
ITU FRP 2010
Lecture 1:

Introduction, Classic FRP

Henrik Nilsson

School of Computer Science

University of Nottingham, UK

ITU FRP 2010: Lecture 1 – p.1/35

Overview

• Lectures and practical exercises
• Course web page:

http://www.cs.nott.ac.uk/
~nhn/ITU-FRP2010

• Outline is tentative:
- Hard to know how long the the practical

bits will take: should not rush unduly.
- Happy to adapt.

ITU FRP 2010: Lecture 1 – p.2/35

This Lecture

• Brief introduction to FRP:
- Central ideas
- Key notions
- Applications
- FRP variants

• Classical FRP
- Basic combinators
- Semantics

ITU FRP 2010: Lecture 1 – p.3/35

Reactive Programming

Reactive systems :

ITU FRP 2010: Lecture 1 – p.4/35

Reactive Programming

Reactive systems :
• Input arrives incrementally while system is

running.

ITU FRP 2010: Lecture 1 – p.4/35

Reactive Programming

Reactive systems :
• Input arrives incrementally while system is

running.
• Output is generated in response to input in an

interleaved and timely fashion.

ITU FRP 2010: Lecture 1 – p.4/35

Reactive Programming

Reactive systems :
• Input arrives incrementally while system is

running.
• Output is generated in response to input in an

interleaved and timely fashion.

Contrast transformational systems .

ITU FRP 2010: Lecture 1 – p.4/35

Reactive Programming

Reactive systems :
• Input arrives incrementally while system is

running.
• Output is generated in response to input in an

interleaved and timely fashion.

Contrast transformational systems .

The notions of
• time
• time-varying values, or signals

are inherent and central for reactive systems.
ITU FRP 2010: Lecture 1 – p.4/35

Functional Reactive Programming
What is Functional Reactive Programming (FRP)?

• Paradigm for reactive programming in a
functional setting.

ITU FRP 2010: Lecture 1 – p.5/35

Functional Reactive Programming
What is Functional Reactive Programming (FRP)?

• Paradigm for reactive programming in a
functional setting.

• Typically realised as an Embedded
Domain-Specific Language (EDSL) . The
host langage is often Haskell. But also
Scheme (FrTime) (and Java, and C++, and . . .)

ITU FRP 2010: Lecture 1 – p.5/35

Functional Reactive Programming
What is Functional Reactive Programming (FRP)?

• Paradigm for reactive programming in a
functional setting.

• Typically realised as an Embedded
Domain-Specific Language (EDSL) . The
host langage is often Haskell. But also
Scheme (FrTime) (and Java, and C++, and . . .)

• Originated from Functional Reactive
Animation (Fran) (Elliott & Hudak).

ITU FRP 2010: Lecture 1 – p.5/35

Functional Reactive Programming
What is Functional Reactive Programming (FRP)?

• Paradigm for reactive programming in a
functional setting.

• Typically realised as an Embedded
Domain-Specific Language (EDSL) . The
host langage is often Haskell. But also
Scheme (FrTime) (and Java, and C++, and . . .)

• Originated from Functional Reactive
Animation (Fran) (Elliott & Hudak).

• Has evolved in a number of directions and
into different concrete implementations.

ITU FRP 2010: Lecture 1 – p.5/35

FRP Applications (1)

Some domains where FRP or FRP-inspired
approaches have been used:

• Graphical Animation (Fran: Elliott, Hudak)
• Robotics (Frob: Peterson, Hager, Hudak,

Elliott, Pembeci, Nilsson)
• Vision (FVision: Peterson, Hudak, Reid,

Hager)
• GUIs (Fruit: Courtney; Grapefruit: Jeltsch)
• Games (Courtney, Nilsson, Peterson,

Cheong, . . .)
ITU FRP 2010: Lecture 1 – p.6/35

FRP Applications (2)

• Virtual Reality Environments (Blom)
• Sound synthesis (Giorgidze, Nilsson)
• (Non-causal) modeling and simulation

(Nilsson, Hudak, Peterson, Giorgidze)
• Experiment descriptions (Nielsen, Matheson,

Nilsson)

ITU FRP 2010: Lecture 1 – p.7/35

Key FRP Features

• First class reactive entities.

ITU FRP 2010: Lecture 1 – p.8/35

Key FRP Features

• First class reactive entities.
• Synchronous: all system parts operate in

synchrony.

