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Monad Transformers (1)

What if we need to support more than one type
of effect?

For example: State and Error/Partiality?

We could implement a suitable monad from
scratch:

newtype SE s a = SE (s → Maybe (a, s))
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Monad Transformers (2)

However:

• Not always obvious how: e.g., should the
combination of state and error have been

newtype SE s a = SE (s → (Maybe a, s))

• Duplication of effort: similar patterns related
to specific effects are going to be repeated
over and over in the various combinations.
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Monad Transformers (3)

Monad Transformers can help:

• A monad transformer transforms a monad
by adding support for an additional effect.

• Monad transformer libraries can be developed,
each transformer each adding a specific
effect (state, error, . . . ).

• A form of aspect-oriented programming.

• MTL is one example of such a library.

Will consider the general idea of monad trans-
formers first; specific libraries discussed later.
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Monad Transformers in Haskell (1)

• A monad transformer maps monads to
monads. Represented by a type constructor
T of the following kind:

T :: (∗ → ∗)→ (∗ → ∗)

• Additionally, a monad transformer adds
computational effects.

• A mapping lift maps a computation in the
underlying monad to one in the transformed
monad:

lift ::M a → T M a
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Monad Transformers in Haskell (2)

• These requirements are captured by the
following (multi-parameter) type class:

class (Monad m,Monad (t m))

⇒ MonadTransformer t m where

lift ::m a → t m a
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Classes for Specific Effects

A monad transformer adds specific effects to any
monad. Thus the effect-specific operations
needs to be overloaded. For example:

class Monad m ⇒ E m where

eFail ::m a

eHandle ::m a → m a → m a

class Monad m ⇒ S m s | m → s where

sSet :: s → m ()

sGet ::m s
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The Identity Monad

We are going to construct monads by successive
transformations of the identity monad:

newtype I a = I a

unI (I a) = a

instance Monad I where

return a = I a

m >>= f = f (unI m)

runI :: I a → a

runI = unI
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The Error Monad Transformer (1)

newtype ET m a = ET (m (Maybe a))

unET (ET m) = m
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The Error Monad Transformer (2)

Any monad transformed by ET is a monad:

instance Monad m ⇒ Monad (ET m) where

return a = ET (return (Just a))

m >>= f = ET $ do

ma ← unET m

case ma of

Nothing → return Nothing

Just a → unET (f a)
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The Error Monad Transformer (3)

We need the ability to run transformed monads:

runET ::Monad m ⇒ ET m a → m a

runET etm = do

ma ← unET etm

case ma of

Just a → return a

Nothing → error "Should not happen"

(Note: To simplify use, we discarded information
about the effect, but as a result, we get a partial
function. Returning Maybe a better in general.)
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The Error Monad Transformer (4)

ET is a monad transformer:

instance Monad m ⇒

MonadTransformer ET m where

lift m = ET (m >>= λa → return (Just a))
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The Error Monad Transformer (5)

Any monad transformed by ET is an instance of E :

instance Monad m ⇒ E (ET m) where

eFail = ET (return Nothing)

m1 ‘eHandle‘m2 = ET $ do

ma ← unET m1

case ma of

Nothing → unET m2

Just → return ma
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The Error Monad Transformer (6)

A state monad transformed by ET is a state
monad:

instance S m s ⇒ S (ET m) s where

sSet s = lift (sSet s)

sGet = lift sGet
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Exercise 1: Running Transf. Monads

Let

ex2 = eFail ‘eHandle‘ return 1

1. Suggest a possible type for ex2 .
(Assume 1 :: Int .)

2. Given your type, use the appropriate
combination of “run functions” to run ex2 .
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Exercise 1: Solution

ex2 :: ET I Int

ex2 = eFail ‘eHandle‘ return 1

ex2result :: Int

ex2result = runI (runET ex2 )
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The State Monad Transformer (1)

newtype ST s m a = ST (s → m (a, s))

unST (ST m) = m

Any monad transformed by ST is a monad:

instance Monad m ⇒ Monad (ST s m) where

return a = ST (λs → return (a, s))

m >>= f = ST $ λs → do

(a, s ′)← unST m s

unST (f a) s ′
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The State Monad Transformer (2)

We need the ability to run transformed monads:

runST ::Monad m ⇒ ST s m a → s → m a

runST stf s0 = do

(a, )← unST stf s0

return a

(We are again discarding information to keep
things simple. Returning the final state along with
result would be more general.)
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The State Monad Transformer (3)

