COMP4075

Real-world Functional Programming;:
Coursework Part I
Autumn, Academic Year 2020/21

Henrik Nilsson
School of Computer Science
University of Nottingham

October 22, 2020

1 Introduction

The assessed coursework for the module COMP4075 consists of two parts.
They are essentially programming exercises directly related to the content
covered in the lectures, with Part I focusing on basics and being of smaller
scale, and Part II focusing on advanced topics and applications. (In addition,
there is an optional programming project module, COMP4095, allowing you
to explore a topic of own choice related to real-world functional programming
theme of the module, interpreted broadly, in depth.)

This academic year (2020/21), the examination for COMP4075 is 100 %
coursework, with the weights of the two parts as follows:

o Part I: 25%
e Part II: 75 %

The COMP4075 coursework is to be carried out individually. You are
welcome to discuss the coursework with friends, in the COMP4075 Moodle
forum, with the module team, etc., but, in the end, you must solve the
problems on your own and demonstrate that you have done so by being able
to explain your solutions as well as their wider context.

2 Submission

For information about deadlines, see the module web page. For Part I of the
coursework, the following has to be submitted by the deadline:

A brief written report as specified below.

The source code of all solutions.

The submission is electronic:

To

Electronic copy of the report (PDF). The file should be called
psyxyz-report-partI.pdf, where psyxyz should be replaced by your
University of Nottingham user ID.

Archive of the source code hierarchy (gzipped TAR, or zip). The archive
should be called psyxyz-src-partl.tgz or psyxyz-src-partl.zip,
where psyxyz again should be replaced by your University of Notting-
ham user ID, and it should contain a single top-level directory contain-
ing all the other files.

The written report should be structured by task. For each task:

Brief comments about the key idea of the solution, how it works, and
any subtle aspects; a few sentences to a couple of paragraphs would
usually suffice.

Answers to any theoretical questions.

The code you wrote or added, with enough context to make an in-
complete definition easy to understand. Thus, in cases where you have
extended given code, you do not need to include what was given, except
small excerpts to provide context if necessary. Indeed, if the given code
is lengthy, you are encouraged to keep what you include in the report
to a minimum.

Anything extra that the task specifically asks for.

exemplify the point about added and modified code, if you:

have added a new function, then include the complete function defini-
tion, including the type signature;

have extended a lengthy function with a few cases, then include the new
cases along with immediately surrounding cases to the extent needed
to make it clear where the extension was made;

e have added a constructor to a datatype, include the definition and state
the name of the extended type explicitly.

As a guide, the report is not expected to be longer than 2 to 3 pages (1000
words), excluding any large code fragments and figures.

3 Assessment and Feedback

Both Part I and Part II are structured by tasks, each carrying a weight: a
maximal mark between 0 and 100 such that the weights of all tasks add up
to 100. Each individual task is assessed on two aspects:

e Correctness:
— 2 (Good): Solution entirely correct according to the specification,

except possibly in some very minor way.

— 1 (Pass): Solution mostly correct, but fails to entirely meet the
specification; AND/OR minor omissions.

— 0 (Fail): Solution mostly incorrect; AND/OR major omissions.
e Style:
— 2 (Good): Solution elegant and simple, and thus easy to under-

stand; code is well-written, well-formatted, tidy, good names.

— 1 (Pass): Solution unnecessarily convoluted; AND/OR coding style
has major flaws.

— 0 (Fail): Solution is incomprehensible; AND/OR coding style is
unacceptably poor.

The mark for each task is computed as follows:

correctness + style
4

mark = weight X

There may also be optional tasks carrying a few bonus marks, subject to
an overall cap of 100 for the coursework. These would typically be somewhat
loosely defined and open-ended, allowing those interested to explore a bit
further. Particularly ingenious or outstandingly elegant solutions to the main
tasks may also be awarded by a bonus mark or two.

After marking, you will get brief written feeback with each task assessed
according to the scheme above.

