → Letter | Identifier Letter | Identifier Digit
except Keyword

IntegerLiteral → Digit | IntegerLiteral Digit

Operator → ^ | * | / | + | - | < | <= | == | != | >= | > | && | || | !

Letter → A | B | . . . | Z | a | b | . . . | z

Digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Separator → Comment | space | eol

Comment → // (any character except eol )∗ eol
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MiniTriangle Concrete Syntax:

Program → Command

Commands → Command
| Command ; Commands

Command → VarExpression := Expression
| VarExpression ( Expressions )

| if Expression then Command
else Command

| while Expression do Command
| let Declarations in Command
| begin Commands end

Expressions → ǫ
| Expressions1

Expressions1 → Expression
| Expression , Expressions1

Expression → PrimaryExpression
| Expression BinaryOperator Expression

PrimaryExpression → IntegerLiteral

| VarExpression
| UnaryOperator PrimaryExpression
| VarExpression ( Expressions )

| [ Expressions ]

| ( Expression )

VarExpression → Identifier

| VarExpression [ Expression ]

BinaryOperator → ^ | * | / | + | - | < | <= | == | != | >= | > | && | ||

UnaryOperator → - | !
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Declarations → Declaration
| Declaration ; Declarations

Declaration → const Identifier : TypeDenoter = Expression

| var Identifier : TypeDenoter

| var Identifier : TypeDenoter := Expression

| fun Identifier ( ArgDecls ) : TypeDenoter = Expression

| proc Identifier ( ArgDecls ) Command

ArgDecls → ǫ
| ArgDecls1

ArgDecls1 → ArgDecl
| ArgDecl , ArgDecls1

ArgDecl → Identifier : TypeDenoter

| in Identifier : TypeDenoter

| out Identifier : TypeDenoter

| var Identifier : TypeDenoter

TypeDenoter → Identifier

| TypeDenoter [ IntegerLiteral ]

Note that the productions for Expression make the grammar as stated
above ambiguous. Operator precedence and associativity for the binary op-
erators as defined in the following table are used to disambiguate:

Operator Precedence Associativity

^ 1 right
* / 2 left
+ - 3 left

< <= == != >= > 4 non
&& 5 left
|| 6 left

A precedence level of 1 means the highest precedence, 2 means second high-
est, and so on.
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MiniTriangle Abstract Syntax: Name = Identifier ∪Operator .

Program → Command Program

Command → Expression := Expression CmdAssign
| Expression ( Expression∗ ) CmdCall
| begin Command ∗ end CmdSeq
| if Expression then Command CmdIf

else Command
| while Expression do Command CmdWhile
| let Declaration∗ in Command CmdLet

Expression → IntegerLiteral ExpLitInt

| Name ExpVar
| Expression ( Expression∗ ) ExpApp
| [ Expression∗ ] ExpAry
| Expression [ Expression ] ExpIx

Declaration → const Name : TypeDenoter DeclConst
= Expression

| var Name : TypeDenoter DeclVar
( := Expression | ǫ )

| fun Name ( ArgDecl∗ ) DeclFun
: TypeDenoter = Expression

| proc Name ( ArgDecl∗ ) Command DeclProc

ArgDecl → ArgMode Name : TypeDenoter ArgDecl

ArgMode → ǫ ByValue
| in ByRefIn
| out ByRefOut
| var ByRefVar

TypeDenoter → Name TDBaseType
→ TypeDenoter [ IntegerLiteral ] TDArray
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Appendix B: Triangle Abstract Machine (TAM) Instructions

Meta variable Meaning

a Address: one of the forms specified by table be-
low when part of an instruction, specific stack
address when on the stack

b Boolean value (false = 0 or true = 1)

ca Code address; address to routine in the code seg-
ment

d Displacement; i.e., offset w.r.t. address in regis-
ter or on the stack

l Label name

m, n, p Integer

x, y, z Any kind of stack data

xn Vector of n items, n ≥ 0, here any kind

Address form Description

[SB + d] Address given by contents of register SB
[SB - d] (Stack Base) +/− displacement d

[LB + d] Address given by contents of register LB
[LB - d] (Local Base) +/− displacement d

[ST + d] Address given by contents of register ST
[ST - d] (Stack Top) +/− displacement d

