COMP4075: Lecture 8

Introduction to Monads

Henrik Nilsson

University of Nottingham, UK

° ° °
COMP4075: Lecture 8 — p.1/37



A Blessing and a Curse

° °
COMP4075: Lecture 8 —

[ ]
p.2/37



A Blessing and a Curse

The BIG advantage of pure functional
programming IS

COMP4075: Lecture 8 — p.2/37



A Blessing and a Curse

The BIG advantage of pure functional
programming is

“everything is explicit;”
l.e., flow of data manifest, no side effects.

COMP4075: Lecture 8 — p.2/37



A Blessing and a Curse

The BIG advantage of pure functional
programming is

“everything is explicit;”
l.e., flow of data manifest, no side effects.

Makes it a lot easier to understand large
programs.

°
COMP4075: Lecture 8 —p.2/37



A Blessing and a Curse

The BIG advantage of pure functional
programming is

“everything is explicit;”
l.e., flow of data manifest, no side effects.

Makes it a lot easier to understand large
programs.

The BIG problem with pure functional
programming Is

COMP4075: Lecture 8 — p.2/37



A Blessing and a Curse

The BIG advantage of pure functional
programming is

“everything is explicit;”
l.e., flow of data manifest, no side effects.

Makes it a lot easier to understand large
programs.

The BIG problem with pure functional
programming Is
“everything is explicit.”

COMP4075: Lecture 8 — p.2/37



A Blessing and a Curse

The BIG advantage of pure functional
programming is

“everything is explicit;”
l.e., flow of data manifest, no side effects.

Makes it a lot easier to understand large
programs.

The BIG problem with pure functional
programming is

“everything is explicit.”
Can add a lot of clutter, make it hard to
maintain code

COMP4075: Lecture 8 — p.2/37



Conundrum

“Shall | be pure or impure?” (Wadler, 1992)



Conundrum

“Shall | be pure or impure?” (Wadler, 1992)

Absence of effects
facilitates understanding and reasoning
makes lazy evaluation viable
allows choice of reduction order, e.g. parallel
enhances modularity and reuse.

COMP4075: Lecture 8 — p.3/37



Conundrum

“Shall | be pure or impure?” (Wadler, 1992)

Absence of effects
facilitates understanding and reasoning
makes lazy evaluation viable
allows choice of reduction order, e.g. parallel
enhances modularity and reuse.

Effects (state, exceptions, ...) can
help making code concise
facilitate maintenance
improve the efficiency.

COMP4075: Lecture 8 — p.3/37



Answer to Conundrum: Monads (1)

Monads bridges the gap: allow effectful
programming in a pure setting.



Answer to Conundrum: Monads (1)

Monads bridges the gap: allow effectful
programming in a pure setting.

Key idea: Computational types: an object of
type M A denotes a computation of an
object of type A.



Answer to Conundrum: Monads (1)

- Monads bridges the gap: allow effectful
programming in a pure setting.

- Key idea: Computational types: an object of
type M A denotes a computation of an
object of type A.

« Thus we shall be both pure and impure,
whatever takes our fancy!



Answer to Conundrum: Monads (1)
Monads bridges the gap: allow effectful
programming in a pure setting.

Key idea: Computational types: an object of
type M A denotes a computation of an
object of type A.

Thus we shall be both pure and impure,
whatever takes our fancy!

Monads originated in Category Theory.



Answer to Conundrum: Monads (1)

Monads bridges the gap: allow effectful
programming in a pure setting.

Key idea: Computational types: an object of
type M A denotes a computation of an
object of type A.

Thus we shall be both pure and impure,
whatever takes our fancy!

Monads originated in Category Theory.
Adapted by
Moggi for structuring denotational semantics
Wadler for structuring functional programs



Answer to Conundrum: Monads (2)

Monads

promote disciplined use of effects since the
type reflects which effects can occur;

COMP4075: Lecture 8 — p.5/37



Answer to Conundrum: Monads (2)

Monads

promote disciplined use of effects since the
type reflects which effects can occur;

allow great flexibility in tailoring the effect
structure to precise needs;

COMP4075: Lecture 8 — p.5/37



Answer to Conundrum: Monads (2)

Monads

promote disciplined use of effects since the
type reflects which effects can occur;

allow great flexibility in tailoring the effect
structure to precise needs;

support changes to the effect structure with
minimal impact on the overall program structure;

COMP4075: Lecture 8 — p.5/37



Answer to Conundrum: Monads (2)

Monads

promote disciplined use of effects since the
type reflects which effects can occur;

allow great flexibility in tailoring the effect
structure to precise needs;

support changes to the effect structure with
minimal impact on the overall program structure;

allow integration into a pure setting of real
effects such as

/0O
mutable state.

