
COMP4075: Lecture 10
Concurrency

Henrik Nilsson

University of Nottingham, UK

COMP4075: Lecture 10 – p.1/41

This Lecture

• A concurrency monad (adapted from
Claessen (1999))

• Basic concurrent programming in Haskell

• Software Transactional Memory (the STM
monad)

COMP4075: Lecture 10 – p.2/41

A Concurrency Monad (1)

A Thread represents a (branching) process: a
stream of primitive atomic operations:

data Thread = Print Char Thread

| Fork Thread Thread

| End

COMP4075: Lecture 10 – p.3/41

A Concurrency Monad (1)

A Thread represents a (branching) process: a
stream of primitive atomic operations:

data Thread = Print Char Thread

| Fork Thread Thread

| End

Note that a Thread represents the entire rest of
a computation.

Note also that a Thread can spawn other Threads
(so we get a tree, if you prefer).

COMP4075: Lecture 10 – p.3/41

A Concurrency Monad (2)

Introduce a monad representing “interleavable
computations”. At this stage, this amounts to little
more than a convenient way to construct threads
by sequential composition.

COMP4075: Lecture 10 – p.4/41

A Concurrency Monad (2)

Introduce a monad representing “interleavable
computations”. At this stage, this amounts to little
more than a convenient way to construct threads
by sequential composition.

How can Threads be constructed sequentially?
The only way is to parameterize thread prefixes
on the rest of the Thread . This leads directly to
continuations.

COMP4075: Lecture 10 – p.4/41

A Concurrency Monad (3)

newtype CM a = CM ((a → Thread)→ Thread)

fromCM :: CM a → ((a → Thread)→ Thread)

fromCM (CM x) = x

thread :: CM a → Thread

thread m = fromCM m (const End)

instance Monad CM where

return x = CM (λk → k x)

m >>= f = CM $ λk →

fromCM m (λx → fromCM (f x) k)

COMP4075: Lecture 10 – p.5/41

A Concurrency Monad (4)

Atomic operations:

cPrint :: Char → CM ()

cPrint c = CM (λk → Print c (k ()))

cFork :: CM a → CM ()

cFork m = CM (λk → Fork (thread m) (k ()))

cEnd :: CM a

cEnd = CM (_→ End)

COMP4075: Lecture 10 – p.6/41

Running a Concurrent Computation (1)

type Output = [Char]

type ThreadQueue = [Thread]

type State = (Output ,ThreadQueue)

runCM :: CM a → Output

runCM m = runHlp ("", []) (thread m)

where

runHlp s t =

case dispatch s t of

Left (s ′, t)→ runHlp s ′ t

Right o → o

COMP4075: Lecture 10 – p.7/41

Running a Concurrent Computation (2)

Dispatch on the operation of the currently
running Thread . Then call the scheduler.

dispatch :: State → Thread

→ Either (State,Thread) Output

dispatch (o, rq) (Print c t) =

schedule (o ++ [c], rq ++ [t])

dispatch (o, rq) (Fork t1 t2) =

schedule (o, rq ++ [t1 , t2])

dispatch (o, rq) End =

schedule (o, rq)

COMP4075: Lecture 10 – p.8/41

Running a Concurrent Computation (3)

Selects next Thread to run, if any.

schedule :: State → Either (State,Thread)

Output

schedule (o, []) = Right o

schedule (o, t : ts) = Left ((o, ts), t)

COMP4075: Lecture 10 – p.9/41

Running a Concurrent Computation (3)

Selects next Thread to run, if any.

schedule :: State → Either (State,Thread)

Output

schedule (o, []) = Right o

schedule (o, t : ts) = Left ((o, ts), t)

This all amounts to a topological sorting of the
nodes in the Thread -tree.

COMP4075: Lecture 10 – p.9/41

Example: Concurrent Processes

p1 :: CM ()

p1 = do

cPrint ’a’

cPrint ’b’

. . .

cPrint ’j’

p2 :: CM ()

p2 = do

cPrint ’1’

cPrint ’2’

. . .

cPrint ’0’

p3 :: CM ()

p3 = do

cFork p1

cPrint ’A’

cFork p2

cPrint ’B’

main = print (runCM p3)

Result: aAbc1Bd2e3f4g5h6i7j890
Note: As it stands, the output is only made
available after all threads have terminated.)

