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Recap: Lazy Evaluation (1)

Lazy evaluation is a technique for
implementing NOR more efficiently:

• A redex is evaluated only if needed.

• Sharing employed to avoid duplicating
redexes.

• Once evaluated, a redex is updated with the
result to avoid evaluating it more than once.

As a result, under lazy evaluation, any one redex
is evaluated at most once.
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Recap: Lazy Evaluation (2)

Recall:
sqr x = x * x

dbl x = x + x

main =

sqr (dbl (2+3))

sqr (dbl (2 + 3))

⇒ dbl (2 + 3) * (•)

⇒ ( (2 + 3) + (•)) * (•)

⇒ ( 5 + (•)) * (•)

⇒ 10 * (•)

⇒ 100
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Circular Data Structures (1)

take 0 _ = []

take n [] = []

take n (x:xs) = x : take (n-1) xs

ones = 1 : ones

main = take 5 ones
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Circular Data Structures (2)

main⇒1 take 5 (•) ⇒3 1:take 4 (•)

⇒4 1:1:take 3 (•) ⇒5 . . .

⇒ 1:1:1:1:1:take 0 (•) ⇒ [1,1,1,1,1]

ones ⇒2 1 : •
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Exercise

Given the following tree type

data Tree = Empty

| Node Tree Int Tree

define:

• An infinite tree where every node is labelled
by 1.

• An infinite tree where every node is labelled
by its depth from the root node.
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Exercise: Solution

treeOnes = Node treeOnes 1 treeOnes

treeFrom n = Node (treeFrom (n + 1))

n

(treeFrom (n + 1))

treeDepths = treeFrom 0
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Circular Programming (1)

A non-empty tree type:

data Tree = Leaf Int | Node Tree Tree

Suppose we would like to write a function that
replaces each leaf integer in a given tree with the
smallest integer in that tree.

How many passes over the tree are needed?

One!
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Circular Programming (2)

Write a function that replaces all leaf integers by
a given integer, and returns the new tree along
with the smallest integer of the given tree:

fmr :: Int -> Tree -> (Tree, Int)

fmr m (Leaf i) = (Leaf m, i)

fmr m (Node tl tr) =

(Node tl’ tr’, min ml mr)

where

(tl’, ml) = fmr m tl

(tr’, mr) = fmr m tr
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Circular Programming (3)

For a given tree t, the desired tree is now
obtained as the solution to the equation:

(t’, m) = fmr m t

Thus:

findMinReplace t = t’

where

(t’, m) = fmr m t

Intuitively, this works because fmr can compute
its result without needing to know the value of m.
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A Simple Spreadsheet Evaluator (1)

a b c

1 c3 + c2

2 a3 * b2 2 a2 + b2

3 7 a2 + a3

s

⇒

a b c

1 37

2 14 2 16

3 7 21

s’

s’ = array (bounds s)

[ (r, evalCell s’ (s ! r))

| r <- indices s ]

The evaluated sheet is again simply the solution
to the stated equation. No need to worry about
evaluation order. Any caveats?

COMP4075: Lecture 4 – p.11/31

A Simple Spreadsheet Evaluator (2)

As it is quite instructive, let us develop this evaluator
together. Some definitions to get us started:

type CellRef = (Char, Int)

type Sheet a = Array CellRef a

data BinOp = Add | Sub | Mul | Div

data Exp = Lit Double

| Ref CellRef

| App BinOp Exp Exp
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Breadth-first Numbering (1)

Consider the problem of numbering a possibly
infinitely deep tree in breadth-first order:
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Breadth-first Numbering (2)

The following algorithm is due to G. Jones and J.
Gibbons (1992), but the presentation differs.

Consider the following tree type:

data Tree a = Empty

| Node (Tree a) a (Tree a)

Define:

width t i The width of a tree t at level i
(0 origin).

label t i j The jth label at level i of a
tree t (0 origin).
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Breadth-first Numbering (3)

The following system of equations defines
breadth-first numbering:

label t 0 0 = 1 (1)

label t (i+ 1) 0 = label t i 0 + width t i (2)

label t i (j + 1) = label t i j + 1 (3)

Note that label t i 0 is defined for all levels i (as
long as the widths of all tree levels are finite).
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Breadth-first Numbering (4)

The code that follows sets up the defining system
of equations:

• Streams (infinite lists) of labels are used as a
mediating data structure to allow equations
to be set up between adjacent nodes within
levels and between the last node at one level
and the first node at the next.