COMP4075: Lecture 8 — p.5/37



This Lecture

Pragmatic introduction to monads:

Effectful computations
Identifying a common pattern
Monads as a design pattern

COMP4075: Lecture 8 — p.6/37



Example 1: A Simple Evaluator

data Exzp = Lit Integer

Add Exp Exp
Sub Exp Ezp
Mul Exp Exp
Dw Exp Lxp

eval :: Exp — Integer

eval (Lit n) =n

COMP4075: Lecture 8 — p.7/37



Making the Evaluator Safe (1)

data Maybe a = Nothing | Just a

safebval 2 Exp — Maybe Integer
safeFBval (Lit n) = Just n
safeFval (Add el e2) =
case safeFval el of
Nothing — Nothing
Just nl — case safefival e2 of
Nothing — Nothing
Just n2 — Just (n1 + n2)

COMP4075: Lecture 8 — p.8/37



Making the Evaluator Safe (2)

safeFval (Sub el e2) =
case safefval el of
Nothing — Nothing
Just nl — case safelival e2 of
Nothing — Nothing
Just n2 — Just (n1 — n2)

COMP4075: Lecture 8 — p.9/37



Making the Evaluator Safe (3)

safeFval (Mul el e2) =
case safefval el of
Nothing — Nothing
Just nl — case safelival e2 of
Nothing — Nothing
Just n2 — Just (n1 x n2)

COMP4075: Lecture 8 10/37



Making the Evaluator Safe (4)

safeFval (Div el e2) =
case safefval el of
Nothing — Nothing
Just nl — case safelival e2 of
Nothing — Nothing
Just n2 —
if n2 =0
then Nothing
else Just (nl1 ‘div‘ n2)

COMP4075: Lecture 8 11/37



Any Common Pattern?

Clearly a lot of code duplication!
Can we factor out a common pattern?

COMP4075: Lecture 8 12/37



Any Common Pattern?

Clearly a lot of code duplication!
Can we factor out a common pattern?

We note:

Sequencing of evaluations (or
computations).

COMP4075: Lecture 8 12/37



Any Common Pattern?

Clearly a lot of code duplication!
Can we factor out a common pattern?

We note:

Sequencing of evaluations (or
computations).

If one evaluation fails, fail overall.

COMP4075: Lecture 8 12/37



Any Common Pattern?

Clearly a lot of code duplication!
Can we factor out a common pattern?

We note:

Sequencing of evaluations (or
computations).

If one evaluation fails, fail overall.

Otherwise, make result available to following
evaluations.

COMP4075: Lecture 8 12/37



Sequencing Evaluations

evalSeq :: Maybe Integer
— (Integer — Maybe Integer)
— Maybe Integer
evalSeq ma f = case ma of
Nothing — Nothing
Just a — f a

COMP4075: Lecture 8 13/37



Exercise 1: Refactoring safefval

Rewrite safeFval, case Add, using evalSeq:
safeEval (Add el e2) =

case safekEval el |of
Nothing —-> Nothing
Just nl ->
case safekEval eZ2 [of
Nothing —-> Nothing
Just n2 =>| Just (nl + n2)
evalSeq ma £ =
case ma |of
Nothing —-> Nothing

Just a —> f a

° ° ° ° ° ° ° ° °
COMP4075: Lecture 8 — p.14/37



Exercise 1: Solution

safebval 2 Exp — Maybe Integer
safeFval (Add el e2) =
evalSeq (safeFval el)
(An1 — evalSeq (safeFval e2)
(An2 — Just (nl +n2))

or
safeEval :: BExp — Maybe Integer

safeFval (Add el e2) =
safeEval el ‘evalSeq* Anl —
safeEval e2 ‘evalSeq" An2 —
Just (nl + n2)

