
COMP4075: Lecture 3

Pure Functional Programming:
Introduction

Henrik Nilsson

University of Nottingham, UK

COMP4075: Lecture 3 – p.1/28

Pure Functional Programming (1)

The main focus of this module is on pure
functional programming to:

• help you learn how to solve problems purely

• help you understand the pros and cons of
doing so

• ultimately allow you to chose the right
language/paradigm/techniques, or mix, for the
task at hand.

COMP4075: Lecture 3 – p.2/28

Pure Functional Programming (2)

• Using Haskell as a medium of instruction as it is:

- the leading pure functional language

- familiar to many of you from previous modules.

• But the module is not primarily about Haskell:
look for the underlying principles!

• The use of Haskell here does not imply it is
the only good (functional) language: there are
many good languages out there. But grasping
pure functional programming will make you a
better programmer irrespective of which
language you choose/have to use.

COMP4075: Lecture 3 – p.3/28

Imperative vs. Declarative (1)

• Imperative Languages:

- Implicit state.

- Computation essentially a sequence of
side-effecting actions.

- Examples: Procedural and OO languages

• Declarative Languages (Lloyd 1994):

- No implicit state.

- A program can be regarded as a theory.

- Computation can be seen as deduction
from this theory.

- Examples: Logic and Functional Languages.
COMP4075: Lecture 3 – p.4/28

Imperative vs. Declarative (2)

Another perspective:

• Algorithm = Logic + Control

• Declarative programming emphasises the
logic (“what”) rather than the control (“how”).

• Strategy needed for providing the “how”:

- Resolution (logic programming languages)

- Lazy evaluation (some functional and logic
programming languages)

- (Lazy) narrowing: (functional logic
programming languages)

COMP4075: Lecture 3 – p.5/28

Imperative vs. Declarative (3)

• Declarative programming has many benefits;
e.g., facilitates formal reasoning, program
transformations, etc.

• Immediate payoff of declarative programming
permeating all code is that it allows intent to
be stated much more clearly: what not how
does matter!

• However, implicit control and unconstrained
effects do not mix well: purity is prerequisite.

• Disciplined use of effects still possible in a
pure setting.

COMP4075: Lecture 3 – p.6/28

No Control?

Declarative languages for practical use tend to
be only weakly declarative; i.e., not totally free
of control aspects. For example:

• Equations in functional languages are
directed.

• Order of patterns often matters for pattern
matching.

• Constructs for taking control over the order of
evaluation. (E.g. cut in Prolog, seq in
Haskell.)

COMP4075: Lecture 3 – p.7/28

Relinquishing Control

Theme of this and next lecture: relinquishing
control by exploiting lazy evaluation.

• Evaluation orders

• Strict vs. Non-strict semantics

• Lazy evaluation

• Applications of lazy evaluation:

- Writing clear and concise code

- Programming with infinite structures

- Circular programming

- Dynamic programming
COMP4075: Lecture 3 – p.8/28

Evaluation Orders (1)

Consider:

sqr x = x * x

dbl x = x + x

main = sqr (dbl (2 + 3))

Roughly, any expression that can be evaluated or
reduced by using the equations as rewrite rules
is called a reducible expression or redex.

Assuming arithmetic, the redexes of the body of
main are: 2 + 3

dbl (2 + 3)
sqr (dbl (2 + 3))

COMP4075: Lecture 3 – p.9/28

Evaluation Orders (2)

Thus, in general, many possible reduction orders.
Innermost, leftmost redex first is called
Applicative Order Reduction (AOR). Recall:

sqr x = x * x

dbl x = x + x

main = sqr (dbl (2 + 3))

Starting from main:

main ⇒ sqr (dbl (2 + 3)) ⇒ sqr (dbl 5)

⇒ sqr (5 + 5) ⇒ sqr 10 ⇒ 10 * 10 ⇒ 100

This is just Call-By-Value.