COMP4075: Lecture 10 – p.10/41

Incremental Output

Incremental output:

runCM :: CM a → Output

runCM m = dispatch [] (thread m)

dispatch :: ThreadQueue → Thread → Output

dispatch rq (Print c t) = c : schedule (rq ++ [t])

dispatch rq (Fork t1 t2) = schedule (rq ++ [t1 , t2])

dispatch rq End = schedule rq

schedule :: ThreadQueue → Output

schedule [] = []

schedule (t : ts) = dispatch ts t

COMP4075: Lecture 10 – p.11/41

Example: Concurrent processes 2

p1 :: CM ()

p1 = do

cPrint ’a’

cPrint ’b’

. . .

cPrint ’j’

p2 :: CM ()

p2 = do

cPrint ’1’

undefined

. . .

cPrint ’0’

p3 :: CM ()

p3 = do

cFork p1

cPrint ’A’

cFork p2

cPrint ’B’

main = print (runCM p3)

Result: aAbc1Bd ∗∗∗Exception :Prelude.undefined

COMP4075: Lecture 10 – p.12/41

Any Use?

• Illustrates the flexibility offered by monads for
introducing new control abstractions,
including on top of basic concurrency
primitives (cf. Control .Concurrent .Asynch).

COMP4075: Lecture 10 – p.13/41

Any Use?

• Illustrates the flexibility offered by monads for
introducing new control abstractions,
including on top of basic concurrency
primitives (cf. Control .Concurrent .Asynch).

• A number of libraries and embedded
langauges use similar ideas, e.g.

- Fudgets: A GUI library

- Yampa: A FRP library

COMP4075: Lecture 10 – p.13/41

Any Use?

• Illustrates the flexibility offered by monads for
introducing new control abstractions,
including on top of basic concurrency
primitives (cf. Control .Concurrent .Asynch).

• A number of libraries and embedded
langauges use similar ideas, e.g.

- Fudgets: A GUI library

- Yampa: A FRP library

• Studying semantics of concurrent programs.

COMP4075: Lecture 10 – p.13/41

Any Use?

• Illustrates the flexibility offered by monads for
introducing new control abstractions,
including on top of basic concurrency
primitives (cf. Control .Concurrent .Asynch).

• A number of libraries and embedded
langauges use similar ideas, e.g.

- Fudgets: A GUI library

- Yampa: A FRP library

• Studying semantics of concurrent programs.

• Aid for testing, debugging, and reasoning
about concurrent programs.

COMP4075: Lecture 10 – p.13/41

Concurrent Programming in Haskell

Primitives for concurrent programming provided
as operations of the IO monad. They are in the
module Control .Concurrent . Excerpts:

forkIO :: IO ()→ IO ThreadId

killThread :: ThreadId → IO ()

threadDelay :: Int → IO ()

newMVar :: a → IO (MVar a)

newEmptyMVar :: IO (MVar a)

putMVar ::MVar a → a → IO ()

takeMVar ::MVar a → IO a

COMP4075: Lecture 10 – p.14/41

MVars

• The fundamental synchronisation mechanism
is the MVar (“em-var”).

• An MVar is a “one-item box” that may be
empty or full.

• Reading (takeMVar) and writing (putMVar)
are atomic operations:

- Writing to an empty MVar makes it full.

- Writing to a full MVar blocks.

- Reading from an empty MVar blocks.

- Reading from a full MVar makes it empty.

COMP4075: Lecture 10 – p.15/41

Example: Basic Synchronization (1)

module Main where

import Control .Concurrent

countFromTo :: Int → Int → IO ()

countFromTo m n

| m > n = return ()

| otherwise = do

putStrLn (show m)

countFromTo (m + 1) n

COMP4075: Lecture 10 – p.16/41

Example: Basic Synchronization (2)

main = do

start ← newEmptyMVar

done ← newEmptyMVar

forkIO $ do

takeMVar start

countFromTo 1 10

putMVar done ()

putStrLn "Go!"

putMVar start ()

takeMVar done

countFromTo 11 20

putStrLn "Done!" COMP4075: Lecture 10 – p.17/41

Example: Unbounded Buffer (1)

module Main where

import Control .Monad (when)

import Control .Concurrent

newtype Buffer a =

Buffer (MVar (Either [a] (Int ,MVar a)))

newBuffer :: IO (Buffer a)

newBuffer = do

b ← newMVar (Left [])

return (Buffer b)

COMP4075: Lecture 10 – p.18/41

Example: Unbounded Buffer (2)

readBuffer :: Buffer a → IO a

readBuffer (Buffer b) = do

bc ← takeMVar b

case bc of

Left (x : xs)→ do

putMVar b (Left xs)

return x

Left []→ do

w ← newEmptyMVar

putMVar b (Right (1,w))

takeMVar w
COMP4075: Lecture 10 – p.19/41

Example: Unbounded Buffer (3)

. . .