Instruction Stack effect Description

Label

LABEL l — Pseudo instruction: symbolic loca-
tion

Load and store

LOADL n . . . ⇒ n, . . . Push literal integer n onto stack
LOADCA l . . . ⇒ addr(l), . . . Push address of label l (code seg-

ment) onto stack
LOAD a . . . ⇒ [a], . . . Push contents at address a onto

stack
LOADA a . . . ⇒ a, . . . Push address a onto stack
LOADI d a, . . . ⇒ [a+ d], . . . Load indirectly; push contents at

address a+ d onto stack
STORE a n, . . . ⇒ . . . Pop value n from stack and store at

address a
STOREI d a, n, . . . ⇒ . . . Store indirectly; store n at address

a+ d
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Instruction Stack effect Description

Block operations

LOADLB m n . . . ⇒ mn, . . . Push block of n literal integers m
onto stack

LOADIB n a, . . . ⇒ Load block of size n indirectly
[a+ (n − 1)], . . . , [a+ 0], . . .

STOREIB n a, xn, . . . ⇒ . . . Store block of size n indirectly
POP m n xm, yn, . . . ⇒ xm, . . . Pop n values below top m values

Arithmetic operations

ADD n2, n1, . . . ⇒ n1 + n2, . . . Add n1 and n2, replacing n1 and
n2 with the sum

SUB n2, n1, . . . ⇒ n1 − n2, . . . Subtract n2 from n1, replacing n1

and n2 with the difference
MUL n2, n1, . . . ⇒ n1 · n2, . . . Multiply n1 by n2, replacing n1

and n2 with the product
DIV n2, n1, . . . ⇒ n1/n2, . . . Divide n1 by n2, replacing n1 and

n2 with the (integer) quotient
NEG n, . . . ⇒ −n, . . . Negate n, replacing n with the re-

sult

Comparison & logical operations (false = 0, true = 1)

LSS n2, n1, . . . ⇒ n1 < n2, . . . Check if n1 is smaller than n2,
replacing n1 and n2 with the
Boolean result

EQL n2, n1, . . . ⇒ n1 = n2, . . . Check if n1 is equal to n2, replac-
ing n1 and n2 with the Boolean
result

GTR n2, n1, . . . ⇒ n1 > n2, . . . Check if n1 is greater than n2,
replacing n1 and n2 with the
Boolean result

AND b2, b1, . . . ⇒ b1 ∧ b2, . . . Logical conjunction of b1 and
b2, replacing b1 and b2 with the
Boolean result

OR b2, b1, . . . ⇒ b1 ∨ b2, . . . Logical disjunction of b1 and b2,
replacing b1 and b2 with the
Boolean result

NOT b, . . . ⇒ ¬b, . . . Logical negation of b, replacing b
with the result
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Instruction Stack effect Description

Control transfer

JUMP l — Jump unconditionally to location
identified by label l

JUMPIFZ l n, . . . ⇒ . . . Jump to location identified by label
l if n = 0 (i.e., n is false)

JUMPIFNZ l n, . . . ⇒ . . . Jump to location identified by label
l if n 6= 0 (i.e., n is true)

CALL l . . . ⇒ PC+ 1, LB, 0, . . . Call global subroutine at location l:
Activation record set up by pushing
static link (0 for global level), dy-
namic link (value of LB), and return
address (PC+1, address of instruc-
tion after the call instruction) onto
the stack; PC = l ; LB = start of acti-
vation record (address of static link)

CALLI ca, sl , . . . ⇒ Call subroutine indirectly:
PC+ 1, LB, sl , . . . address of routine (ca) and static

link to use (sl) on top of the stack;
activation record and new PC and LB

as for CALL
RETURN m n xm, yp, ra, olb, sl , yn, . . . Return from subroutine,

⇒ xm, . . . replacing activation record by re-
sult, jumping to return address
(PC = ra), and restoring the old lo-
cal base (LB = olb)

Input/Output

PUTINT n, . . . ⇒ . . . Print n to the terminal as a decimal
integer

PUTCHR n, . . . ⇒ . . . Print the character with character
code n to the terminal

GETINT . . . ⇒ n, . . . Read decimal integer n from the ter-
minal and push onto the stack

GETCHR . . . ⇒ n, . . . Read character from the terminal
and push its character code n onto
the stack

TAM Control

HALT — Stop execution and halt the machine
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