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CFRP issues: Sharing

Consider:

let x = 1 + integral (x * x) in x

The recursively defined behavior, a function , is
applied over and over to the same stream of
sample times.

• Causes recomputation
• Laziness does not help
• Memoization needed to get acceptable

performance. But with care to avoid memory
leaks.
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CFRP issues: Restart (1)
Consider:

let
c = hold 0 (count (repeatedly 0.5))

in
c ‘until‘ after 5 -=> c * 2

What happened at the time of the switch?

• CFRP behaviors and events are signal
generators : they will start from scratch when
swicthched in.

• But what if we just want to continue observing
an evolving signal?
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CFRP issues: Restart (2)

• A version of until that starts new behaviors
from time 0.
Time and space leak!

• Support signals as well, e.g. through some
variant of runningIn :

runningIn ::
B a -> (B a -> B b) -> B b

Idea: apply behavior to start time once and for
all, then wrap up the resulting signal as a
signal generator that ignores its starting time.
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CFRP issues: Restart (3)

Problems with runningIn

• No type-level distinction between signals and
signal generators: a “running behavior” is a
signal masquerading as a signal generator.
(But could be fixed though other designs.)

• Difficult to implement; requires imperative
techniques, implies certain overhead.
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An alternative

By adopting signal functions as the central
notion, these problems are side stepped:

• Sharing amounts to sharing computations of
signal samples: lazy evaluation handles that
just fine.

• Observation of externally originating signals
is inherent in the notion of a signal function.

• Implementation is straightforward.
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Yampa

What is Yampa?
• FRP implementation structured using arrows .
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Yampa

What is Yampa?
• FRP implementation structured using arrows .
• Realised as an Embedded Domain-Specific

Language (EDSL), i.e. a combinator library.
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• FRP implementation structured using arrows .
• Realised as an Embedded Domain-Specific
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Yampa

What is Yampa?
• FRP implementation structured using arrows .
• Realised as an Embedded Domain-Specific

Language (EDSL), i.e. a combinator library.
• Continuous-time signals (conceptually)
• Discrete-time signals represented by

continuous-time signal carrying option type
Event.
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Yampa

What is Yampa?
• FRP implementation structured using arrows .
• Realised as an Embedded Domain-Specific

Language (EDSL), i.e. a combinator library.
• Continuous-time signals (conceptually)
• Discrete-time signals represented by

continuous-time signal carrying option type
Event.

• Functions on signals, Signal Functions , is
the central abstraction, forming the arrows.

ITU FRP 2010: Lecture 2 – p.8/64



Yampa

• Signal functions are first-class entities,
signals a secondary notion, only existing
indirectly through the signal functions.
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Yampa

• Signal functions are first-class entities,
signals a secondary notion, only existing
indirectly through the signal functions.

• Advanced switching constructs to describe
systems with highly dynamic structure.
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Yampa

• Signal functions are first-class entities,
signals a secondary notion, only existing
indirectly through the signal functions.

• Advanced switching constructs to describe
systems with highly dynamic structure.

• People:
- Antony Courtney
- Paul Hudak
- Henrik Nilsson
- John Peterson
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Yampa?
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Yampa?

Yet
Another
Mostly
Pointless
Acronym
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Yampa?

Yet
Another
Mostly
Pointless
Acronym

???
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Yampa?

Yet
Another
Mostly
Pointless
Acronym

???

No . . .

ITU FRP 2010: Lecture 2 – p.10/64



Yampa?

Yampa is a river . . .
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Yampa?

. . . with long calmly flowing sections . . .
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Yampa?

. . . and abrupt whitewater transitions in between.

A good metaphor for hybrid systems!
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Signal functions (1)

Key concept: functions on signals .
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Signal functions (1)

Key concept: functions on signals .

Intuition:

Signal α ≈ Time → α

SF α β ≈ Signal α → Signal β

x :: Signal T1
y :: Signal T2
f :: SF T1 T2
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Signal functions (2)

Additionally, causality required: output at time t

must be determined by input on interval [0, t].
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Signal functions (2)

Additionally, causality required: output at time t

must be determined by input on interval [0, t].

Signal functions are said to be
• pure or stateless if output at time t only

depends on input at time t
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Signal functions (2)

Additionally, causality required: output at time t

must be determined by input on interval [0, t].