Right (n,w)→ do

putMVar b (Right (n + 1,w))

takeMVar w

COMP4075: Lecture 10 – p.20/41

Example: Unbounded Buffer (4)

writeBuffer :: Buffer a → a → IO ()

writeBuffer (Buffer b) x = do

bc ← takeMVar b

case bc of

Left xs →

putMVar b (Left (xs ++ [x]))

Right (n,w)→ do

putMVar w x

if n > 1

then putMVar b (Right (n − 1,w))

else putMVar b (Left [])
COMP4075: Lecture 10 – p.21/41

Example: Unbounded Buffer (4)

The buffer can now be used as a channel of
communication between a set of “writers” and a
set of “readers”. E.g.:

main = do

b ← newBuffer

forkIO (writer b)

forkIO (writer b)

forkIO (reader b)

forkIO (reader b)

. . .

COMP4075: Lecture 10 – p.22/41

Example: Unbounded Buffer (5)

reader :: Buffer Int → IO ()

reader n b = rLoop

where

rLoop = do

x ← readBuffer b

when (x > 0) $ do

putStrLn (n ++ ": "++ show x)

rLoop

COMP4075: Lecture 10 – p.23/41

Compositionality? (1)

Suppose we would like to read two consecutive
elements from a buffer b?

That is, sequential composition.

Would the following work?

x1 ← readBuffer b

x2 ← readBuffer b

COMP4075: Lecture 10 – p.24/41

Compositionality? (2)

What about this?

mutex ← newMVar ()

. . .

takeMVar mutex

x1 ← readBuffer b

x2 ← readBuffer b

putMVar mutex ()

COMP4075: Lecture 10 – p.25/41

Compositionality? (3)

Suppose we would like to read from one of two
buffers.

That is, composing alternatives.

COMP4075: Lecture 10 – p.26/41

Compositionality? (3)

Suppose we would like to read from one of two
buffers.

That is, composing alternatives.

Hmmm. How do we even begin?

COMP4075: Lecture 10 – p.26/41

Compositionality? (3)

Suppose we would like to read from one of two
buffers.

That is, composing alternatives.

Hmmm. How do we even begin?

• No way to attempt reading a buffer without
risking blocking.

COMP4075: Lecture 10 – p.26/41

Compositionality? (3)

Suppose we would like to read from one of two
buffers.

That is, composing alternatives.

Hmmm. How do we even begin?

• No way to attempt reading a buffer without
risking blocking.

• We have to change or enrich the buffer
implementation. E.g. add a tryReadBuffer
operation, and then repeatedly poll the two
buffers in a tight loop. Not so good!

COMP4075: Lecture 10 – p.26/41

Software Transactional Memory (1)

• Operations on shared mutable variables
grouped into transactions.

• A transaction either succeeds or fails in its
entirety. I.e., atomic w.r.t. other transactions.

• Failed transactions are automatically retried
until they succeed.

• Transaction logs, which records reading and
writing of shared variables, maintained to
enable transactions to be validated, partial
transactions to be rolled back, and to determine
when worth trying a transaction again.

COMP4075: Lecture 10 – p.27/41

Software Transactional Memory (2)

• Basic consistency requirement: The effects
of reading and writing within a transaction
must be indistinguishable from the transaction
having been carried out in isolation.

• No locks! (At the application level.)

COMP4075: Lecture 10 – p.28/41

STM and Pure Declarative Languages

• STM perfect match for purely declarative
languages:

- reading and writing of shared mutable
variables explicit and relatively rare;

- most computations are pure and need not
be logged.

• Disciplined use of effects through monads a
huge payoff: easy to ensure that only effects
that can be undone can go inside a transaction.

(Imagine the havoc of arbitrary I/O actions if part
of transaction: How to undo? What if retried?)

COMP4075: Lecture 10 – p.29/41

The STM monad

The software transactional memory abstraction
provided by a monad STM . Distinct from IO!
Defined in Control .Concurrent .STM .

Excerpts:

newTVar :: a → STM (TVar a)

writeTVar :: TVar a → a → STM ()

readTVar :: TVar a → STM a

retry :: STM a

atomically :: STM a → IO a

COMP4075: Lecture 10 – p.30/41

Example: Buffer Revisited (1)

Unbounded buffer using the STM monad:

module Main where

import Control .Monad (when)

import Control .Concurrent

import Control .Concurrent .STM

newtype Buffer a = Buffer (TVar [a])

newBuffer :: STM (Buffer a)

newBuffer = do

b ← newTVar []

return (Buffer b)
COMP4075: Lecture 10 – p.31/41

Example: Buffer Revisited (2)

readBuffer :: Buffer a → STM a

readBuffer (Buffer b) = do

xs ← readTVar b

case xs of

[]→ retry

(x : xs ′)→ do

writeTVar b xs ′

return x

COMP4075: Lecture 10 – p.32/41

Example: Buffer Revisited (3)

writeBuffer :: Buffer a → a → STM ()

writeBuffer (Buffer b) x = do

xs ← readTVar b

writeTVar b (xs ++ [x])

COMP4075: Lecture 10 – p.33/41

Example: Buffer Revisited (4)

The main program and code for readers and
writers can remain unchanged, except that STM
operations must be carried out atomically:

main = do

b ← atomically newBuffer

forkIO (writer b)

forkIO (writer b)

forkIO (reader b)

forkIO (reader b)

. . .