4 Getting Started

In the following, it is assumed that you are going to use the Haskell system
GHC on the School’s Linux/Unix servers or the Linux Teaching Desktop.
GHC is also available on the School’s Windows machines, and for the most
part things work the same. Unfortunately, the way additional software is
installed on the Windows machine seems to be a bit unstable year on year,
so the instructions for Windows in the following could be a bit out of date.

You can of course also install GHC on your own machine(s), and this
academic year in particular that may well be the most practical option. The
site www.haskell.org is your starting point for most things you might want
to know about Haskell, and for downloading Haskell implementations, related
tools, and documentation.

4.1 Notes for Working on the Linux Servers

The following assumes that you use one of the School’s Windows machines,
e.g. in the main lab A32, effectively as a terminal. Log on to your Linux
server using the SSH Secure Shell Client or PuTTY. Both are available via
the Windows Start Menu: All Programs/UoN Applications/Services and Fa-
cilities. At the time of writing, the servers are avon for 1st year students, bann
for 2nd year students and clyde for 3rd and 4th year students. To connect,
you may have to give the full name of the servers; e.g., clyde.cs.nott.ac.uk.

Start the interactive GHC environment by issuing the command ghci at
the command line prompt:

clyde$ ghci
Some information about GHCi gets printed, and you’ll then get a new prompt:
Prelude>

From here, you can enter and evaluate Haskell expressions, load Haskell code
from files, etc.

You can also edit code on the servers using text editors like Emacs (com-
mand emacs or emacs -nw if you want to use Emacs in text mode) or Vi
(command vi). Using a terminal multiplexer like Screen (command screen;
do man screen for info) you can start a number of interactive sessions (e.g.
GHCi, Emacs, shell) and quickly and easily switch between them, all within
one window. Alternatively, you can start a number of SSH sessions in separate
windows by invoking the SSH client multiple times.

4.2 Notes for Working on the Linux Teaching Desktop

The Linux Teaching Desktop software installation mirrors the one on the
Linux servers, so everything will work the same. Which one to pick mainly
depends on if you prefer to work in a Linux desktop environment, or if
you prefer to work through a terminal window. If you want to install the
VMWare Horizon Client on your own machine to access the Linux Teach-
ing Desktop (the client is available for a wide variety of platforms), head to
https://www.nottingham.cloud/.

4.3 Notes for Working on the Windows Machines

The Haskell Platform, which includes GHCi, has been installed on the Win-
dows machines in the lab. Just select GHCi from the start menu (under
All Programs/UoN Applications/_School of Computer Science/Haskell Plat-
form).

Note that you can navigate around the directory structure using the :cd
command. For example, to get to the H drive:

:cd H:

Also, you can set GHCi (if it isn’t already) as the default program as-
sociated with .hs files, so you can load them into GHCi just by clicking on
them in a file browser window.

Alternatively, you can use WinGHCi. It allows you do do simple things
like loading, editing, and running code through GUI shortcuts. However, the
associated editor is Notepad, and as Notepad does not understand Unix line-
ending conventions, you may need to work around that one way or another
in certain cases; see section 4.3.1.

You can edit Haskell files on the Windows machines using editors like
Emacs, XEmacs, or Notepad-++ (if installed). They all adapt automatically
to different line-ending conventions, but Notepad++ may need some config-
uration regarding the width of tab stops; see section 4.3.2.

4.3.1 Unix and Windows Line-Ending Conventions

As you may be aware, Unix (and hence also Linux, Solaris, Mac OS, etc.) and
Windows use different line-ending conventions for text files. Consequently,
you could encounter problems if you switch between systems. To get around
this problem, you can either use a text editor that adapts to the convention
used, or you can use programs such as unix2dos and dos2unix to convert
text files from Unix to Windows and vice-versa. You can run these programs

(under Linux) by supplying them with the names of one or more files to
convert (old files will be overwritten); for example:

unix2dos MyFilel.hs MyFile2.hs MyFile3.hs
Alternatively, you can specify input-output file pairs; for example:
unix2dos -n MyFile-Unix.hs MyFile-Windows.hs