• Idea: the tree numbering function for a subtree
takes a stream of labels for the first node at
each level, and returns a stream of labels for
the node after the last node at each level.
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Breadth-first Numbering (5)

• As there manifestly are no cyclic dependences
among the equations, we can entrust the
details of solving them to the lazy evaluation
machinery in the safe knowledge that a
solution will be found.
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Breadth-first Numbering (6)

bfn :: Tree a -> Tree Integer

bfn t = t’

where

(ns, t’) = bfnAux (1 : ns) t

bfnAux :: [Integer] -> Tree a

-> ([Integer], Tree Integer)

bfnAux ns Empty = (ns, Empty)

bfnAux (n : ns) (Node tl _ tr) = ( (n + 1) : ns’’ ,

Node tl’ n tr’)

where

(ns’, tl’) = bfnAux ns tl

(ns’’, tr’) = bfnAux ns’ tr

Eqns (1) & (2)

Eqn (3)
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Breadth-first Numbering (7)
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Breadth-first Numbering (8)
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Dynamic Programming

Dynamic Programming:

• Create a table of all subproblems that ever
will have to be solved.

• Fill in table without regard to whether the
solution to that particular subproblem will be
needed.

• Combine solutions to form overall solution.

Lazy Evaluation is perfect match: no need to
worry about finding a suitable evaluation order.

In effect, using laziness to implement limited form
of memoization.
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The Triangulation Problem (1)

Select a set of chords that divides a convex
polygon into triangles such that:

• no two chords cross each other

• the sum of their length is minimal.

We will only consider computing the minimal
length.

See Aho, Hopcroft, Ullman (1983) for details.
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The Triangulation Problem (2)
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The Triangulation Problem (3)

• Let Sis denote the subproblem of size s

starting at vertex vi of finding the minimum
triangulation of the polygon vi, vi+1, . . . , vi+s−1

(counting modulo the number of vertices).

• Subproblems of size less than 4 are trivial.

• Solving Sis is done by solving Si,k+1 and
Si+k,s−k for all k, 1 ≤ k ≤ s− 2.

• The obvious recursive formulation results in
3s−4 (non-trivial) calls.

• But for n ≥ 4 vertices there are only n(n− 3)
non-trivial subproblems!
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The Triangulation Problem (4)

vi

vi+k

vi+s−1

Si,k+1 Si+k,s−k
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The Triangulation Problem (5)

• Let Cis denote the minimal triangulation cost
of Sis.

• Let D(vp, vq) denote the length of a chord
between vp and vq (length is 0 for non-chords;
i.e. adjacent vp and vq).

• For s ≥ 4:

Cis = min
k∈[1,s−2]

{

Ci,k+1 + Ci+k,s−k

+D(vi, vi+k) +D(vi+k, vi+s−1)

}

• For s < 4, Cis = 0.
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The Triangulation Problem (6)

These equations can be transliterated straight
into Haskell:
triCost :: Polygon -> Double

triCost p = cost!(0,n) where

cost = array ((0,0), (n-1,n))

([ ((i,s),

minimum [ cost!(i, k+1)

+ cost!((i+k) ‘mod‘ n, s-k)

+ dist p i ((i+k) ‘mod‘ n)

+ dist p ((i+k) ‘mod‘ n)

((i+s-1) ‘mod‘ n)

| k <- [1..s-2] ])

| i <- [0..n-1], s <- [4..n] ] ++

[ ((i,s), 0.0)

| i <- [0..n-1], s <- [0..3] ])

n = snd (bounds b) + 1
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Attribute Grammars (1)

Lazy evaluation is also very useful for evaluation
of Attribute Grammars:

• The attribution function is defined recursively
over the tree:

- takes inherited attributes as extra
arguments;

- returns a tuple of all synthesised attributes.

• As long as there exists some possible
attribution order, lazy evaluation will take care
of the attribute evaluation.
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Attribute Grammars (2)

• The earlier examples on Circular Programming
and Breadth-first Numbering can be seen as
instances of this idea.
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Reading

• John W. Lloyd. Practical advantages of
declarative programming. In Joint Conference
on Declarative Programming,
GULP-PRODE’94, 1994.

• John Hughes. Why Functional Programming
Matters. The Computer Journal,
32(2):98–197, April 1989.

• Thomas Johnsson. Attribute Grammars as a
Functional Programming Paradigm. In
Functional Programming Languages and
Computer Architecture, FPCA’87, 1987
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Reading

• Geraint Jones and Jeremy Gibbons.
Linear-time breadth-first tree algorithms: An
exercise in the arithmetic of folds and zips.
Technical Report TR-31-92, Oxford University
Computing Laboratory, 1992.

• Alfred Aho, John Hopcroft, Jeffrey Ullman.
Data Structures and Algorithms.
Addison-Wesley, 1983.
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