
COMP4075: Lecture 4

Pure Functional Programming:
Exploiting Laziness

Henrik Nilsson

University of Nottingham, UK

COMP4075: Lecture 4 – p.1/31

Recap: Lazy Evaluation (1)

Lazy evaluation is a technique for
implementing NOR more efficiently:

• A redex is evaluated only if needed.

• Sharing employed to avoid duplicating
redexes.

• Once evaluated, a redex is updated with the
result to avoid evaluating it more than once.

As a result, under lazy evaluation, any one redex
is evaluated at most once.

COMP4075: Lecture 4 – p.2/31

Recap: Lazy Evaluation (2)

Recall:
sqr x = x * x

dbl x = x + x

main =

sqr (dbl (2+3))

sqr (dbl (2 + 3))

⇒ dbl (2 + 3) * (•)

⇒ ( (2 + 3) + (•)) * (•)

⇒ ( 5 + (•)) * (•)

⇒ 10 * (•)

⇒ 100

COMP4075: Lecture 4 – p.3/31

Circular Data Structures (1)

take 0 _ = []

take n [] = []

take n (x:xs) = x : take (n-1) xs

ones = 1 : ones

main = take 5 ones

COMP4075: Lecture 4 – p.4/31

Circular Data Structures (2)

main⇒1 take 5 (•) ⇒3 1:take 4 (•)

⇒4 1:1:take 3 (•) ⇒5 . . .

⇒ 1:1:1:1:1:take 0 (•) ⇒ [1,1,1,1,1]

ones ⇒2 1 : •

COMP4075: Lecture 4 – p.5/31

Exercise

Given the following tree type

data Tree = Empty

| Node Tree Int Tree

define:

• An infinite tree where every node is labelled
by 1.

• An infinite tree where every node is labelled
by its depth from the root node.

COMP4075: Lecture 4 – p.6/31

Exercise: Solution

treeOnes = Node treeOnes 1 treeOnes

treeFrom n = Node (treeFrom (n + 1))

n

(treeFrom (n + 1))

treeDepths = treeFrom 0

COMP4075: Lecture 4 – p.7/31

Circular Programming (1)

A non-empty tree type:

data Tree = Leaf Int | Node Tree Tree

Suppose we would like to write a function that
replaces each leaf integer in a given tree with the
smallest integer in that tree.

How many passes over the tree are needed?

One!

COMP4075: Lecture 4 – p.8/31

Circular Programming (2)

Write a function that replaces all leaf integers by
a given integer, and returns the new tree along
with the smallest integer of the given tree:

fmr :: Int -> Tree -> (Tree, Int)

fmr m (Leaf i) = (Leaf m, i)

fmr m (Node tl tr) =

(Node tl’ tr’, min ml mr)

where

(tl’, ml) = fmr m tl

(tr’, mr) = fmr m tr

COMP4075: Lecture 4 – p.9/31



Circular Programming (3)

For a given tree t, the desired tree is now
obtained as the solution to the equation:

(t’, m) = fmr m t

Thus:

findMinReplace t = t’

where

(t’, m) = fmr m t

Intuitively, this works because fmr can compute
its result without needing to know the value of m.

COMP4075: Lecture 4 – p.10/31

A Simple Spreadsheet Evaluator (1)

a b c

1 c3 + c2

2 a3 * b2 2 a2 + b2

3 7 a2 + a3

s

⇒

a b c

1 37

2 14 2 16

3 7 21

s’

s’ = array (bounds s)

[ (r, evalCell s’ (s ! r))

| r <- indices s ]

The evaluated sheet is again simply the solution
to the stated equation. No need to worry about
evaluation order. Any caveats?