ITU FRP 2010: Lecture 1 – p.8/35

Key FRP Features

• First class reactive entities.
• Synchronous: all system parts operate in

synchrony.
• Support for hybrid (mixed continuous and

discrete time) systems.

ITU FRP 2010: Lecture 1 – p.8/35

Key FRP Features

• First class reactive entities.
• Synchronous: all system parts operate in

synchrony.
• Support for hybrid (mixed continuous and

discrete time) systems.
• Allows dynamic system structure.

ITU FRP 2010: Lecture 1 – p.8/35

Related Languages and Paradigms

FRP related to:
• Synchronous languages, like Esterel, Lucid

Synchrone.

ITU FRP 2010: Lecture 1 – p.9/35

Related Languages and Paradigms

FRP related to:
• Synchronous languages, like Esterel, Lucid

Synchrone.
• Modeling languages, like Simulink, Modelica.

ITU FRP 2010: Lecture 1 – p.9/35

Central Notions (1)

ITU FRP 2010: Lecture 1 – p.10/35

Central Notions (1)

• Time-varying value or Signal . Intuition:
Signal α ≈ Time→ α

ITU FRP 2010: Lecture 1 – p.10/35

Central Notions (1)

• Time-varying value or Signal . Intuition:
Signal α ≈ Time→ α

• Signal Generator : maps a start time to a
signal. Intuition:
SG α ≈ Time→ Signal α

ITU FRP 2010: Lecture 1 – p.10/35

Central Notions (1)

• Time-varying value or Signal . Intuition:
Signal α ≈ Time→ α

• Signal Generator : maps a start time to a
signal. Intuition:
SG α ≈ Time→ Signal α

• Signal Function : maps a signal to a signal.
Intuition:
SF α β ≈ Signal α → Signal β

ITU FRP 2010: Lecture 1 – p.10/35

Central Notions (2)

Additionally, general causality requirement:
output at time t must be determined by input on
interval [0, t].

ITU FRP 2010: Lecture 1 – p.11/35

Central Notions (2)

Additionally, general causality requirement:
output at time t must be determined by input on
interval [0, t].

Signal functions are said to be
• pure or stateless if output at time t only

depends on input at time t

ITU FRP 2010: Lecture 1 – p.11/35

Central Notions (2)

Additionally, general causality requirement:
output at time t must be determined by input on
interval [0, t].

Signal functions are said to be
• pure or stateless if output at time t only

depends on input at time t

• impure or stateful if output at time t depends
on input over the interval [0, t].

ITU FRP 2010: Lecture 1 – p.11/35

Central Notions (2)

Additionally, general causality requirement:
output at time t must be determined by input on
interval [0, t].

Signal functions are said to be
• pure or stateless if output at time t only

depends on input at time t

• impure or stateful if output at time t depends
on input over the interval [0, t].

Generally also a notion of discrete time .

ITU FRP 2010: Lecture 1 – p.11/35

Signal Functions and State

Alternative view:

ITU FRP 2010: Lecture 1 – p.12/35

Signal Functions and State

Alternative view:

Signal functions can encapsulate state .

state(t) summarizes input history x(t′), t′ ∈ [0, t].
Thus, really a kind of process .

ITU FRP 2010: Lecture 1 – p.12/35

Signal Functions and State

Alternative view:

Signal functions can encapsulate state .

state(t) summarizes input history x(t′), t′ ∈ [0, t].
Thus, really a kind of process .

From this perspective, signal functions are:
• stateful if y(t) depends on x(t) and state(t)

• stateless if y(t) depends only on x(t)

ITU FRP 2010: Lecture 1 – p.12/35

FRP Variants

A number of FRP variants have emerged. Key
differences include what the central abstractions
are. Some examples:

ITU FRP 2010: Lecture 1 – p.13/35

FRP Variants

A number of FRP variants have emerged. Key
differences include what the central abstractions
are. Some examples:

• Classic FRP: First class signal generators.

ITU FRP 2010: Lecture 1 – p.13/35

FRP Variants

A number of FRP variants have emerged. Key
differences include what the central abstractions
are. Some examples:

• Classic FRP: First class signal generators.
• Extended Classic FRP: First class signal

generators and signals.

ITU FRP 2010: Lecture 1 – p.13/35

FRP Variants

A number of FRP variants have emerged. Key
differences include what the central abstractions
are. Some examples:

• Classic FRP: First class signal generators.
• Extended Classic FRP: First class signal

generators and signals.
• Yampa: First class signal functions, signals a

secondary notion.

