COMP4075: Lecture 6 Type Classes

Henrik Nilsson

University of Nottingham, UK

COMP4075: Lecture 6 – p.1/37

Haskell Overloading (2)

A function like the identity function

 $\begin{array}{l} id::a\rightarrow a\\ id\;x=x \end{array}$

is *polymorphic* precisely because it works uniformly for all types: there is no need to "inspect" the argument.

In contrast, to compare two "things" for equality, they very much have to be inspected, and an *appropriate method of comparison* needs to be used.

The Type Class *Eq*

 $\begin{array}{l} \textbf{class } Eq \ a \ \textbf{where} \\ (==) :: a \rightarrow a \rightarrow Bool \end{array}$

(==) is not a function, but a *method* of the *type class* E_q . It's type signature is:

 $(==) :: Eq \ a \Rightarrow a \to a \to Bool$

Eq *a* is a *class constraint*. It says that that the equality method works for any type belonging to the type class Eq.

Type Classes

- Type classes is one of the distinguishing fetures of Haskell
- Introduced to make ad hoc polymorphism, or overloading, less ad hoc
- Promotes reuse, making code more readable
- Central to elimination of all kinds of "boiler-plate" code and sophisticated datatype-generic programming.

Key reason why many practitioners like Haskell: lots of "programming" can happen automatically!

0 0 0 COMP4075: Lecture 6 – p.2/37

0 0 0 COMP4075: Lecture 6 - p.5/37

0 0 0 COMP4075: Lecture 6 - p.8/37

Haskell Overloading (3)

Moreover, some types do not in general admit a decidable equality. E.g. functions (when their domain is infinite).

Similar remarks apply to many other types. E.g.:

- We may want to be able to add numbers of any kind.
- But to add properly, we must understand what we are adding.
- Not every type admits addition.

Instances of Eq (1)

Various types can be made instances of a type class like Eq by providing implementations of the class methods for the type in question:

instance Eq Int where $x == y = primEqInt \ x \ y$ instance Eq Char where $x == y = primEqChar \ x \ y$

Haskell Overloading (1)

What is the type of (==)?

E.g. the following both work:

1 == 2'a' == 'b'

I.e., (==) can be used to compare both numbers and characters.

Maybe $(==) :: a \rightarrow a \rightarrow Bool?$

No!!! Cannot work uniformly for arbitrary types!

COMP4075: Lecture 6 – p.3:37

0 0 0 COMP4075: Lecture 6 - 0.6/37

0 0 0 COMP4075: Lecture 6 - p.9/37

Haskell Overloading (4)

Idea:

- Introduce the notion of a type class: a set of types that support certain related operations.
- Constrain those operations to only work for types belonging to the corresponding class.
- Allow a type to be *made an instance of* (added to) a type class by providing *type-specific implementations* of the operations of the class.

Instances of Eq (2)

Suppose we have a data type:

data $Answer = Yes \mid No \mid Unknown$

We can make Answer an instance of Eq as follows:

instance Eq Answer where

Yes	==	Yes	=	True
No	==	No	=	True
Unknown	==	Unknown	=	True
_	==	_	=	False

OMP4075: Lecture 6 – p.7/37

Instances of *Eq* (3)

Consider:

Can *Tree* be made an instance of Eq?

. Derived Instances (2)

GHC provides *many* additional possibilities. With the extension -XGeneralizedNewtypeDeriving, a new type defined using newtype can "inherit" any of the instances of the representation type:

newtype *Time* = *Time Int* **deriving** *Num*

With the extension -XStandaloneDeriving, instances can be derived separately from a type definition (even in a separate module):

deriving instance Eq Time deriving instance Eq $a \Rightarrow Eq$ (Tree a)

Haskell vs. OO Overloading (2)

> let xs = [1, 2, 3] :: [Int]> let ys = [1, 2, 3] :: [Double]> xs[1, 2, 3]> ys[1.0, 2.0, 3.0]> (read "42" : xs)[42, 1, 2, 3]> (read "42" : ys)[42.0, 1.0, 2.0, 3.0]

Instances of Eq (4)

Yes, for any type a that is already an instance of Eq:

Note that (==) is used at type a (whatever that is) when comparing a1 and a2, while the use of (==) for comparing subtrees is a recursive call.

Class Hierarchy

Type classes form a hierarchy. E.g.:

class $Eq \ a \Rightarrow Ord \ a$ where (<=) :: $a \to a \to Bool$

Eq is a superclass of Ord; i.e., any type in Ord must also be in Eq.