ST is a monad transformer:

instance Monad m ⇒

MonadTransformer (ST s) m where

lift m = ST (λs → m >>= λa → return (a, s))
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The State Monad Transformer (3)

Any monad transformed by ST is an instance of S :

instance Monad m ⇒ S (ST s m) s where

sSet s = ST (\_→ return ((), s))

sGet = ST (λs → return (s, s))

COMP4075: Lecture 11 – p.20/31

The State Monad Transformer (4)

An error monad transformed by ST is an error
monad:

instance E m ⇒ E (ST s m) where

eFail = lift eFail

m1 ‘eHandle‘m2 = ST $ λs →

unST m1 s ‘eHandle‘ unST m2 s
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Exercise 2: Effect Ordering

Consider the code fragment

ex3a :: (ST Int (ET I )) Int

ex3a = (sSet 42>> eFail) ‘eHandle‘ sGet

Note that the exact same code fragment also can
be typed as follows:

ex3b :: (ET (ST Int I )) Int

ex3b = (sSet 42>> eFail) ‘eHandle‘ sGet

What is

runI (runET (runST ex3a 0))

runI (runST (runET ex3b) 0)
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Exercise 2: Solution

runI (runET (runST ex3a 0)) = 0

runI (runST (runET ex3b) 0) = 42

Why? Because:

ST s (ET I ) a ∼= s → (ET I ) (a, s)
∼= s → I (Maybe (a, s))
∼= s → Maybe (a, s)

ET (ST s I ) a ∼= (ST s I ) (Maybe a)
∼= s → I (Maybe a, s)
∼= s → (Maybe a, s)
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MTL: Monad Transformer Library

Provides a number of standard monads,
associated transformers, and all possible liftings
in the style we have seen; e.g.:

• State (Control .Monad .State, lazy and strict)

• Exceptions (Control .Monad .Except)

• Lists (Control .Monad .List)

• Reader (Control .Monad .Reader )

• Writer (Control .Monad .Writer )

• Contiunations (Control .Monad .Cont)
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MTL: State

class Monad m ⇒ MonadState s m | m → s where

get ::m s

put :: s → m ()

state :: (s → (a, s))→ m a

Transformer: newtype StateT s (m :: ∗ → ∗) a

Run functions:

runState :: State s a → s → (a, s)

evalState :: State s a → s → a

execState :: State s a → s → s
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MTL: Exception

class Monad m ⇒

MonadError e m | m → e where

throwError :: e → m a

catchError ::m a → (e → m a)→ m a

Transformer: newtype ExceptT e (m :: ∗ → ∗) a

Run function:

runExcept :: Except e a → Either e a
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MTL: Reader

class Monad m ⇒

MonadReader r m | m → r where

ask ::m r

local :: (r → r)→ m a → m a

reader :: (r → a)→ m a

Transformer: ReaderT

Run function:

runReader :: Reader r a → r → a
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MTL: Writer

class (Monoid w ,Monad m)⇒

MonadWriter w m | m → w where

writer :: (a,w)→ m a

tell :: w → m ()

listen ::m a → m (a,w)

pass ::m (a,w → w)→ m a

Transformer: newtype WriterT w (m :: ∗ → ∗) a

Run function:

runWriter ::Writer w a → (a,w)
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Problems with Monad Transformers

• With one transformer for each possible effect
we get a quadratic number of combinations;
each has to be instantiated explicitly.

• Jaskelioff (2008,2009) has proposed a
possible, more extensible alternative:

- Traditional approach: unsystematic lifting
on case-by-case basis.

- Jaskelioff: systematic lifting based on
theoretical principles where each operation
is paired with a type of its implementation
allowing implementations to be
transformed generically.
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Reading (1)

• Nick Benton, John Hughes, Eugenio Moggi. Monads

and Effects. In International Summer School on

Applied Semantics 2000, Caminha, Portugal, 2000.

• Sheng Liang, Paul Hudak, Mark Jones. Monad

Transformers and Modular Interpreters. In Proceedings

of the 22nd ACM Symposium on Principles of

Programming Languages (POPL’95), January 1995,

San Francisco, California
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Reading (2)

• Mauro Jaskelioff. Monatron: An Extensible Monad

Transformer Library. In Implementation of Functional

Languages (IFL’08), 2008.

• Mauro Jaskelioff. Modular Monad Transformers. In

European Symposium on Programming (ESOP,09),

2009.
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