°
COMP4075: Lecture 8 — p.15/37



Refactored Safe Evaluator (1)

safebval 2 Exp — Maybe Integer

safeFval (Lit n) = Just n

safeFval (Add el e2) =
safeEval el ‘evalSeq* A\nl —
safeEval e2 ‘evalSeq" An2 —
Just (n1 + n2)

safeFval (Sub el e2) =
safeEval el ‘evalSeq" Anl —
safeEval e2 ‘evalSeq" An2 —
Just (nl — n2)

COMP4075: Lecture 8 16/37



Refactored Safe Evaluator (2)

safeFval (Mul el e2) =
safeEval el ‘evalSeq* A\nl —
safeEval e2 ‘evalSeq* An2 —
Just (nl * n2)

safeFval (Div el e2) =
safeEval el ‘evalSeq" Anl —
safeEval e2 ‘evalSeq" An2 —
if n2 =0
then Nothing
else Just (nl1 ‘div' n2)

COMP4075: Lecture 8 17/37



Maybe Viewed as a Computation (1)

- Consider a value of type Maybe a as
denoting a computation of a value of type a
that may fail.

° °
COMP4075: Lecture 8 —

p.18/37



Maybe Viewed as a Computation (1)

Consider a value of type Maybe a as
denoting a computation of a value of type a
that may fail.

When sequencing possibly failing
computations, a natural choice is to fall
overall once a subcomputation fails.

COMP4075: Lecture 8 18/37



Maybe Viewed as a Computation (1)

Consider a value of type Maybe a as
denoting a computation of a value of type a
that may fail.

When sequencing possibly failing
computations, a natural choice is to fall
overall once a subcomputation fails.

l.e. failure is an effect, implicitly affecting
subsequent computations.

COMP4075: Lecture 8 18/37



Maybe Viewed as a Computation (1)

Consider a value of type Maybe a as
denoting a computation of a value of type a
that may fail.

When sequencing possibly failing
computations, a natural choice is to fall
overall once a subcomputation fails.

l.e. failure is an effect, implicitly affecting
subsequent computations.

Let’s generalize and adopt names reflecting
our intentions.

COMP4075: Lecture 8 18/37



Maybe Viewed as a Computation (2)

Successful computation of a value:

mbReturn :: a — Maybe a
mbReturn = Just

Sequencing of possibly failing computations:

mbSeq :: Maybe a — (a — Maybe b) — Maybe b
mbSeq ma f = case ma of

Nothing — Nothing

Just a — f a

COMP4075: Lecture 8 — p.19/37



Maybe Viewed as a Computation (3)

Failing computation:

mblail :: Maybe a
mblail = Nothing

° °
COMP4075: Lecture 8 —

p.20/37



The Safe Evaluator Revisited

safebval 2 Exp — Maybe Integer

safeFBval (Lit n) = mbReturn n

safeFval (Add el e2) =
safeEval el ‘mbSeq Anl —
safeEval e2 ‘mbSeq A\n2 —
mbReturn (n1 + n2)

safeFval (Div el e2) =
safefval el “mbSeq A\nl —
safeEval e2 ‘mbSeq A\n2 —
if n2 = 0 then mbFuil else mbReturn (nl ‘div' n.

COMP4075: Lecture 8 — p.21/37



Example 2: Numbering Trees

data Tree a = Leaf a | Node (Tree a) (Tree a)

numberTree :: Tree a — Tree Int
numberTree t = fst (ntAuz t 0)

where
ntAux :: Tree a — Int — (Tree Int, Int)
ntAuz (Leaf ) n = (Leaf n,n + 1)

ntAuz (Node t1 t2) n =
let (t1',n") = ntAuz t1 n
in let (t2',n") = ntAux t2 n'
in (Node t1’ t2',n")

COMP4075: Lecture 8 22/37



Observations

Repetitive pattern: threading a counter
through a sequence of tree numbering
computations.

COMP4075: Lecture 8 — p.23/37



Observations

Repetitive pattern: threading a counter
through a sequence of tree numbering
computations.

It is very easy to pass on the wrong version of
the counter!

COMP4075: Lecture 8 23/37



Observations

Repetitive pattern: threading a counter
through a sequence of tree numbering
computations.

