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This Lecture

• A concurrency monad (adapted from
Claessen (1999))

• Basic concurrent programming in Haskell

• Software Transactional Memory (the STM
monad)
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A Concurrency Monad (1)

A Thread represents a (branching) process: a
stream of primitive atomic operations:

data Thread = Print Char Thread

| Fork Thread Thread

| End
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A Concurrency Monad (1)

A Thread represents a (branching) process: a
stream of primitive atomic operations:

data Thread = Print Char Thread

| Fork Thread Thread

| End

Note that a Thread represents the entire rest of
a computation.

Note also that a Thread can spawn other Threads
(so we get a tree, if you prefer).
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A Concurrency Monad (2)

Introduce a monad representing “interleavable
computations”. At this stage, this amounts to little
more than a convenient way to construct threads
by sequential composition.
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A Concurrency Monad (2)

Introduce a monad representing “interleavable
computations”. At this stage, this amounts to little
more than a convenient way to construct threads
by sequential composition.

How can Threads be constructed sequentially?
The only way is to parameterize thread prefixes
on the rest of the Thread . This leads directly to
continuations.
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A Concurrency Monad (3)

newtype CM a = CM ((a → Thread)→ Thread)

fromCM :: CM a → ((a → Thread)→ Thread)

fromCM (CM x ) = x

thread :: CM a → Thread

thread m = fromCM m (const End)

instance Monad CM where

return x = CM (λk → k x )

m >>= f = CM $ λk →

fromCM m (λx → fromCM (f x ) k)
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A Concurrency Monad (4)

Atomic operations:

cPrint :: Char → CM ()

cPrint c = CM (λk → Print c (k ()))

cFork :: CM a → CM ()

cFork m = CM (λk → Fork (thread m) (k ()))

cEnd :: CM a

cEnd = CM (\_→ End)
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Running a Concurrent Computation (1)

type Output = [Char ]

type ThreadQueue = [Thread ]

type State = (Output ,ThreadQueue)

runCM :: CM a → Output

runCM m = runHlp ("", [ ]) (thread m)

where

runHlp s t =

case dispatch s t of

Left (s ′, t)→ runHlp s ′ t

Right o → o
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Running a Concurrent Computation (2)

Dispatch on the operation of the currently
running Thread . Then call the scheduler.

dispatch :: State → Thread

→ Either (State,Thread) Output

dispatch (o, rq) (Print c t) =

schedule (o ++ [c ], rq ++ [t ])

dispatch (o, rq) (Fork t1 t2 ) =

schedule (o, rq ++ [t1 , t2 ])

dispatch (o, rq) End =

schedule (o, rq)

COMP4075: Lecture 10 – p.8/41



Running a Concurrent Computation (3)

Selects next Thread to run, if any.

schedule :: State → Either (State,Thread)

Output

schedule (o, [ ]) = Right o

schedule (o, t : ts) = Left ((o, ts), t)
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Running a Concurrent Computation (3)

Selects next Thread to run, if any.

schedule :: State → Either (State,Thread)

Output

schedule (o, [ ]) = Right o

schedule (o, t : ts) = Left ((o, ts), t)

This all amounts to a topological sorting of the
nodes in the Thread -tree.
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Example: Concurrent Processes

p1 :: CM ()

p1 = do

cPrint ’a’

cPrint ’b’

. . .

cPrint ’j’

p2 :: CM ()

p2 = do

cPrint ’1’

cPrint ’2’

. . .

cPrint ’0’

p3 :: CM ()

p3 = do

cFork p1

cPrint ’A’

cFork p2

cPrint ’B’

main = print (runCM p3 )

Result: aAbc1Bd2e3f4g5h6i7j890
Note: As it stands, the output is only made
available after all threads have terminated.)
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Incremental Output

Incremental output:

runCM :: CM a → Output

runCM m = dispatch [ ] (thread m)

dispatch :: ThreadQueue → Thread → Output

dispatch rq (Print c t) = c : schedule (rq ++ [t ])

dispatch rq (Fork t1 t2 ) = schedule (rq ++ [t1 , t2 ])

dispatch rq End = schedule rq

schedule :: ThreadQueue → Output

schedule [ ] = [ ]

schedule (t : ts) = dispatch ts t
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Example: Concurrent processes 2

p1 :: CM ()

p1 = do

cPrint ’a’

cPrint ’b’

. . .

cPrint ’j’

p2 :: CM ()

p2 = do

cPrint ’1’

undefined

. . .

cPrint ’0’

p3 :: CM ()

p3 = do

cFork p1

cPrint ’A’

cFork p2

cPrint ’B’

main = print (runCM p3 )

Result: aAbc1Bd ∗∗∗Exception :Prelude.undefined

COMP4075: Lecture 10 – p.12/41



Any Use?

• Illustrates the flexibility offered by monads for
introducing new control abstractions,
including on top of basic concurrency
primitives (cf. Control .Concurrent .Asynch).
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Any Use?