Haskell vs. OO Overloading (3)

Taking Java as a typical OO example:

• *Classes* and *interfaces* define sets of methods that elements of a type must support.

OMP4075: Lecture 6 – p.14/37

0 0 0 COMP4075: Lecture 6 – p.17/37

- Through generics, classes can be parametrised on types that can be bounded by classes and interfaces, a little like constraints in Haskell's class/instance declarations.
- However, the overloading is always on the *object*;
 i.e. effectively the *first argument* to a method:

object.method(arg1, arg2, ...)

Derived Instances (1)

Instance declarations are often obvious and mechanical. Thus, for certain *built-in* classes (notably *Eq*, *Ord*, *Show*), Haskell provides a way to *automatically derive* instances, as long as

- the data type is sufficiently simple
- · we are happy with the standard definitions

Thus, we can do:

data Tree a = Leaf a| Node (Tree a) (Tree a) deriving Eq

Haskell vs. OO Overloading (1)

A method, or overloaded function, may thus be understood as a family of functions where the right one is chosen depending on the types.

A bit like OO languages like Java. But the underlying mechanism is quite different and much more general. Consider read:

 $read :: (Read \ a) \Rightarrow String \rightarrow a$

Note: overloaded on the *result* type! A method that converts from a string to *any* other type in class Read!

Implementation (1)

The class constraints represent extra implicit arguments that are filled in by the compiler. These arguments are (roughly) the functions to use.

Thus, internally (==) is a *higher order function* with *three* arguments:

0 0 0 COMP4075: Lecture 6 - p.18/37

(==) eqF x y = eqF x y

Implementation (2)

An expression like

1 == 2

is essentially translated into

(==) primEqInt 1 2

COMP4075: Lacture 6 – p. 22/37

Implementation (5)

As *Foo* have two methods, the dictionary needs to carry two functions. If a pair were to be used for this purpose, the actual implementations would be something along the lines:

 $\begin{array}{l} \textit{fie} :: (a \rightarrow Bool, a \rightarrow Int) \rightarrow a \rightarrow Bool \\ \textit{fie} \ \textit{dict} \ x = (\textit{fst} \ \textit{dict}) \ x \\ \textit{fie} :: (a \rightarrow Bool, a \rightarrow Int) \rightarrow a \rightarrow Bool \\ \textit{fie} \ \textit{dict} \ x = (\textit{snd} \ \textit{dict}) \ x \end{array}$

Some Basic Haskell Classes (3)

Quiz: What is the type of a numeric literal like 42? What about 1.23? Why?

Haskell's numeric literals are overloaded:

- 42 means fromInteger 42
- 1.23 means *fromRational* (133 % 100)

Thus:

42 ::: Num $a \Rightarrow a$ 1.23 :: Fractional $a \Rightarrow a$

Implementation (3)

So one way of understanding a type like

 $(==) :: Eq \ a \Rightarrow a \rightarrow a \rightarrow Bool$

is that Eq *a* corresponds to an extra implicit argument.

The implicit argument corresponds to a so called directory, or tuple/record of functions, one for each method of the type class in question.

OMP4075: Lecture 6 – p.23/37

COMP4075: Lecture 6 - p.26/37

Some Basic Haskell Classes (1)

```
class Eq \ a where

(==), (/=) :: a \to a \to Bool

class (Eq \ a) \Rightarrow Ord \ a where

compare \ :: a \to a \to Ordering

(<), (<=), (>=), (>) :: a \to a \to Bool

max, min :: a \to a \to a

class Show a where

show :: a \to String
```

A Typing Conundrum (1)

Overloaded (numeric) literals can lead to some surprises.

What is the type of the following list? Is it even well-typed???

[1, [2, 3]]

Surprisingly, it is well-typed:

>:type [1, [2, 3]] $[1, [2, 3]] :: (Num [t], Num t) \Rightarrow [[t]]$

Why?