It is very easy to pass on the wrong version of
the counter!

Can we do better?

COMP4075: Lecture 8 23/37



Stateful Computations (1)

A stateful computation consumes a state
and returns a result along with a possibly
updated state.

° °
COMP4075: Lecture 8 —

p.24/37



Stateful Computations (1)

A stateful computation consumes a state
and returns a result along with a possibly
updated state.

The following type synonym captures this
idea:

type S a = Int — (a, Int)

(Only Int state for the sake of simplicity.)

COMP4075: Lecture 8 24/37



Stateful Computations (1)

A stateful computation consumes a state
and returns a result along with a possibly
updated state.

The following type synonym captures this
idea:
type S a = Int — (a, Int)

(Only Int state for the sake of simplicity.)

A value (function) of type S a can now be
viewed as denoting a stateful computation
computing a value of type a.

COMP4075: Lecture 8 24/37



Stateful Computations (2)

When sequencing stateful computations, the
resulting state should be passed on to the
next computation.

COMP4075: Lecture 8 25/37



Stateful Computations (2)

When sequencing stateful computations, the
resulting state should be passed on to the
next computation.

|.e. state updating is an effect, implicitly
affecting subsequent computations.
(As we would expect.)

COMP4075: Lecture 8 25/37



Stateful Computations (3)

Computation of a value without changing the
state (Forref.: Sa = Int — (a,Int)):

sReturn ::a — S a
sReturn a = 777

COMP4075: Lecture 8 26/37



Stateful Computations (3)

Computation of a value without changing the
state (Forref.: Sa = Int — (a,Int)):

sReturn :: a — S a
sReturn a = An — (a, n)

COMP4075: Lecture 8 26/37



Stateful Computations (3)

Computation of a value without changing the
state (Forref.: Sa = Int — (a,Int)):

sReturn :: a — S a
sReturn a = An — (a, n)

Seqguencing of stateful computations:

sSeq::Sa—(a—Sb)—Sb
sSeq sa f =177



Stateful Computations (3)

Computation of a value without changing the
state (Forref.: Sa = Int — (a,Int)):

sReturn :: a — S a
sReturn a = An — (a, n)

Seqguencing of stateful computations:

sSeq::Sa—(a—Sb)—Sb
sSeq sa f = An —

let (a,n') = san

infan



Stateful Computations (4)

Reading and incrementing the state
(Forref.: S a = Int — (a,lInt)):

sinc:: S Int
sinc=Xn — (n,n+1)



Numbering trees revisited
data Tree a = Leaf a | Node (Tree a) (Tree a)

numberlree :: Tree a — Tree Int
numberTree t = fst (ntAuz t 0)
where
ntAuz :: Tree a — S (Tree Int)
ntAux (Leaf _) =
sInc ‘sSeq* An — sReturn (Leaf n)
ntAuz (Node t1 t2) =
ntAux t1 ‘sSeq* \t1' —
ntAux t2 ‘sSeq* A\t2" —
sReturn (Node t1" t2")

COMP4075: Lecture 8 28/37



Observations

The “plumbing” has been captured by the
abstractions.

COMP4075: Lecture 8 29/37



Observations

The “plumbing” has been captured by the
abstractions.
In particular:

counter no longer manipulated directly

no longer any risk of “passing on” the
wrong version of the counter!

COMP4075: Lecture 8 29/37



Comparison of the examples

Both examples characterized by sequencing
of effectful computations.

COMP4075: Lecture 8 — p.30/37



Comparison of the examples

Both examples characterized by sequencing
of effectful computations.

Both examples could be neatly structured by
introducing:

COMP4075: Lecture 8 — p.30/37



Comparison of the examples

Both examples characterized by sequencing
of effectful computations.

Both examples could be neatly structured by
introducing:

A type denoting computations

COMP4075: Lecture 8 — p.30/37



Comparison of the examples

Both examples characterized by sequencing
of effectful computations.

Both examples could be neatly structured by
introducing:
A type denoting computations

A function constructing an effect-free
computation of a value

COMP4075: Lecture 8 — p.30/37



Comparison of the examples

Both examples characterized by sequencing
of effectful computations.

