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Overview

• Lectures and practical exercises
• Course web page:

http://www.cs.nott.ac.uk/
~nhn/ITU-FRP2010

• Outline is tentative:
- Hard to know how long the the practical

bits will take: should not rush unduly.
- Happy to adapt.
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This Lecture

• Brief introduction to FRP:
- Central ideas
- Key notions
- Applications
- FRP variants

• Classical FRP
- Basic combinators
- Semantics
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Reactive Programming

Reactive systems :
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Reactive Programming

Reactive systems :
• Input arrives incrementally while system is

running.
• Output is generated in response to input in an

interleaved and timely fashion.

Contrast transformational systems .

The notions of
• time
• time-varying values, or signals

are inherent and central for reactive systems.
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Functional Reactive Programming
What is Functional Reactive Programming (FRP)?

• Paradigm for reactive programming in a
functional setting.
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Functional Reactive Programming
What is Functional Reactive Programming (FRP)?

• Paradigm for reactive programming in a
functional setting.

• Typically realised as an Embedded
Domain-Specific Language (EDSL) . The
host langage is often Haskell. But also
Scheme (FrTime) (and Java, and C++, and . . . )

• Originated from Functional Reactive
Animation (Fran) (Elliott & Hudak).

• Has evolved in a number of directions and
into different concrete implementations.

ITU FRP 2010: Lecture 1 – p.5/35



FRP Applications (1)

Some domains where FRP or FRP-inspired
approaches have been used:

• Graphical Animation (Fran: Elliott, Hudak)
• Robotics (Frob: Peterson, Hager, Hudak,

Elliott, Pembeci, Nilsson)
• Vision (FVision: Peterson, Hudak, Reid,

Hager)
• GUIs (Fruit: Courtney; Grapefruit: Jeltsch)
• Games (Courtney, Nilsson, Peterson,

Cheong, . . . )
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FRP Applications (2)

• Virtual Reality Environments (Blom)
• Sound synthesis (Giorgidze, Nilsson)
• (Non-causal) modeling and simulation

(Nilsson, Hudak, Peterson, Giorgidze)
• Experiment descriptions (Nielsen, Matheson,

Nilsson)
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Key FRP Features

• First class reactive entities.
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Key FRP Features

• First class reactive entities.
• Synchronous: all system parts operate in

synchrony.
• Support for hybrid (mixed continuous and

discrete time) systems.
• Allows dynamic system structure.
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Related Languages and Paradigms

FRP related to:
• Synchronous languages, like Esterel, Lucid

Synchrone.
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Related Languages and Paradigms

FRP related to:
• Synchronous languages, like Esterel, Lucid

Synchrone.
• Modeling languages, like Simulink, Modelica.
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Central Notions (1)
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Central Notions (1)

• Time-varying value or Signal . Intuition:
Signal α ≈ Time→ α
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Central Notions (1)

• Time-varying value or Signal . Intuition:
Signal α ≈ Time→ α

• Signal Generator : maps a start time to a
signal. Intuition:
SG α ≈ Time→ Signal α

• Signal Function : maps a signal to a signal.
Intuition:
SF α β ≈ Signal α → Signal β
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Central Notions (2)

Additionally, general causality requirement:
output at time t must be determined by input on
interval [0, t].
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Central Notions (2)

Additionally, general causality requirement:
output at time t must be determined by input on
interval [0, t].

Signal functions are said to be
• pure or stateless if output at time t only

depends on input at time t

• impure or stateful if output at time t depends
on input over the interval [0, t].

Generally also a notion of discrete time .
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Signal Functions and State

Alternative view:
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Signal Functions and State

Alternative view:

Signal functions can encapsulate state .

state(t) summarizes input history x(t′), t′ ∈ [0, t].
Thus, really a kind of process .

From this perspective, signal functions are:
• stateful if y(t) depends on x(t) and state(t)

• stateless if y(t) depends only on x(t)
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FRP Variants

A number of FRP variants have emerged. Key
differences include what the central abstractions
are. Some examples:
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FRP Variants

A number of FRP variants have emerged. Key
differences include what the central abstractions
are. Some examples:
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FRP Variants

A number of FRP variants have emerged. Key
differences include what the central abstractions
are. Some examples:

• Classic FRP: First class signal generators.
• Extended Classic FRP: First class signal

generators and signals.
• Yampa: First class signal functions, signals a

secondary notion.
• Elerea: First class signals and signal

generators.
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Example: Video Tracker

Video trackers are typically stateful signal
functions:
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Example: Robotics (1)

[PPDP’02, with Izzet Pembeci and Greg Hager,
Johns Hopkins University]

Hardware setup:
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Example: Robotics (2)

Software architecture:
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Example: Robotics (3)

ITU FRP 2010: Lecture 1 – p.17/35



Example: Neuroscience Experiments

[TFP’09, Tom Nielsen, Tom Matheson, Henrik
Nilsson]
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Classic FRP (1)