Signal functions are said to be
• pure or stateless if output at time t only

depends on input at time t

• impure or stateful if output at time t depends
on input over the interval [0, t].
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Signal functions and state

Alternative view:
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Signal functions and state

Alternative view:

Signal functions can encapsulate state .

state(t) summarizes input history x(t′), t′ ∈ [0, t].
Thus, really a kind of process .
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Signal functions and state

Alternative view:

Signal functions can encapsulate state .

state(t) summarizes input history x(t′), t′ ∈ [0, t].
Thus, really a kind of process .

From this perspective, signal functions are:
• stateful if y(t) depends on x(t) and state(t)

• stateless if y(t) depends only on x(t)
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Yampa and arrows (1)

In Yampa, systems are described by combining
signal functions (forming new signal functions).

ITU FRP 2010: Lecture 2 – p.14/64



Yampa and arrows (1)

In Yampa, systems are described by combining
signal functions (forming new signal functions).

For example, serial composition:
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Yampa and arrows (1)

In Yampa, systems are described by combining
signal functions (forming new signal functions).

For example, serial composition:

A combinator can be defined that captures this
idea:

(>>>) :: SF a b -> SF b c -> SF a c
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Yampa and arrows (2)

But systems can be complex:
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Yampa and arrows (2)

But systems can be complex:

How many and what combinators do we need
to be able to describe arbitrary systems?
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Yampa and arrows (3)

John Hughes’ arrow framework:
• Abstract data type interface for function-like

types.
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Yampa and arrows (3)

John Hughes’ arrow framework:
• Abstract data type interface for function-like

types.
• Particularly suitable for types representing

process-like computations.
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Yampa and arrows (3)

John Hughes’ arrow framework:
• Abstract data type interface for function-like

types.
• Particularly suitable for types representing

process-like computations.
• Related to monads , since arrows are

(effectful) computations, but more general:
any monad m induces an arrow, the Kleisli
arrow, α → m β, but not vice versa.
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Yampa and arrows (3)

John Hughes’ arrow framework:
• Abstract data type interface for function-like

types.
• Particularly suitable for types representing

process-like computations.
• Related to monads , since arrows are

(effectful) computations, but more general:
any monad m induces an arrow, the Kleisli
arrow, α → m β, but not vice versa.

• Provides a minimal set of “wiring” combinators.
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What is an arrow? (1)

• A type constructor a of arity two.
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What is an arrow? (1)

• A type constructor a of arity two.
• Three operators:

- lifting :
arr :: (b->c) -> a b c

- composition :
(>>>) :: a b c -> a c d -> a b d
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What is an arrow? (1)

• A type constructor a of arity two.
• Three operators:

- lifting :
arr :: (b->c) -> a b c

- composition :
(>>>) :: a b c -> a c d -> a b d

- widening :
first :: a b c -> a (b,d) (c,d)
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What is an arrow? (1)

• A type constructor a of arity two.
• Three operators:

- lifting :
arr :: (b->c) -> a b c

- composition :
(>>>) :: a b c -> a c d -> a b d

- widening :
first :: a b c -> a (b,d) (c,d)

• A set of algebraic laws that must hold.
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What is an arrow? (2)

These diagrams convey the general idea:

arr f f >>> g

first f
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The Arrow class

In Haskell, a type class is used to capture these
ideas (except for the laws):

class Arrow a where
arr :: (b -> c) -> a b c
(>>>) :: a b c -> a c d -> a b d
first :: a b c -> a (b,d) (c,d)

ITU FRP 2010: Lecture 2 – p.19/64



Arrow laws

(f >>> g) >>> h = f >>> (g >>> h)
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Arrow laws

(f >>> g) >>> h = f >>> (g >>> h)

arr (g . f) = arr f >>> arr g
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Arrow laws

(f >>> g) >>> h = f >>> (g >>> h)

arr (g . f) = arr f >>> arr g

arr id >>> f = f
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Arrow laws

(f >>> g) >>> h = f >>> (g >>> h)

arr (g . f) = arr f >>> arr g

arr id >>> f = f

f = f >>> arr id
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Arrow laws

(f >>> g) >>> h = f >>> (g >>> h)

arr (g . f) = arr f >>> arr g

arr id >>> f = f

f = f >>> arr id

first (arr f) = arr (f × id)
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Arrow laws

(f >>> g) >>> h = f >>> (g >>> h)

arr (g . f) = arr f >>> arr g

arr id >>> f = f

f = f >>> arr id

first (arr f) = arr (f × id)

first (f >>> g) = first f >>> first g
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Arrow laws