Both examples could be neatly structured by
introducing:
A type denoting computations

A function constructing an effect-free
computation of a value

A function constructing a computation by
sequencing computations

COMP4075: Lecture 8 — p.30/37



Comparison of the examples

Both examples characterized by sequencing
of effectful computations.

Both examples could be neatly structured by
introducing:
A type denoting computations

A function constructing an effect-free
computation of a value

A function constructing a computation by
sequencing computations

In fact, both examples are instances of the
general notion of a MMONAD.

COMP4075: Lecture 8 — p.30/37



Monads in Functional Programming

A monad Is represented by:
A type constructor
M % — %
M T represents computations of value of type 7.
A polymorphic function
return :: a — M a
for lifting a value to a computation.
A polymorphic function
(>=):Ma—>(a— Mb — MY
for sequencing corppu.tatic.)ns..

COMP4075: Lecture 8 — p.31/37



Exercise 2: join and fmap

Equivalently, the notion of a monad can be
captured through the following functions:

return :: a — M a

join (M (M a)) > M a

fmap (e —b) > Ma— MY
join “flattens” a computation, fmap “lifts” a
function to map computations to computations.

Define join and fmap in terms of (>=) (and
return), and (>=) in terms of join and fmap.

(>=):Ma—(a—>Mb) - MU

° °
COMP4075: Lecture 8 — p.32/37



Exercise 2: Solution

join :: M (M a) — M a

jotn mm = mm >= id

fmap ::(a - b) = M a— M b
fmap f m = m >= return o f

(>=)u:Ma—(a—>MDb) — MbDb
m >= f = join (fmap f m)

COMP4075: Lecture 8 — p.33/37



Monad laws

Additionally, the following /laws must be satisfied:

return x >=f = fx
m =>= return
(m>=f)>=qg = m>= Mz — fz>=g)

m

l.e., return is the right and left identity for (>=),
and (>=) is associative.

COMP4075: Lecture 8 — p.34/37



Exercise 3: The Identity Monad

The Identity Monad can be understood as
representing effect-free computations:

type [ a = a

1. Provide suitable definitions of return and
(>=).

2. Verify that the monad laws hold for your
definitions.



Exercise 3: Solution

return . a — I a
return = id

(>=)=lTa—>(a—>1b)—110
m>=f=fm

(Or: (>=) = flip (3))
Simple calculations verify the laws, e.g.:

return x >>=1 = idx>=1f
r>=f

:fx

COMP4075: Lecture 8 — p.36/37



Reading

Philip Wadler. The Essence of Functional
Programming. Proceedings of the 19th ACM
Symposium on Principles of Programming Languages
(POPL92), 1992.

Nick Benton, John Hughes, Eugenio Moggi. Monads
and Effects. In International Summer School on
Applied Semantics 2000, Caminha, Portugal, 2000.

All About Monads.
http://www.haskell.org/all_about_monads

° °
COMP4075: Lecture 8 — p.37/37



	A Blessing and a Curse
	Conundrum
	Answer to Conundrum: Monads (1)
	Answer to Conundrum: Monads (2)
	This Lecture
	Example 1: A Simple Evaluator
	Making the Evaluator Safe (1)
	Making the Evaluator Safe (2)
	Making the Evaluator Safe (3)
	Making the Evaluator Safe (4)
	Any Common Pattern?
	Sequencing Evaluations
	Exercise 1: Refactoring ensuremath {Varid {safeEval}}
	Exercise 1: Solution
	Refactored Safe Evaluator (1)
	Refactored Safe Evaluator (2)
		exttt {Maybe} Viewed as a Computation (1)
		exttt {Maybe} Viewed as a Computation (2)
		exttt {Maybe} Viewed as a Computation (3)
	The Safe Evaluator Revisited
	Example 2: Numbering Trees
	Observations
	Stateful Computations (1)
	Stateful Computations (2)
	Stateful Computations (3)
	Stateful Computations (4)
	Numbering trees revisited
	Observations
	Comparison of the examples
	Monads in Functional Programming
	Exercise 2: ensuremath {Varid {join}} and ensuremath {Varid {fmap}}
	Exercise 2: Solution
	Monad laws
	Exercise 3: The Identity Monad
	Exercise 3: Solution
	Reading