• Illustrates the flexibility offered by monads for
introducing new control abstractions,
including on top of basic concurrency
primitives (cf. Control .Concurrent .Asynch).

• A number of libraries and embedded
langauges use similar ideas, e.g.

- Fudgets: A GUI library

- Yampa: A FRP library
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Any Use?

• Illustrates the flexibility offered by monads for
introducing new control abstractions,
including on top of basic concurrency
primitives (cf. Control .Concurrent .Asynch).

• A number of libraries and embedded
langauges use similar ideas, e.g.

- Fudgets: A GUI library

- Yampa: A FRP library

• Studying semantics of concurrent programs.
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Any Use?

• Illustrates the flexibility offered by monads for
introducing new control abstractions,
including on top of basic concurrency
primitives (cf. Control .Concurrent .Asynch).

• A number of libraries and embedded
langauges use similar ideas, e.g.

- Fudgets: A GUI library

- Yampa: A FRP library

• Studying semantics of concurrent programs.

• Aid for testing, debugging, and reasoning
about concurrent programs.
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Concurrent Programming in Haskell

Primitives for concurrent programming provided
as operations of the IO monad. They are in the
module Control .Concurrent . Excerpts:

forkIO :: IO ()→ IO ThreadId

killThread :: ThreadId → IO ()

threadDelay :: Int → IO ()

newMVar :: a → IO (MVar a)

newEmptyMVar :: IO (MVar a)

putMVar ::MVar a → a → IO ()

takeMVar ::MVar a → IO a
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MVars

• The fundamental synchronisation mechanism
is the MVar (“em-var”).

• An MVar is a “one-item box” that may be
empty or full.

• Reading (takeMVar ) and writing (putMVar )
are atomic operations:

- Writing to an empty MVar makes it full.

- Writing to a full MVar blocks.

- Reading from an empty MVar blocks.

- Reading from a full MVar makes it empty.
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Example: Basic Synchronization (1)

module Main where

import Control .Concurrent

countFromTo :: Int → Int → IO ()

countFromTo m n

| m > n = return ()

| otherwise = do

putStrLn (show m)

countFromTo (m + 1) n
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Example: Basic Synchronization (2)

main = do

start ← newEmptyMVar

done ← newEmptyMVar

forkIO $ do

takeMVar start

countFromTo 1 10

putMVar done ()

putStrLn "Go!"

putMVar start ()

takeMVar done

countFromTo 11 20

putStrLn "Done!" COMP4075: Lecture 10 – p.17/41



Example: Unbounded Buffer (1)

module Main where

import Control .Monad (when)

import Control .Concurrent

newtype Buffer a =

Buffer (MVar (Either [a ] (Int ,MVar a)))

newBuffer :: IO (Buffer a)

newBuffer = do

b ← newMVar (Left [ ])

return (Buffer b)
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Example: Unbounded Buffer (2)

readBuffer :: Buffer a → IO a

readBuffer (Buffer b) = do

bc ← takeMVar b

case bc of

Left (x : xs)→ do

putMVar b (Left xs)

return x

Left [ ]→ do

w ← newEmptyMVar

putMVar b (Right (1,w))

takeMVar w
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Example: Unbounded Buffer (3)

. . .

Right (n,w)→ do

putMVar b (Right (n + 1,w))

takeMVar w
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Example: Unbounded Buffer (4)

writeBuffer :: Buffer a → a → IO ()

writeBuffer (Buffer b) x = do

bc ← takeMVar b

case bc of

Left xs →

putMVar b (Left (xs ++ [x ]))

Right (n,w)→ do

putMVar w x

if n > 1

then putMVar b (Right (n − 1,w))

else putMVar b (Left [ ])
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Example: Unbounded Buffer (4)

The buffer can now be used as a channel of
communication between a set of “writers” and a
set of “readers”. E.g.:

main = do

b ← newBuffer

forkIO (writer b)

forkIO (writer b)

forkIO (reader b)

forkIO (reader b)

. . .
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Example: Unbounded Buffer (5)

reader :: Buffer Int → IO ()

reader n b = rLoop

where

rLoop = do

x ← readBuffer b

when (x > 0) $ do

putStrLn (n ++ ": "++ show x )

rLoop
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Compositionality? (1)

Suppose we would like to read two consecutive
elements from a buffer b?

That is, sequential composition.

Would the following work?

x1 ← readBuffer b

x2 ← readBuffer b
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Compositionality? (2)

What about this?

mutex ← newMVar ()

. . .

takeMVar mutex

x1 ← readBuffer b

x2 ← readBuffer b

putMVar mutex ()
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Compositionality? (3)

Suppose we would like to read from one of two
buffers.

That is, composing alternatives.
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Compositionality? (3)

Suppose we would like to read from one of two
buffers.

That is, composing alternatives.

Hmmm. How do we even begin?
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Compositionality? (3)

Suppose we would like to read from one of two
buffers.

