
COMP4075: Lecture 11
Monad Transformers

Henrik Nilsson

University of Nottingham, UK

COMP4075: Lecture 11 – p.1/31

Monad Transformers (1)

What if we need to support more than one type
of effect?

For example: State and Error/Partiality?

We could implement a suitable monad from
scratch:

newtype SE s a = SE (s → Maybe (a, s))

COMP4075: Lecture 11 – p.2/31

Monad Transformers (2)

However:

• Not always obvious how: e.g., should the
combination of state and error have been

newtype SE s a = SE (s → (Maybe a, s))

• Duplication of effort: similar patterns related
to specific effects are going to be repeated
over and over in the various combinations.

COMP4075: Lecture 11 – p.3/31

Monad Transformers (3)

Monad Transformers can help:

• A monad transformer transforms a monad
by adding support for an additional effect.

• Monad transformer libraries can be developed,
each transformer each adding a specific
effect (state, error, . . .).

• A form of aspect-oriented programming.

• MTL is one example of such a library.

Will consider the general idea of monad trans-
formers first; specific libraries discussed later.

COMP4075: Lecture 11 – p.4/31

Monad Transformers in Haskell (1)

• A monad transformer maps monads to
monads. Represented by a type constructor
T of the following kind:

T :: (∗ → ∗)→ (∗ → ∗)

• Additionally, a monad transformer adds
computational effects.

• A mapping lift maps a computation in the
underlying monad to one in the transformed
monad:

lift ::M a → T M a

COMP4075: Lecture 11 – p.5/31

Monad Transformers in Haskell (2)

• These requirements are captured by the
following (multi-parameter) type class:

class (Monad m,Monad (t m))

⇒ MonadTransformer t m where

lift ::m a → t m a

COMP4075: Lecture 11 – p.6/31

Classes for Specific Effects

A monad transformer adds specific effects to any
monad. Thus the effect-specific operations
needs to be overloaded. For example:

class Monad m ⇒ E m where

eFail ::m a

eHandle ::m a → m a → m a

class Monad m ⇒ S m s | m → s where

sSet :: s → m ()

sGet ::m s

COMP4075: Lecture 11 – p.7/31

The Identity Monad

We are going to construct monads by successive
transformations of the identity monad:

newtype I a = I a

unI (I a) = a

instance Monad I where

return a = I a

m >>= f = f (unI m)

runI :: I a → a

runI = unI

COMP4075: Lecture 11 – p.8/31

The Error Monad Transformer (1)

newtype ET m a = ET (m (Maybe a))

unET (ET m) = m

COMP4075: Lecture 11 – p.9/31

The Error Monad Transformer (2)

Any monad transformed by ET is a monad:

instance Monad m ⇒ Monad (ET m) where

return a = ET (return (Just a))

m >>= f = ET $ do

ma ← unET m

case ma of

Nothing → return Nothing

Just a → unET (f a)

COMP4075: Lecture 11 – p.10/31

The Error Monad Transformer (3)

We need the ability to run transformed monads:

runET ::Monad m ⇒ ET m a → m a

runET etm = do

ma ← unET etm

case ma of

Just a → return a

Nothing → error "Should not happen"

(Note: To simplify use, we discarded information
about the effect, but as a result, we get a partial
function. Returning Maybe a better in general.)

COMP4075: Lecture 11 – p.11/31

The Error Monad Transformer (4)

ET is a monad transformer:

instance Monad m ⇒

MonadTransformer ET m where

lift m = ET (m >>= λa → return (Just a))

COMP4075: Lecture 11 – p.12/31

The Error Monad Transformer (5)

Any monad transformed by ET is an instance of E :

instance Monad m ⇒ E (ET m) where

eFail = ET (return Nothing)

m1 ‘eHandle‘m2 = ET $ do

ma ← unET m1

case ma of

Nothing → unET m2

Just → return ma

COMP4075: Lecture 11 – p.13/31

The Error Monad Transformer (6)

A state monad transformed by ET is a state
monad:

instance S m s ⇒ S (ET m) s where

sSet s = lift (sSet s)

sGet = lift sGet

COMP4075: Lecture 11 – p.14/31

Exercise 1: Running Transf. Monads

Let

ex2 = eFail ‘eHandle‘ return 1

1. Suggest a possible type for ex2 .
(Assume 1 :: Int .)

2. Given your type, use the appropriate
combination of “run functions” to run ex2 .

COMP4075: Lecture 11 – p.15/31

Exercise 1: Solution

ex2 :: ET I Int

ex2 = eFail ‘eHandle‘ return 1

ex2result :: Int

ex2result = runI (runET ex2)

COMP4075: Lecture 11 – p.16/31

The State Monad Transformer (1)

newtype ST s m a = ST (s → m (a, s))

unST (ST m) = m

Any monad transformed by ST is a monad:

instance Monad m ⇒ Monad (ST s m) where

return a = ST (λs → return (a, s))

m >>= f = ST $ λs → do

(a, s ′)← unST m s

unST (f a) s ′

COMP4075: Lecture 11 – p.17/31

The State Monad Transformer (2)

We need the ability to run transformed monads:

runST ::Monad m ⇒ ST s m a → s → m a

runST stf s0 = do

(a,)← unST stf s0

return a

(We are again discarding information to keep
things simple. Returning the final state along with
result would be more general.)