COMP4075: Lecture 4 – p.11/31

A Simple Spreadsheet Evaluator (2)

As it is quite instructive, let us develop this evaluator
together. Some definitions to get us started:

type CellRef = (Char, Int)

type Sheet a = Array CellRef a

data BinOp = Add | Sub | Mul | Div

data Exp = Lit Double

| Ref CellRef

| App BinOp Exp Exp

COMP4075: Lecture 4 – p.12/31

Breadth-first Numbering (1)

Consider the problem of numbering a possibly
infinitely deep tree in breadth-first order:

1

3

7

10

1413

6

2

54

9

1211

8

COMP4075: Lecture 4 – p.13/31

Breadth-first Numbering (2)

The following algorithm is due to G. Jones and J.
Gibbons (1992), but the presentation differs.

Consider the following tree type:

data Tree a = Empty

| Node (Tree a) a (Tree a)

Define:

width t i The width of a tree t at level i
(0 origin).

label t i j The jth label at level i of a
tree t (0 origin).

COMP4075: Lecture 4 – p.14/31

Breadth-first Numbering (3)

The following system of equations defines
breadth-first numbering:

label t 0 0 = 1 (1)

label t (i+ 1) 0 = label t i 0 + width t i (2)

label t i (j + 1) = label t i j + 1 (3)

Note that label t i 0 is defined for all levels i (as
long as the widths of all tree levels are finite).

COMP4075: Lecture 4 – p.15/31

Breadth-first Numbering (4)

The code that follows sets up the defining system
of equations:

• Streams (infinite lists) of labels are used as a
mediating data structure to allow equations
to be set up between adjacent nodes within
levels and between the last node at one level
and the first node at the next.

• Idea: the tree numbering function for a subtree
takes a stream of labels for the first node at
each level, and returns a stream of labels for
the node after the last node at each level.

COMP4075: Lecture 4 – p.16/31

Breadth-first Numbering (5)

• As there manifestly are no cyclic dependences
among the equations, we can entrust the
details of solving them to the lazy evaluation
machinery in the safe knowledge that a
solution will be found.

COMP4075: Lecture 4 – p.17/31

Breadth-first Numbering (6)

bfn :: Tree a -> Tree Integer

bfn t = t’

where

(ns, t’) = bfnAux (1 : ns) t

bfnAux :: [Integer] -> Tree a

-> ([Integer], Tree Integer)

bfnAux ns Empty = (ns, Empty)

bfnAux (n : ns) (Node tl _ tr) = ( (n + 1) : ns’’ ,

Node tl’ n tr’)

where

(ns’, tl’) = bfnAux ns tl

(ns’’, tr’) = bfnAux ns’ tr

Eqns (1) & (2)

Eqn (3)

COMP4075: Lecture 4 – p.18/31



Breadth-first Numbering (7)

COMP4075: Lecture 4 – p.19/31

Breadth-first Numbering (8)

COMP4075: Lecture 4 – p.20/31

Dynamic Programming

Dynamic Programming:

• Create a table of all subproblems that ever
will have to be solved.

• Fill in table without regard to whether the
solution to that particular subproblem will be
needed.

• Combine solutions to form overall solution.

Lazy Evaluation is perfect match: no need to
worry about finding a suitable evaluation order.

In effect, using laziness to implement limited form
of memoization.

COMP4075: Lecture 4 – p.21/31

The Triangulation Problem (1)

Select a set of chords that divides a convex
polygon into triangles such that:

• no two chords cross each other

• the sum of their length is minimal.

We will only consider computing the minimal
length.

See Aho, Hopcroft, Ullman (1983) for details.

COMP4075: Lecture 4 – p.22/31

The Triangulation Problem (2)

v1

v2 v3

v4

v5

v6

v7

COMP4075: Lecture 4 – p.23/31

The Triangulation Problem (3)

• Let Sis denote the subproblem of size s

starting at vertex vi of finding the minimum
triangulation of the polygon vi, vi+1, . . . , vi+s−1

(counting modulo the number of vertices).

• Subproblems of size less than 4 are trivial.

• Solving Sis is done by solving Si,k+1 and
Si+k,s−k for all k, 1 ≤ k ≤ s− 2.

• The obvious recursive formulation results in
3s−4 (non-trivial) calls.

• But for n ≥ 4 vertices there are only n(n− 3)
non-trivial subproblems!