(f >>> g) >>> h = f >>> (g >>> h)

arr (g . f) = arr f >>> arr g

arr id >>> f = f

f = f >>> arr id

first (arr f) = arr (f × id)

first (f >>> g) = first f >>> first g

first f >>> arr (id × g) = arr (id × g) >>> first f
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Arrow laws

(f >>> g) >>> h = f >>> (g >>> h)

arr (g . f) = arr f >>> arr g

arr id >>> f = f

f = f >>> arr id

first (arr f) = arr (f × id)

first (f >>> g) = first f >>> first g

first f >>> arr (id × g) = arr (id × g) >>> first f

first f >>> arr fst = arr fst >>> f
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Arrow laws

(f >>> g) >>> h = f >>> (g >>> h)

arr (g . f) = arr f >>> arr g

arr id >>> f = f

f = f >>> arr id

first (arr f) = arr (f × id)

first (f >>> g) = first f >>> first g

first f >>> arr (id × g) = arr (id × g) >>> first f

first f >>> arr fst = arr fst >>> f

first (first f) >>> arr assoc = arr assoc >>> first f

ITU FRP 2010: Lecture 2 – p.20/64



Functions are arrows (1)

Functions are a simple example of arrows. The
arrow type constructor is just (->) in that case.

Exercise 1: Suggest suitable definitions of
• arr

• (>>>)

• first

for this case!
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Functions are arrows (2)

Solution:
• arr = id
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Functions are arrows (2)

Solution:
• arr = id

To see this, recall
id :: t -> t
arr :: (b->c) -> a b c
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Functions are arrows (2)

Solution:
• arr = id

To see this, recall
id :: t -> t
arr :: (b->c) -> a b c

Instantiate with

a = (->)

t = b->c = (->) b c
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Functions are arrows (3)

• f >>> g = \a -> g (f a)
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Functions are arrows (3)

• f >>> g = \a -> g (f a) or
• f >>> g = g . f
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Functions are arrows (3)

• f >>> g = \a -> g (f a) or
• f >>> g = g . f or even
• (>>>) = flip (.)
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Functions are arrows (3)

• f >>> g = \a -> g (f a) or
• f >>> g = g . f or even
• (>>>) = flip (.)

• first f = \(b,d) -> (f b,d)
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Functions are arrows (4)

Arrow instance declaration for functions:

instance Arrow (->) where
arr = id
(>>>) = flip (.)
first f = \(b,d) -> (f b,d)
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The arrow laws reformulated

Exploiting that functions are arrows, some of the
laws can be formulated more neatly. E.g:

arr (f >>> g) = arr f >>> arr g

first (arr f) = arr (first f)
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The loop combinator (1)

Another important operator is loop : a fixed-point
operator used to express recursive arrows or
feedback :

loop f
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The loop combinator (2)

Not all arrow instances support loop . It is thus a
method of a separate class:

class Arrow a => ArrowLoop a where
loop :: a (b, d) (c, d) -> a b c

Remarkably, the four combinators arr , >>>,
first , and loop are sufficient to express any
conceivable wiring!
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Some more arrow combinators (1)

second :: Arrow a =>
a b c -> a (d,b) (d,c)

( *** ) :: Arrow a =>
a b c -> a d e -> a (b,d) (c,e)

(&&&) :: Arrow a =>
a b c -> a b d -> a b (c,d)
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Some more arrow combinators (2)

As diagrams:

second f
f *** g

f &&& g
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Some more arrow combinators (3)

Exercise 2: Describe the following circuit using
arrow combinators:

a1, a2, a3 :: A Double Double

Exercise 3: The combinators second , ( *** ) ,
and (&&&) are not primitive, but defined in terms
of arr , (>>>) , and first . Suggest suitable
definitions!
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Exercise 2: One solution

Exercise 2: Describe the following circuit using
arrow combinators:

a1, a2, a3 :: A Double Double
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Exercise 2: One solution

Exercise 2: Describe the following circuit using
arrow combinators:

a1, a2, a3 :: A Double Double

circuit_v1 :: A Double Double
circuit_v1 = (a1 &&& arr id)

>>> (a2 *** a3)
>>> arr (uncurry (+))
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Exercise 2: Another solution

Exercise 2: Describe the following circuit:

a1, a2, a3 :: A Double Double

ITU FRP 2010: Lecture 2 – p.32/64



Exercise 2: Another solution

Exercise 2: Describe the following circuit:

a1, a2, a3 :: A Double Double

circuit_v2 :: A Double Double
circuit_v2 = arr (\x -> (x,x))

>>> first a1
>>> (a2 *** a3)
>>> arr (uncurry (+))
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Exercise 3: Solution