ITU FRP 2010: Lecture 1 – p.13/35

FRP Variants

A number of FRP variants have emerged. Key
differences include what the central abstractions
are. Some examples:

• Classic FRP: First class signal generators.
• Extended Classic FRP: First class signal

generators and signals.
• Yampa: First class signal functions, signals a

secondary notion.
• Elerea: First class signals and signal

generators.
ITU FRP 2010: Lecture 1 – p.13/35

Example: Video Tracker

Video trackers are typically stateful signal
functions:

ITU FRP 2010: Lecture 1 – p.14/35

Example: Robotics (1)

[PPDP’02, with Izzet Pembeci and Greg Hager,
Johns Hopkins University]

Hardware setup:

ITU FRP 2010: Lecture 1 – p.15/35

Example: Robotics (2)

Software architecture:

ITU FRP 2010: Lecture 1 – p.16/35

Example: Robotics (3)

ITU FRP 2010: Lecture 1 – p.17/35

Example: Neuroscience Experiments

[TFP’09, Tom Nielsen, Tom Matheson, Henrik
Nilsson]

ITU FRP 2010: Lecture 1 – p.18/35

Classic FRP (1)

Classic FRP (CFRP): Fran derivative. Central
abstractions:

• Behavior :
- Polymorphic, (conceptually)

continuous-time, signal generator.
- Type constructor: B α

• Event :
- Polymorphic, discrete-time, signal

generator.
- Type constructor: E α

ITU FRP 2010: Lecture 1 – p.19/35

Classic FRP (2)

Examples:

7 :: B Real

time :: B Time

(+) :: B Real→ B Real→ B Real

lift1 :: (α → β) →(B α → B β)

integral :: B Real→ B Real

ITU FRP 2010: Lecture 1 – p.20/35

Classic FRP (3)

Some more examples:

never :: E α

now :: E ()

after :: Time→ E ()

repeatedly :: Time→ E ()

edge :: B Bool→ E ()

hold :: α → E α → B α

lbp :: E ()

key :: E Char

ITU FRP 2010: Lecture 1 – p.21/35

Classic FRP (4)

Switching and event mapping:

until :: B α → E (B α)→ B α

==> :: E α → (α →β) → E β

-=> :: E α → β → E β

ITU FRP 2010: Lecture 1 – p.22/35

Typical CFRP Snippets (1)

color :: B Color
color = red ‘until‘ lbp -=> blue

ball :: B Picture
ball = paint color circ

circ :: B Region
circ = translate (cos time, sin time)

(circle 1)

ITU FRP 2010: Lecture 1 – p.23/35

Typical CFRP Snippets (2)

color2 = red ‘until‘
(lbp -=> blue)
.|.
(key -=> yellow)

color3 = red ’until’
(edge (time >* 5) -=> blue)

ITU FRP 2010: Lecture 1 – p.24/35

Semantic Functions (1)

at : 〈Bα〉 → Time → Time → α

occ : 〈Eα〉 → Time → Time → [Time × α]

ITU FRP 2010: Lecture 1 – p.25/35

Semantic Functions (1)

at : 〈Bα〉 → Time → Time → α

occ : 〈Eα〉 → Time → Time → [Time × α]

Intuitively, at maps a behavior to a function from
a start time and a time of interest to a value at
that time.

ITU FRP 2010: Lecture 1 – p.25/35

Semantic Functions (1)

at : 〈Bα〉 → Time → Time → α

occ : 〈Eα〉 → Time → Time → [Time × α]

Intuitively, at maps a behavior to a function from
a start time and a time of interest to a value at
that time.

Note that the type of at can be parenthesized:

〈Bα〉 → (Time → (Time → α))

Thus, at maps a behavior to a signal generator .

ITU FRP 2010: Lecture 1 – p.25/35

Semantic Functions (2)

at : 〈Bα〉 → Time → Time → α

occ : 〈Eα〉 → Time → Time → [Time × α]

The function occ gives meaning to events in a
similar way, but the result is a finite list of
time-ascending event occurrences from the
start time to the time of interest.