COMP4075: Lecture 3 – p.10/28

Evaluation Orders (3)

Outermost, leftmost redex first is called Normal
Order Reduction (NOR):

main ⇒ sqr (dbl (2 + 3))

⇒ dbl (2 + 3) * dbl (2 + 3)

⇒ ((2 + 3) + (2 + 3)) * dbl (2 + 3)

⇒ (5 + (2 + 3)) * dbl (2 + 3)

⇒ (5 + 5) * dbl (2 + 3) ⇒ 10 * dbl (2 + 3)

⇒ ... ⇒ 10 * 10 ⇒ 100

(Applications of arithmetic operations only con-
sidered redexes once arguments are numbers.)
Demand-driven evaluation or Call-By-Need

COMP4075: Lecture 3 – p.11/28

Why Normal Order Reduction? (1)

NOR seems rather inefficient. Any use?

• Best possible termination properties.

A pure functional languages is just the
λ-calculus in disguise. Two central theorems:

- Church-Rosser Theorem I:
No term has more than one normal form.

- Church-Rosser Theorem II:
If a term has a normal form, then NOR
will find it.

COMP4075: Lecture 3 – p.12/28

Why Normal Order Reduction? (2)

• More declarative code as control aspects
(order of evaluation) left implicit.

• More reusable components as usage implies
control flow

• Better compositionality

• More expressive power; e.g.:

- “Infinite” data structures

- Circular programming

COMP4075: Lecture 3 – p.13/28

Exercise 1

Consider:

f x = 1

g x = g x

main = f (g 0)

Attempt to evaluate main using both AOR and
NOR. Which order is the more efficient in this
case? (Count the number of reduction steps to
normal form.)

COMP4075: Lecture 3 – p.14/28

Strict vs. Non-strict Semantics (1)

• ⊥, or “bottom”, the undefined value,
representing errors and non-termination.

• A function f is strict iff:

f ⊥ = ⊥

For example, + is strict in both its arguments:

(0/0) + 1 = ⊥ + 1 = ⊥

1 + (0/0) = 1 + ⊥ = ⊥

COMP4075: Lecture 3 – p.15/28

Strict vs. Non-strict Semantics (2)

Again, consider:

f x = 1

g x = g x

What is the value of f (0/0)? Or of f (g 0)?

• AOR: f (0/0) ⇒ ⊥; f (g 0) ⇒ ⊥

Conceptually, f ⊥ = ⊥; i.e., f is strict.

• NOR: f (0/0) ⇒ 1; f (g 0) ⇒ 1

Conceptually, f ⊥ = 1; i.e., f is non-strict.

Thus, NOR results in non-strict semantics.

COMP4075: Lecture 3 – p.16/28

Lazy Evaluation (1)

Lazy evaluation is a technique for
implementing NOR more efficiently:

• A redex is evaluated only if needed.

• Sharing employed to avoid duplicating
redexes.

• Once evaluated, a redex is updated with the
result to avoid evaluating it more than once.

As a result, under lazy evaluation, any one redex
is evaluated at most once.

COMP4075: Lecture 3 – p.17/28

Lazy Evaluation (2)

Recall:
sqr x = x * x

dbl x = x + x

main =

sqr (dbl (2+3))

sqr (dbl (2 + 3))

⇒ dbl (2 + 3) * (•)

⇒ ((2 + 3) + (•)) * (•)

⇒ (5 + (•)) * (•)

⇒ 10 * (•)

⇒ 100

COMP4075: Lecture 3 – p.18/28

Lazy Evaluation (3)

“Evaluated at most once” needs to be interpreted
with care: it referes to individual redex instances.

For example:

• (1 + 2) * (1 + 2)

1 + 2 evaluated twice as not the same redex.

• f x = x + y where y = 6 * 7

6 * 7 evaluated whenever f is called.

A good compiler will rearrange such computations
to avoid duplication of effort, but this has nothing
to do with laziness.