Exercise 3: Suggest definitions of second ,
( *** ) , and (&&&) .
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Exercise 3: Solution

Exercise 3: Suggest definitions of second ,
( *** ) , and (&&&) .

second :: Arrow a => a b c -> a (d,b) (d,c)

second f = arr swap >>> first f >>> arr swap

swap (x,y) = (y,x)
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Exercise 3: Solution

Exercise 3: Suggest definitions of second ,
( *** ) , and (&&&) .

second :: Arrow a => a b c -> a (d,b) (d,c)

second f = arr swap >>> first f >>> arr swap

swap (x,y) = (y,x)

( *** ) :: Arrow a =>

a b c -> a d e -> a (b,d) (c,e)

f *** g = first f >>> second g
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Exercise 3: Solution

Exercise 3: Suggest definitions of second ,
( *** ) , and (&&&) .

second :: Arrow a => a b c -> a (d,b) (d,c)

second f = arr swap >>> first f >>> arr swap

swap (x,y) = (y,x)

( *** ) :: Arrow a =>

a b c -> a d e -> a (b,d) (c,e)

f *** g = first f >>> second g

(&&&) :: Arrow a => a b c -> a b d -> a b (c,d)

f &&& g = arr (\x->(x,x)) >>> (f *** g)
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Note on the definition of(***) (1)

Are the following two definitions of ( *** )
equivalent?

• f *** g = first f >>> second g

• f *** g = second g >>> first f
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Note on the definition of(***) (1)

Are the following two definitions of ( *** )
equivalent?

• f *** g = first f >>> second g

• f *** g = second g >>> first f

No, in general

first f >>> second g 6= second g >>> first f

since the order of the two possibly effectful
computations f and g are different.
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Note on the definition of(***) (2)

Similarly

(f *** g) >>> (h *** k) 6= (f >>> h) *** (g >>> k)

since the order of f and g differs.
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Note on the definition of(***) (2)

Similarly

(f *** g) >>> (h *** k) 6= (f >>> h) *** (g >>> k)

since the order of f and g differs.

However, Yampa’s signal functions have no
effectful interaction: they are Causal
Commutative Arrows (Liu, Cheng, Hudak 2009)
Both considered identities actually hold.
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Yet another attempt at exercise 2

circuit_v3 :: A Double Double
circuit_v3 = (a1 &&& a3)

>>> first a2
>>> arr (uncurry (+))
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Yet another attempt at exercise 2

circuit_v3 :: A Double Double
circuit_v3 = (a1 &&& a3)

>>> first a2
>>> arr (uncurry (+))

Are circuit_v1 , circuit_v2 , and
circuit_v3 all equivalent?
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Point-free vs. pointed programming

What we have seen thus far is an example of
point-free programming: the values being
manipulated are not given any names.
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Point-free vs. pointed programming

What we have seen thus far is an example of
point-free programming: the values being
manipulated are not given any names.

This is often appropriate, especially for small
definitions, and it facilitates equational reasoning
as shown by Bird & Meertens (Bird 1990).
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Point-free vs. pointed programming

What we have seen thus far is an example of
point-free programming: the values being
manipulated are not given any names.

This is often appropriate, especially for small
definitions, and it facilitates equational reasoning
as shown by Bird & Meertens (Bird 1990).

However, large programs are much better
expressed in a pointed style, where names can
be given to values being manipulated.
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The arrow do notation (1)

Ross Paterson’s do-notation for arrows supports
pointed arrow programming. Only syntactic
sugar .

proc pat -> do [ rec ]
pat1 <- sfexp1 -< exp1

pat2 <- sfexp2 -< exp2

. . .
pat

n
<- sfexp

n
-< exp

n

returnA -< exp

Also: let pat = exp ≡ pat <- arr id -< exp
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The arrow do notation (2)

Let us redo exercise 3 using this notation:

circuit_v4 :: A Double Double
circuit_v4 = proc x -> do

y1 <- a1 -< x
y2 <- a2 -< y1
y3 <- a3 -< x
returnA -< y2 + y3
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The arrow do notation (3)

We can also mix and match:

circuit_v5 :: A Double Double
circuit_v5 = proc x -> do

y2 <- a2 <<< a1 -< x
y3 <- a3 -< x
returnA -< y2 + y3
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The arrow do notation (4)

Exercise 4: Describe the following circuit using
the arrow do-notation:

a1, a2 :: A Double Double
a3 :: A (Double,Double) Double

ITU FRP 2010: Lecture 2 – p.41/64



The arrow do notation (4)