Classic FRP (CFRP): Fran derivative. Central
abstractions:

• Behavior :
- Polymorphic, (conceptually)

continuous-time, signal generator.
- Type constructor: B α

• Event :
- Polymorphic, discrete-time, signal

generator.
- Type constructor: E α
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Classic FRP (2)

Examples:

7 :: B Real

time :: B Time

(+) :: B Real→ B Real→ B Real

lift1 :: (α → β) →(B α → B β)

integral :: B Real→ B Real
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Classic FRP (3)

Some more examples:

never :: E α

now :: E ()

after :: Time→ E ()

repeatedly :: Time→ E ()

edge :: B Bool→ E ()

hold :: α → E α → B α

lbp :: E ()

key :: E Char
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Classic FRP (4)

Switching and event mapping:

until :: B α → E (B α)→ B α

==> :: E α → (α →β) → E β

-=> :: E α → β → E β
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Typical CFRP Snippets (1)

color :: B Color
color = red ‘until‘ lbp -=> blue

ball :: B Picture
ball = paint color circ

circ :: B Region
circ = translate (cos time, sin time)

(circle 1)
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Typical CFRP Snippets (2)

color2 = red ‘until‘
(lbp -=> blue)
.|.
(key -=> yellow)

color3 = red ’until’
(edge (time >* 5) -=> blue)
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Semantic Functions (1)

at : 〈Bα〉 → Time → Time → α

occ : 〈Eα〉 → Time → Time → [Time × α]
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Semantic Functions (1)

at : 〈Bα〉 → Time → Time → α

occ : 〈Eα〉 → Time → Time → [Time × α]

Intuitively, at maps a behavior to a function from
a start time and a time of interest to a value at
that time.

Note that the type of at can be parenthesized:

〈Bα〉 → (Time → (Time → α))

Thus, at maps a behavior to a signal generator .
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Semantic Functions (2)

at : 〈Bα〉 → Time → Time → α

occ : 〈Eα〉 → Time → Time → [Time × α]

The function occ gives meaning to events in a
similar way, but the result is a finite list of
time-ascending event occurrences from the
start time to the time of interest.
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Semantics (1)

Time, liftings, integration:

at[[time]] T t = t

at[[lift0 c]] T t = ⌊c⌋

at[[lift1 f b]] T t = ⌊f⌋ (at[[b]] T t)

at[[lift2 f b d]] T t = ⌊f⌋ (at[[b]] T t) (at[[d]] T t)

at[[integral b]] T t =

∫

t

T

(at[[b]] T τ)dτ
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Semantics (2)

Basic events:

occ[[never]] T t = [ ]

occ[[now]] T t = [ (T, ()) ]

occ[[after τ ]] T t =

{

[ ] T + τ < t

[ (T + τ, ()) ] otherwise
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Semantics (3)

occ[[repeatedly τ ]] T t

=











[ ] n = 0

[ (T + τ, ()), (T + 2τ, ()),

. . . , (T + nτ, ()) ]
otherwise

where n ∈ N is the largest number such that
T + nτ ≤ t.
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Semantics (4)

Intuitively, the predicate event:

edge :: B Bool→ E ()

occurrs whenever the argument behavior
changes from False to True.

However, surprisingly hard to characterize
exactly (and, of course, not computable).
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Semantics (5)

Semantics of until. Recall:

until :: B α → E (B α) → B α

If

occ[[e]] T t = [ (t1, ⌊b1⌋), . . . , (tn, ⌊bn⌋) ]

then, for any τ ∈ [T, t]:

at[[b until e]] T t =

{

at[[b]] T τ n = 0 or τ < t1

at[[b1]] t1 τ otherwise
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Implementation

Using infinite lists as streams , stream-based
versions of the central CFRP abstractions can be
realised as follows:

B a = [Time] -> [a]
E a = [Time] -> [Maybe a]

Note that this corresponds to signal generators :
A prefix of [Time] is a discretized approximation
of an interval from the start time to the current
time.
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Faithfulness (1)

Of course, we can only hope to approximate the
ideal, continuous semantics.
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Faithfulness (1)

Of course, we can only hope to approximate the
ideal, continuous semantics.

But, then, what is a faithful implementation?

• Wan and Hudak (2000) adapts the notion of
uniform convergence to the setting of CFRP.

• They then show that the stream-based
semantics of the CFRP converges to the ideal
semantics in the limit as the maximal
sampling interval tends to 0, establishing
necessary side conditions where needed.
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Faithfulness (2)

• Wan and Hudak still assume real reals and
exact functions on the reals. Floating point
arithmetic adds another level of difficulty.
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Reading

• Zhanyong Wan and Paul Hudak. Functional
reactive programming from first principles. In
Proceedings of the ACM SIGPLAN
Conference on Programming Language
Design and Implementation (PLDI ’00),
Canada, June, 2000.
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