COMP4075: Lecture 3 – p.19/28

Lazy Evaluation (4)

Memoization means caching function results to
avoid re-computing them. Also distinct from
laziness.

COMP4075: Lecture 3 – p.20/28

Exercise 2

Evaluate main using AOR, NOR, and lazy
evaluation:

f x y z = x * z

g x = f (x * x) (x * 2) x

main = g (1 + 2)

(Only consider an applications of an arithmetic
operator a redex once the arguments are
numbers.)

How many reduction steps in each case?

Answer: 7, 8, 6 respectively
COMP4075: Lecture 3 – p.21/28

Implicit Control Flow (1)

• Leaving the control flow implicit often allows
for succinct, to-the-point definitions.

• While not a “game changer”, the improvement
over explicit control flow can be substantial.

COMP4075: Lecture 3 – p.22/28

Implicit Control Flow (2)

Consider:

foo x y z

| x < 0 = (a + b, a * b)

| x == 0 = (b + c, b * c)

| x > 0 = (c + a, c * a)

where

a = <exprA[y,z]>

b = <exprB[y,z]>

c = <exprC[y,z]>

Lazy evaluation ensures that only two of a, b, c
are evaluated, depending on which ones are
needed in the case determined by x.

COMP4075: Lecture 3 – p.23/28

Implicit Control Flow (3)

Avoiding duplication of code and computation in
a strict language:

foo x y z

| x < 0 = let a = f y z

b = g y z

in (a + b, a * b)

| x == 0 = let b = g y z

c = g y z

in (b + c, b * c)

| x > 0 = let c = g y z

a = f y z

in (c + a, c * a)
COMP4075: Lecture 3 – p.24/28

Implicit Control Flow (4)

where

f y z = <exprA[y,z]>

g y z = <exprB[y,z]>

h y z = <exprC[y,z]>

(Syntax still Haskell-like to facilitate comparison
with previous version.)

COMP4075: Lecture 3 – p.25/28

Infinite Data Structures (1)

take 0 _ = []

take n [] = []

take n (x:xs) = x : take (n-1) xs

from n = n : from (n+1)

nats = from 0

main = take 5 nats

COMP4075: Lecture 3 – p.26/28

Infinite Data Structures (2)

main⇒
1 take 5 (•) ⇒

4 0:take 4 (•)

⇒
6 0:1:take 3 (•) ⇒

8 . . .

⇒ 0:1:2:3:4:take 0 (•) ⇒ [0,1,2,3,4]

nats ⇒
2 from 0 ⇒

3 0: from 1

⇒
5 0:1: from 2 ⇒

7 . . . ⇒ 0:1:2:3:4: from 5

COMP4075: Lecture 3 – p.27/28

Reading

• John W. Lloyd. Practical advantages of
declarative programming. In Joint Conference
on Declarative Programming,
GULP-PRODE’94, 1994.

• John Hughes. Why Functional Programming
Matters. The Computer Journal,
32(2):98–197, April 1989.

COMP4075: Lecture 3 – p.28/28

	Pure Functional Programming (1)
	Pure Functional Programming (2)
	Imperative vs. Declarative (1)
	Imperative vs. Declarative (2)
	Imperative vs. Declarative (3)
	No Control?
	Relinquishing Control
	Evaluation Orders (1)
	Evaluation Orders (2)
	Evaluation Orders (3)
	Why Normal Order Reduction? (1)
	Why Normal Order Reduction? (2)
	Exercise 1
	Strict vs. Non-strict Semantics (1)
	Strict vs. Non-strict Semantics (2)
	Lazy Evaluation (1)
	Lazy Evaluation (2)
	Lazy Evaluation (3)
	Lazy Evaluation (4)
	Exercise 2
	Implicit Control Flow (1)
	Implicit Control Flow (2)
	Implicit Control Flow (3)
	Implicit Control Flow (4)
	Infinite Data Structures (1)
	Infinite Data Structures (2)
	Reading