COMP4075: Lecture 11 – p.18/31

The State Monad Transformer (3)

ST is a monad transformer:

instance Monad m ⇒

MonadTransformer (ST s) m where

lift m = ST (λs → m >>= λa → return (a, s))

COMP4075: Lecture 11 – p.19/31

The State Monad Transformer (3)

Any monad transformed by ST is an instance of S :

instance Monad m ⇒ S (ST s m) s where

sSet s = ST (_→ return ((), s))

sGet = ST (λs → return (s, s))

COMP4075: Lecture 11 – p.20/31

The State Monad Transformer (4)

An error monad transformed by ST is an error
monad:

instance E m ⇒ E (ST s m) where

eFail = lift eFail

m1 ‘eHandle‘m2 = ST $ λs →

unST m1 s ‘eHandle‘ unST m2 s

COMP4075: Lecture 11 – p.21/31

Exercise 2: Effect Ordering

Consider the code fragment

ex3a :: (ST Int (ET I)) Int

ex3a = (sSet 42>> eFail) ‘eHandle‘ sGet

Note that the exact same code fragment also can
be typed as follows:

ex3b :: (ET (ST Int I)) Int

ex3b = (sSet 42>> eFail) ‘eHandle‘ sGet

What is

runI (runET (runST ex3a 0))

runI (runST (runET ex3b) 0)
COMP4075: Lecture 11 – p.22/31

Exercise 2: Solution

runI (runET (runST ex3a 0)) = 0

runI (runST (runET ex3b) 0) = 42

Why? Because:

ST s (ET I) a ∼= s → (ET I) (a, s)
∼= s → I (Maybe (a, s))
∼= s → Maybe (a, s)

ET (ST s I) a ∼= (ST s I) (Maybe a)
∼= s → I (Maybe a, s)
∼= s → (Maybe a, s)

COMP4075: Lecture 11 – p.23/31

MTL: Monad Transformer Library

Provides a number of standard monads,
associated transformers, and all possible liftings
in the style we have seen; e.g.:

• State (Control .Monad .State, lazy and strict)

• Exceptions (Control .Monad .Except)

• Lists (Control .Monad .List)

• Reader (Control .Monad .Reader)

• Writer (Control .Monad .Writer)

• Contiunations (Control .Monad .Cont)

COMP4075: Lecture 11 – p.24/31

MTL: State

class Monad m ⇒ MonadState s m | m → s where

get ::m s

put :: s → m ()

state :: (s → (a, s))→ m a

Transformer: newtype StateT s (m :: ∗ → ∗) a

Run functions:

runState :: State s a → s → (a, s)

evalState :: State s a → s → a

execState :: State s a → s → s

COMP4075: Lecture 11 – p.25/31

MTL: Exception

class Monad m ⇒

MonadError e m | m → e where

throwError :: e → m a

catchError ::m a → (e → m a)→ m a

Transformer: newtype ExceptT e (m :: ∗ → ∗) a

Run function:

runExcept :: Except e a → Either e a

COMP4075: Lecture 11 – p.26/31

MTL: Reader

class Monad m ⇒

MonadReader r m | m → r where

ask ::m r

local :: (r → r)→ m a → m a

reader :: (r → a)→ m a

Transformer: ReaderT

Run function:

runReader :: Reader r a → r → a

COMP4075: Lecture 11 – p.27/31

MTL: Writer

class (Monoid w ,Monad m)⇒

MonadWriter w m | m → w where

writer :: (a,w)→ m a

tell :: w → m ()

listen ::m a → m (a,w)

pass ::m (a,w → w)→ m a

Transformer: newtype WriterT w (m :: ∗ → ∗) a

Run function:

runWriter ::Writer w a → (a,w)

COMP4075: Lecture 11 – p.28/31

Problems with Monad Transformers

• With one transformer for each possible effect
we get a quadratic number of combinations;
each has to be instantiated explicitly.

• Jaskelioff (2008,2009) has proposed a
possible, more extensible alternative:

- Traditional approach: unsystematic lifting
on case-by-case basis.

- Jaskelioff: systematic lifting based on
theoretical principles where each operation
is paired with a type of its implementation
allowing implementations to be
transformed generically.

COMP4075: Lecture 11 – p.29/31

Reading (1)

• Nick Benton, John Hughes, Eugenio Moggi. Monads

and Effects. In International Summer School on

Applied Semantics 2000, Caminha, Portugal, 2000.

• Sheng Liang, Paul Hudak, Mark Jones. Monad

Transformers and Modular Interpreters. In Proceedings

of the 22nd ACM Symposium on Principles of

Programming Languages (POPL’95), January 1995,

San Francisco, California

COMP4075: Lecture 11 – p.30/31

Reading (2)

• Mauro Jaskelioff. Monatron: An Extensible Monad

Transformer Library. In Implementation of Functional

Languages (IFL’08), 2008.

• Mauro Jaskelioff. Modular Monad Transformers. In

European Symposium on Programming (ESOP,09),

2009.

COMP4075: Lecture 11 – p.31/31

	Monad Transformers (1)
	Monad Transformers (2)
	Monad Transformers (3)
	Monad Transformers in Haskell (1)
	Monad Transformers in Haskell (2)
	Classes for Specific Effects
	The Identity Monad
	The Error Monad Transformer (1)
	The Error Monad Transformer (2)
	The Error Monad Transformer (3)
	The Error Monad Transformer (4)
	The Error Monad Transformer (5)
	The Error Monad Transformer (6)
	Exercise 1: Running Transf. Monads
	Exercise 1: Solution
	The State Monad Transformer (1)
	The State Monad Transformer (2)
	The State Monad Transformer (3)
	The State Monad Transformer (3)
	The State Monad Transformer (4)
	Exercise 2: Effect Ordering
	Exercise 2: Solution
	MTL: Monad Transformer Library
	MTL: State
	MTL: Exception
	MTL: Reader
	MTL: Writer
	Problems with Monad Transformers
	Reading (1)
	Reading (2)