That is, composing alternatives.

Hmmm. How do we even begin?

• No way to attempt reading a buffer without
risking blocking.
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Compositionality? (3)

Suppose we would like to read from one of two
buffers.

That is, composing alternatives.

Hmmm. How do we even begin?

• No way to attempt reading a buffer without
risking blocking.

• We have to change or enrich the buffer
implementation. E.g. add a tryReadBuffer
operation, and then repeatedly poll the two
buffers in a tight loop. Not so good!
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Software Transactional Memory (1)

• Operations on shared mutable variables
grouped into transactions.

• A transaction either succeeds or fails in its
entirety. I.e., atomic w.r.t. other transactions.

• Failed transactions are automatically retried
until they succeed.

• Transaction logs, which records reading and
writing of shared variables, maintained to
enable transactions to be validated, partial
transactions to be rolled back, and to determine
when worth trying a transaction again.
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Software Transactional Memory (2)

• Basic consistency requirement: The effects
of reading and writing within a transaction
must be indistinguishable from the transaction
having been carried out in isolation.

• No locks! (At the application level.)
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STM and Pure Declarative Languages

• STM perfect match for purely declarative
languages:

- reading and writing of shared mutable
variables explicit and relatively rare;

- most computations are pure and need not
be logged.

• Disciplined use of effects through monads a
huge payoff: easy to ensure that only effects
that can be undone can go inside a transaction.

(Imagine the havoc of arbitrary I/O actions if part
of transaction: How to undo? What if retried?)
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The STM monad

The software transactional memory abstraction
provided by a monad STM . Distinct from IO!
Defined in Control .Concurrent .STM .

Excerpts:

newTVar :: a → STM (TVar a)

writeTVar :: TVar a → a → STM ()

readTVar :: TVar a → STM a

retry :: STM a

atomically :: STM a → IO a
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Example: Buffer Revisited (1)

Unbounded buffer using the STM monad:

module Main where

import Control .Monad (when)

import Control .Concurrent

import Control .Concurrent .STM

newtype Buffer a = Buffer (TVar [a ])

newBuffer :: STM (Buffer a)

newBuffer = do

b ← newTVar [ ]

return (Buffer b)
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Example: Buffer Revisited (2)

readBuffer :: Buffer a → STM a

readBuffer (Buffer b) = do

xs ← readTVar b

case xs of

[ ]→ retry

(x : xs ′)→ do

writeTVar b xs ′

return x
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Example: Buffer Revisited (3)

writeBuffer :: Buffer a → a → STM ()

writeBuffer (Buffer b) x = do

xs ← readTVar b

writeTVar b (xs ++ [x ])
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Example: Buffer Revisited (4)

The main program and code for readers and
writers can remain unchanged, except that STM
operations must be carried out atomically:

main = do

b ← atomically newBuffer

forkIO (writer b)

forkIO (writer b)

forkIO (reader b)

forkIO (reader b)

. . .
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Example: Buffer Revisited (5)

reader :: Buffer Int → IO ()

reader n b = rLoop

where

rLoop = do

x ← atomically (readBuffer b)

when (x > 0) $ do

putStrLn (n ++ ": "++ show x )

rLoop
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Composition (1)

STM operations can be robustly composed.
That’s the reason for making readBuffer and
writeBuffer STM operations, and leaving it to
client code to decide the scope of atomic blocks.

Example, sequential composition: reading two
consecutive elements from a buffer b:

atomically $ do

x1 ← readBuffer b

x2 ← readBuffer b

. . .
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Composition (2)

Example, composing alternatives: reading from
one of two buffers b1 and b2 :

x ← atomically $

readBuffer b1

‘orElse ‘ readBuffer b2

The buffer operations thus composes nicely. No
need to change the implementation of any of the
operations!

COMP4075: Lecture 10 – p.37/41



Further STM Functionality (1)

TMVar : STM version of MVars for synchoronisation;
built on top of TVars:

TMVar a ≈ TVar (Maybe a)

Some operations:
• newTMVar :: a → STM (TMVar a)

• newEmptyTMVar :: STM (TMVar a)

• putTMVar :: TMVar a → a → STM ()

• takeTMVar :: TMVar a → STM a

• readTMVar :: TMVar a → STM a

• swapTMVar :: TMVar a → a → STM a
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Further STM Functionality (2)

Some non-blocking operations:

• isEmptyTMVar :: TMVar a → STM Bool

• tryPutTMVar :: TMVar a → a → STM Bool

• tryTakeTMVar :: TMVar a → STM (Maybe a)

• tryReadTMVar :: TMVar a → STM (Maybe a)
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Further STM Functionality (3)

Other process communication and
synchronization facilities:

• TChan a: Unbounded FIFO channel

• TQueue a: Variation of TChan with faster
(amortised) throughput.

• TBQueue a: Bounded FIFO channel

• TSem: Transactional counting semaphore
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