COMP4075: Lecture 10 – p.34/41

Example: Buffer Revisited (5)

reader :: Buffer Int → IO ()

reader n b = rLoop

where

rLoop = do

x ← atomically (readBuffer b)

when (x > 0) $ do

putStrLn (n ++ ": "++ show x)

rLoop

COMP4075: Lecture 10 – p.35/41

Composition (1)

STM operations can be robustly composed.
That’s the reason for making readBuffer and
writeBuffer STM operations, and leaving it to
client code to decide the scope of atomic blocks.

Example, sequential composition: reading two
consecutive elements from a buffer b:

atomically $ do

x1 ← readBuffer b

x2 ← readBuffer b

. . .

COMP4075: Lecture 10 – p.36/41

Composition (2)

Example, composing alternatives: reading from
one of two buffers b1 and b2 :

x ← atomically $

readBuffer b1

‘orElse ‘ readBuffer b2

The buffer operations thus composes nicely. No
need to change the implementation of any of the
operations!

COMP4075: Lecture 10 – p.37/41

Further STM Functionality (1)

TMVar : STM version of MVars for synchoronisation;
built on top of TVars:

TMVar a ≈ TVar (Maybe a)

Some operations:
• newTMVar :: a → STM (TMVar a)

• newEmptyTMVar :: STM (TMVar a)

• putTMVar :: TMVar a → a → STM ()

• takeTMVar :: TMVar a → STM a

• readTMVar :: TMVar a → STM a

• swapTMVar :: TMVar a → a → STM a
COMP4075: Lecture 10 – p.38/41

Further STM Functionality (2)

Some non-blocking operations:

• isEmptyTMVar :: TMVar a → STM Bool

• tryPutTMVar :: TMVar a → a → STM Bool

• tryTakeTMVar :: TMVar a → STM (Maybe a)

• tryReadTMVar :: TMVar a → STM (Maybe a)

COMP4075: Lecture 10 – p.39/41

Further STM Functionality (3)

Other process communication and
synchronization facilities:

• TChan a: Unbounded FIFO channel

• TQueue a: Variation of TChan with faster
(amortised) throughput.

• TBQueue a: Bounded FIFO channel

• TSem: Transactional counting semaphore

COMP4075: Lecture 10 – p.40/41

Reading

• Koen Claessen. A Poor Man’s Concurrency Monad.

Journal of Functional Programming, 9(3), 1999.

• Wouter Swierstra and Thorsten Altenkirch. Beauty in

the Beast: A Functional Semantics for the Awkward

Squad. In Proceedings of Haskell’07, 2007.

• Tim Harris, Simon Marlow, Simon Peyton Jones,

Maurice Herlihy. Composable Memory Transactions. In

Proceedings of PPoPP’05, 2005

• Simon Peyton Jones. Beautiful Concurrency. Chapter

from Beautiful Code, ed. Greg Wilson, O’Reilly 2007.

COMP4075: Lecture 10 – p.41/41

	This Lecture
	A Concurrency Monad (1)
	A Concurrency Monad (2)
	A Concurrency Monad (3)
	A Concurrency Monad (4)
	Running a Concurrent Computation (1)
	Running a Concurrent Computation (2)
	Running a Concurrent Computation (3)
	Example: Concurrent Processes
	Incremental Output
	Example: Concurrent processes 2
	Any Use?
	Concurrent Programming in Haskell
	ensuremath {Conid {MVar}}s
	Example: Basic Synchronization (1)
	Example: Basic Synchronization (2)
	Example: Unbounded Buffer (1)
	Example: Unbounded Buffer (2)
	Example: Unbounded Buffer (3)
	Example: Unbounded Buffer (4)
	Example: Unbounded Buffer (4)
	Example: Unbounded Buffer (5)
	Compositionality? (1)
	Compositionality? (2)
	Compositionality? (3)
	Software Transactional Memory (1)
	Software Transactional Memory (2)
	STM and Pure Declarative Languages
	The 	exttt {STM} monad
	Example: Buffer Revisited (1)
	Example: Buffer Revisited (2)
	Example: Buffer Revisited (3)
	Example: Buffer Revisited (4)
	Example: Buffer Revisited (5)
	Composition (1)
	Composition (2)
	Further STM Functionality (1)
	Further STM Functionality (2)
	Further STM Functionality (3)
	Reading