Implementation (4)

A rough illustration of the idea:

class Foo a where fie :: $a \rightarrow Bool$ fum :: $a \rightarrow Int$

The types of methods *fie* and *fum*:

fie :: Foo $a \Rightarrow a \rightarrow Bool$ fum :: Foo $a \Rightarrow a \rightarrow Int$

Some Basic Haskell Classes (2)

${\bf class}\ Num\ a\ {\bf where}$

 $\begin{array}{l} (+), (-), (*) :: a \to a \to a \\ negate & :: a \to a \\ abs, signum :: a \to a \\ fromInteger :: Integer \to a \end{array}$

```
class Num a \Rightarrow Fractional a where
```

 $\begin{array}{ll} (/) & :: a \to a \\ recip :: a \to a \\ from Rational :: Rational \to a \end{array}$

A Typing Conundrum (2)

The list is expanded into:

[fromInteger 1, [fromInteger 2, fromInteger 3]]

Thus, if there were some type t for which [t] were an instance of Num, the 1 would be an overloaded literal of that type, matching the type of the second element of the list.

Normally there are no such instances, so what almost certainly is a mistake will be caught. But the error message is rather confusing.

COMP4075: Lecture 6 – p.27/37

Multi-parameter Type Classes

GHC supports an extension to allow a class to have more than one parameter; i.e., definining a *relation* on types rather than just a predicate:

class $C \ a \ b \$ **where** . . .

This often lead to type inference ambiguities. Can be addressed through *functional dependencies*:

class *StateMonad* $s \ m \mid m \rightarrow s$ where ...

This enforces that all instances will be such that m uniquely determines s.

OMP4075: Lecture 6 – p.31/37

Approaches

- · Source-to-source translation
- Overloading of arithmetic operators and mathematical functions

The following variation is due to Jerzy Karczmarczuk. Infinite list of derivatives allows derivatives of *arbitrary* order to be computed.

Application: Automatic Differentiation

- Automatic Differentiation: method for augmenting code so that derivative(s) computed along with main result.
- Purely algebraic method: arbitrary code can be handled
- Exact results
- But no separate, self-contained representation of the derivative.

Functional Automatic Differentiation (1)

COMP4075: Lecture 6 - p.29/37

Introduce a new numeric type *C*: value of a continuously differentiable function at a point along with *all* derivatives at that point:

data C = C Double CvalC (C a _) = a derC (C _ x') = x'

Functional Automatic Differentiation (4)

0 0 0 COMP4075: Lecture 6 - p.35/37

Computation of $y = 3t^2 + 7$ at t = 2:

 $t = dVarC \ 2$ y = 3 * t * t + 7

We can now get whichever derivatives we need:

valC y	\Rightarrow	19.0
$valC \ (derC \ y)$	\Rightarrow	12.0
$valC \; (derC \; (derC \; y))$	\Rightarrow	6.0
valC (derC (derC (derC y)))	\Rightarrow	0.0

Automatic Differentiation: Key Idea

Consider a code fragment:

z1 = x + yz2 = x * z1

Suppose x' and y' are the derivatives of x and y w.r.t. a common variable. Then the code can be augmented to compute the derivatives of z1 and z2:

z1 = x + y z1' = x' + y' z2 = x * z1z2' = x' * z1 + x * z1'

Functional Automatic Differentiation (2)

0 0 0 COMP4075: Lecture 6 - p.36/37

Constants and the variable of differentiation:

 $\begin{aligned} zeroC &:: C \\ zeroC &= C \ 0.0 \ zeroC \\ constC &:: Double \to C \\ constC \ a &= C \ a \ zeroC \\ dVarC &:: Double \to C \\ dVarC \ a &= C \ a \ (constC \ 1.0) \end{aligned}$

Functional Automatic Differentiation (5)

Of course, we're not limited to picking just one point. Let *tvals* be a list of points of interest:

 $[3 * t * t + 7 \mid tval \leftarrow tvals,$ let $t = dVarC \ tval]$

Or we can define a function:

```
y :: Double \to C

y \ tval = 3 * t * t + 7

where

t = dVarC \ tval
```

Functional Automatic Differentiation (3)

Part of numerical instance:

instance Num C where

 $\begin{array}{l} (C \ a \ x') + (C \ b \ y') = C \ (a + b) \ (x' + y') \\ (C \ a \ x') - (C \ b \ y') = C \ (a - b) \ (x' - y') \\ x @ (C \ a \ x') * y @ (C \ b \ y') = \\ C \ (a * b) \ (x' * y + x * y') \\ fromInteger \ n = constC \ (fromInteger \ n) \end{array}$

COMP4075: Lecture 6 – p.34/37

Reading

 Jerzy Karczmarczuk. Functional differentiation of computer programs. *Higher-Order and Symbolic Computation*, 14(1):35–57, March 2001.