ITU FRP 2010: Lecture 1 – p.26/35

Semantics (1)

Time, liftings, integration:

at[[time]] T t = t

at[[lift0 c]] T t = ⌊c⌋

at[[lift1 f b]] T t = ⌊f⌋ (at[[b]] T t)

at[[lift2 f b d]] T t = ⌊f⌋ (at[[b]] T t) (at[[d]] T t)

at[[integral b]] T t =

∫

t

T

(at[[b]] T τ)dτ

ITU FRP 2010: Lecture 1 – p.27/35

Semantics (2)

Basic events:

occ[[never]] T t = []

occ[[now]] T t = [(T, ())]

occ[[after τ]] T t =

{

[] T + τ < t

[(T + τ, ())] otherwise

ITU FRP 2010: Lecture 1 – p.28/35

Semantics (3)

occ[[repeatedly τ]] T t

=

[] n = 0

[(T + τ, ()), (T + 2τ, ()),

. . . , (T + nτ, ())]
otherwise

where n ∈ N is the largest number such that
T + nτ ≤ t.

ITU FRP 2010: Lecture 1 – p.29/35

Semantics (4)

Intuitively, the predicate event:

edge :: B Bool→ E ()

occurrs whenever the argument behavior
changes from False to True.

However, surprisingly hard to characterize
exactly (and, of course, not computable).

ITU FRP 2010: Lecture 1 – p.30/35

Semantics (5)

Semantics of until. Recall:

until :: B α → E (B α) → B α

If

occ[[e]] T t = [(t1, ⌊b1⌋), . . . , (tn, ⌊bn⌋)]

then, for any τ ∈ [T, t]:

at[[b until e]] T t =

{

at[[b]] T τ n = 0 or τ < t1

at[[b1]] t1 τ otherwise

ITU FRP 2010: Lecture 1 – p.31/35

Implementation

Using infinite lists as streams , stream-based
versions of the central CFRP abstractions can be
realised as follows:

B a = [Time] -> [a]
E a = [Time] -> [Maybe a]

Note that this corresponds to signal generators :
A prefix of [Time] is a discretized approximation
of an interval from the start time to the current
time.

ITU FRP 2010: Lecture 1 – p.32/35

Faithfulness (1)

Of course, we can only hope to approximate the
ideal, continuous semantics.

ITU FRP 2010: Lecture 1 – p.33/35

Faithfulness (1)

Of course, we can only hope to approximate the
ideal, continuous semantics.

But, then, what is a faithful implementation?

ITU FRP 2010: Lecture 1 – p.33/35

Faithfulness (1)

Of course, we can only hope to approximate the
ideal, continuous semantics.

But, then, what is a faithful implementation?

• Wan and Hudak (2000) adapts the notion of
uniform convergence to the setting of CFRP.

ITU FRP 2010: Lecture 1 – p.33/35

Faithfulness (1)

Of course, we can only hope to approximate the
ideal, continuous semantics.

But, then, what is a faithful implementation?

• Wan and Hudak (2000) adapts the notion of
uniform convergence to the setting of CFRP.

• They then show that the stream-based
semantics of the CFRP converges to the ideal
semantics in the limit as the maximal
sampling interval tends to 0, establishing
necessary side conditions where needed.

ITU FRP 2010: Lecture 1 – p.33/35

Faithfulness (2)

• Wan and Hudak still assume real reals and
exact functions on the reals. Floating point
arithmetic adds another level of difficulty.

ITU FRP 2010: Lecture 1 – p.34/35

Reading

• Zhanyong Wan and Paul Hudak. Functional
reactive programming from first principles. In
Proceedings of the ACM SIGPLAN
Conference on Programming Language
Design and Implementation (PLDI ’00),
Canada, June, 2000.

ITU FRP 2010: Lecture 1 – p.35/35

	Overview
	This Lecture
	Reactive Programming
	Functional Reactive Programming
	FRP Applications (1)
	FRP Applications (2)
	Key FRP Features
	Related Languages and Paradigms
	Central Notions (1)
	Central Notions (2)
	Signal Functions and State
	FRP Variants
	Example: Video Tracker
	Example: Robotics (1)
	Example: Robotics (2)
	Example: Robotics (3)
	Example: Neuroscience Experiments
	Classic FRP (1)
	Classic FRP (2)
	Classic FRP (3)
	Classic FRP (4)
	Typical CFRP Snippets (1)
	Typical CFRP Snippets (2)
	Semantic Functions (1)
	Semantic Functions (2)
	Semantics (1)
	Semantics (2)
	Semantics (3)
	Semantics (4)
	Semantics (5)
	Implementation
	Faithfulness (1)
	Faithfulness (2)
	Reading