In more detail, the Unix convention is to use a single character LF (for
“Line Feed”, ASCII/UNICODE character 10). The Windows convention is to
use a character CR (for “Carriage Return”, ASCII/UNICODE character 13)
followed by LF. An additional complication is that some languages (e.g. C and
Haskell) have some provisions for hiding such platform-dependent differences.
For example, the character escape sequence \n stands for an abstract newline
character that signifies a line ending. Internally, this may be (and typically
will be, but is not guaranteed to be) mapped to the LF character. However,
for input/output purposes (in text mode), this character is mapped to and
from the appropriate external, platform specific line-ending convention, such
as LF on Unix-like platforms and CR+LF on Windows platforms. Other
languages (e.g Java) takes a different approach and simply define \n to be
LF and \r to be CR. For more information on these issues, see Wikipedia:

http://en.wikipedia.org/wiki/Newline.

4.3.2 Haskell Layout and the Width of Tab Stops

Another issue concerns assumptions about the width of tab stops, although
this is more of a tool issue (in particular, text editors, like Emacs or Notepad-++)
than an operating system issue. If you are using a Windows-specific editor
like Notepad++, it is important that you read the following.

Parsing of Haskell programs take layout (indentation) into account (un-
less the structure is made explicit using curly braces and semicolons). If tab
characters are used in a Haskell file, it becomes a critical question just how
wide (in spaces) a tab stop is supposed to be, as the presence of a tab charac-
ter means that the horizontal position of the next character should be aligned
with the next tab stop. The Haskell language standard has a precise defini-
tion (to ensure that Haskell programs always are interpreted the same way):
a tab stop is 8 spaces wide. This is also the default in many text editors, like
Emacs.

However, for example Notepad++, which is a popular text editor among
Windows users, has a different default: it opts for tab stops being 4 spaces

wide. To avoid unnecessary grief caused by this (such as seemingly inexpli-
cable parse errors), it is recommended that you, when editing Haskell source
using Notepad++, go to Settings, Preferences, Tab Settings and change the
width of tab stops to 8, and that you also tick the box “treat tabs like spaces”.

If using Notepad, at least from within WinGHCi, the width of a tab stop
seems to default to 8, which is appropriate for Haskell, but as noted above,
it seems Notepad cannot handle Unix line-ending conventions, so you might
need to convert files from Unix to Windows conventions manually.

5 Tasks

Task 1.1 (Weight 15 %)
A problem, due to the mathematician W. R. Hamming, is to write a pro-
gram that produces an infinite list of numbers with the following properties:

i The list is in ascending order, without duplicates.
ii The list begins with the number 1.

iii If the list contains the number z, then it also contains the numbers 2z,
3z, and bz.

iv The list contains no other numbers.
Solve the following two problems:

1. Given the following function to merge two ordered lists:

merge xxs@(x:xs) yys@(y:ys) | x ==y = x : merge Xs ys
| x <y =x : merge xs yys
| x >y =y : merge xxs ys

define the infinite list hamming of Hamming numbers. (You may find
using the function map or list comprehensions helpful.)

2. Draw the three cyclic graphs that represent hamming after the first 1,
2, and 3 elements have been printed.

Task 1.2 (Weight 10 %)

1. Extend the spreadsheet evaluator discussed in one of the lectures with
two new forms of expressions to compute the sum and average respec-
tively of a range of cells:

data Exp =
| Sum CellRef CellRef
| Avg CellRef CellRef

The code for the basic evaluator is given in the file Sheet.hs. You may
find the function range and list comprehensions useful.

2. As discussed, this evaluator has a weakness. Explain the problem and
suggest a way to fix it. You don’t have to write any code, but your
answer should clearly explain the key idea.

Task 1.3 (Weight 30 %)

Write a function drop :: Int -> RList a -> RList a that deletes the
first n elements for a skew binary random-access list. Your function should
run in O(logn) time.

For full marks:

e Explain how your implementation works
e Explain why it has the desired time complexity
e Test your solution: provide some evidence of testing with your answer

The code for skew binary random-access lists is given in the file SBRAL.hs.