COMP4075: Lecture 4 – p.24/31

The Triangulation Problem (4)

vi

vi+k

vi+s−1

Si,k+1 Si+k,s−k

COMP4075: Lecture 4 – p.25/31

The Triangulation Problem (5)

• Let Cis denote the minimal triangulation cost
of Sis.

• Let D(vp, vq) denote the length of a chord
between vp and vq (length is 0 for non-chords;
i.e. adjacent vp and vq).

• For s ≥ 4:

Cis = min
k∈[1,s−2]

{

Ci,k+1 + Ci+k,s−k

+D(vi, vi+k) +D(vi+k, vi+s−1)

}

• For s < 4, Cis = 0.

COMP4075: Lecture 4 – p.26/31

The Triangulation Problem (6)

These equations can be transliterated straight
into Haskell:
triCost :: Polygon -> Double

triCost p = cost!(0,n) where

cost = array ((0,0), (n-1,n))

([ ((i,s),

minimum [ cost!(i, k+1)

+ cost!((i+k) ‘mod‘ n, s-k)

+ dist p i ((i+k) ‘mod‘ n)

+ dist p ((i+k) ‘mod‘ n)

((i+s-1) ‘mod‘ n)

| k <- [1..s-2] ])

| i <- [0..n-1], s <- [4..n] ] ++

[ ((i,s), 0.0)

| i <- [0..n-1], s <- [0..3] ])

n = snd (bounds b) + 1

COMP4075: Lecture 4 – p.27/31



Attribute Grammars (1)

Lazy evaluation is also very useful for evaluation
of Attribute Grammars:

• The attribution function is defined recursively
over the tree:

- takes inherited attributes as extra
arguments;

- returns a tuple of all synthesised attributes.

• As long as there exists some possible
attribution order, lazy evaluation will take care
of the attribute evaluation.

COMP4075: Lecture 4 – p.28/31

Attribute Grammars (2)

• The earlier examples on Circular Programming
and Breadth-first Numbering can be seen as
instances of this idea.

COMP4075: Lecture 4 – p.29/31

Reading

• John W. Lloyd. Practical advantages of
declarative programming. In Joint Conference
on Declarative Programming,
GULP-PRODE’94, 1994.

• John Hughes. Why Functional Programming
Matters. The Computer Journal,
32(2):98–197, April 1989.

• Thomas Johnsson. Attribute Grammars as a
Functional Programming Paradigm. In
Functional Programming Languages and
Computer Architecture, FPCA’87, 1987

COMP4075: Lecture 4 – p.30/31

Reading

• Geraint Jones and Jeremy Gibbons.
Linear-time breadth-first tree algorithms: An
exercise in the arithmetic of folds and zips.
Technical Report TR-31-92, Oxford University
Computing Laboratory, 1992.

• Alfred Aho, John Hopcroft, Jeffrey Ullman.
Data Structures and Algorithms.
Addison-Wesley, 1983.

COMP4075: Lecture 4 – p.31/31


	Recap: Lazy Evaluation (1)
	Recap: Lazy Evaluation (2)
	Circular Data Structures (1)
	Circular Data Structures (2)
	Exercise
	Exercise: Solution
	Circular Programming (1)
	Circular Programming (2)
	Circular Programming (3)
	A Simple Spreadsheet Evaluator (1)
	A Simple Spreadsheet Evaluator (2)
	Breadth-first Numbering (1)
	Breadth-first Numbering (2)
	Breadth-first Numbering (3)
	Breadth-first Numbering (4)
	Breadth-first Numbering (5)
	Breadth-first Numbering (6)
	Breadth-first Numbering (7)
	Breadth-first Numbering (8)
	Dynamic Programming
	The Triangulation Problem (1)
	The Triangulation Problem (2)
	The Triangulation Problem (3)
	The Triangulation Problem (4)
	The Triangulation Problem (5)
	The Triangulation Problem (6)
	Attribute Grammars (1)
	Attribute Grammars (2)
	Reading
	Reading