Task 1.4 (Weight 15 %)

Interval arithmetic, as the name suggests, is arithmetic defined on nu-
merical intervals. See e.g. Wikipedia for a good introduction:
https://en.wikipedia.org/wiki/Interval _arithmetic.

When carrying out arithmetical operations on intervals, the idea is that
the resulting interval should be the smallest interval covering all possible
results. For example, this can be used to compute error bounds. Say we
know z € [l,, u,|, and y € [l,, u,], then

4y € ly +1ly,u, +uy] and z—y € [l — uy, uy — 1]
Let us represent an interval as follows:

data Ivl = Ivl Double Double deriving Show

Make Ivl an instance of the type classes Num and Fractional (Methods
(+), (=), (%), abs, signum, fromInteger for Num; methods (/), (recip),
(fromRational) for Fractional). You should enforce the invariant that for
any value Ivl [u, [< u. Use error to give suitable error messages when
partial operations are undefined.

The above instances will make it possible to use overloaded numerical
literals to construct intervals containing only that specific number. E.g. 1
denotes Ivl 1.0 1.0 when used at type Ivl. In addition., define an operator

(+/-) :: Double -> Double -> Ivl

for constructing symmetric intervals around a specific number. E.g. 1 +/- 0.5
denotes Ivl 0.5 1.5.
For full marks:

e Provide the required instances, along with a brief explanation
e Define the operator (+/-)
e Test your solution: provide some evidence of testing with your answer

The point of this task is to familiarise you with classes and instances. Thus
do not make things too complicated. For example, by considering intervals
that are upwards and/or downwards unbounded, more operations can be
total. But this does complicate the definitions.

Also be aware that some of the laws of the numerical classes will not hold.
For example, one law is:

x = signum(x) X abs(z)
This law does not hold for intervals. Instead, if z is an interval, we have
x C signum(z) x abs(x)

as results in interval arithmetic in general are over-approximations.

Task 1.5 (Weight 30 %)

Consider the following representation of simple drawings:

(Double, Double)
Double
Double

type Position
type Length
type Area

data Object

Rectangle {centre :: Position, width :: Length, height

| Circle {centre :: Position, radius :: Length}

data Drawing a
= Element a
| Group [Drawing a]

We wish to implement a function to compute some statistics for drawings:

data Statistics =
Statistics {

avgArea :: Area,
avgCircumference :: Length,
maxArea :: Area,
maxCircumference :: Length

10

:: Length}

}

deriving Show

statistics :: Drawing Object -> Statistics
statistics d = ...

The following auxiliary type will be helpful to that end:

data AccumStats =
AccumStats {

asCount :: Int,
asSumArea :: Area,
asSumCircumference :: Length,
asMaxArea :: Area,
asMaxCircumference :: Length

}

1. Implement statistics by doing an explicit, recursive traversal over
a Drawing, computing and accumulating Object areas and circumfer-
enecs along the way, and finally using the resulting AccumStats to
compute the desired Statistics.

2. Reimplement statistics using foldMap over a Drawing. To that end,
make Drawing an instance of Foldable and AccumStats an instance
of SemiGroup and Monoid. Compare and contrast the two solutions.

3. Redefine the types Area, Length, and AccumStats as follows

newtype Area = Area {getArea :: Double}
newtype Length = Length {getLength :: Double}

data AccumStats =
AccumStats {

asCount :: Sum Int,
asSumArea :: Sum Area,
asSumCircumference :: Sum Length,
asMaxArea :: Max Area,
asMaxCircumference :: Max Length

The idea is to impose a stronger type discipline, and to facilitate making
AccumStats a Monoid instance as Sum Int, Sum Area etc. are monoids.

11

However, for Max a to be a monoid, a must be an instance of Bounded.
But both Area and Length are bounded below by 0 and above by
+ inf, which is representable in IEEE Double representation, and thus
they can be made instances of Bounded straightforwadly. Further, to
facilitate working with Area and Length as numbers, they can be made
instances of the relevant numerical type classes through the Newtype
Deriving mechanism (GHC extension).

Having done all this, re-implement statistics using these new types,
again folding over a diagram structure. Compare and contrast the two
solutions based on folding.

12