Exercise 4: Describe the following circuit using
the arrow do-notation:

a1, a2 :: A Double Double
a3 :: A (Double,Double) Double

Exercise 5: As 4, but directly using only the
arrow combinators.
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Solution exercise 4

circuit = proc x -> do
rec

y1 <- a1 -< x
y2 <- a2 -< y1
y3 <- a3 -< (x, y)
let y = y2 + y3

returnA -< y
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Some basic signal functions (1)

• identity :: SF a a
identity = arr id
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Some basic signal functions (1)

• identity :: SF a a
identity = arr id

• constant :: b -> SF a b
constant b = arr (const b)
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Some basic signal functions (1)

• identity :: SF a a
identity = arr id

• constant :: b -> SF a b
constant b = arr (const b)

• integral :: VectorSpace a s=>SF a a
It is defined through:

y(t) =

t∫

0

x(τ) dτ
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Some basic signal functions (2)

• iPre :: a -> SF a a
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Some basic signal functions (2)

• iPre :: a -> SF a a

• (^<<) :: (b->c) -> SF a b -> SF a c
f (^<<) sf = sf >>> arr f
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Some basic signal functions (2)

• iPre :: a -> SF a a

• (^<<) :: (b->c) -> SF a b -> SF a c
f (^<<) sf = sf >>> arr f

• time :: SF a Time

ITU FRP 2010: Lecture 2 – p.44/64



Some basic signal functions (2)

• iPre :: a -> SF a a

• (^<<) :: (b->c) -> SF a b -> SF a c
f (^<<) sf = sf >>> arr f

• time :: SF a Time

Quick Exercise: Define time!
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Some basic signal functions (2)

• iPre :: a -> SF a a

• (^<<) :: (b->c) -> SF a b -> SF a c
f (^<<) sf = sf >>> arr f

• time :: SF a Time

Quick Exercise: Define time!

time = constant 1.0 >>> integral
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Some basic signal functions (2)

• iPre :: a -> SF a a

• (^<<) :: (b->c) -> SF a b -> SF a c
f (^<<) sf = sf >>> arr f

• time :: SF a Time

Quick Exercise: Define time!

time = constant 1.0 >>> integral

Note: there is no built-in notion of global time in
Yampa: time is always local , measured from
when a signal function started.
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A bouncing ball

y = y0 +

∫
v dt

v = v0 +

∫
−9.81

On impact:

v = −v(t−)

(fully elastic collision)
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Modelling the bouncing ball: part 1

Free-falling ball:

type Pos = Double

type Vel = Double

fallingBall ::

Pos -> Vel -> SF () (Pos, Vel)

fallingBall y0 v0 = proc () -> do

v <- (v0 +) ˆ<< integral -< -9.81

y <- (y0 +) ˆ<< integral -< v

returnA -< (y, v)
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Events

Conceptually, discrete-time signals are only
defined at discrete points in time, often
associated with the occurrence of some event .
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Events

Conceptually, discrete-time signals are only
defined at discrete points in time, often
associated with the occurrence of some event .
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Events

Conceptually, discrete-time signals are only
defined at discrete points in time, often
associated with the occurrence of some event .

Yampa models discrete-time signals by lifting the
range of continuous-time signals:

data Event a = NoEvent | Event a

Discrete-time signal = Signal (Event α).

Associating information with an event
occurrence:

tag :: Event a -> b -> Event b
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Some basic event sources

• never :: SF a (Event b)

• now :: b -> SF a (Event b)

• after :: Time -> b -> SF a (Event b)

• repeatedly ::
Time -> b -> SF a (Event b)

• edge :: SF Bool (Event ())
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Stateful event suppression

• notYet :: SF (Event a) (Event a)

• once :: SF (Event a) (Event a)
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Modelling the bouncing ball: part 2

Detecting when the ball goes through the floor:

fallingBall’ ::

Pos -> Vel

-> SF () ((Pos,Vel), Event (Pos,Vel))

fallingBall’ y0 v0 = proc () -> do

yv@(y, _) <- fallingBall y0 v0 -< ()

hit <- edge -< y <= 0

returnA -< (yv, hit ‘tag‘ yv)
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Switching

Q: How and when do signal functions “start”?
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Switching

Q: How and when do signal functions “start”?

A: • Switchers “apply” a signal functions to its
input signal at some point in time.

• This creates a “running” signal function
instance .

• The new signal function instance often
replaces the previously running instance.

Switchers thus allow systems with varying
structure to be described.
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The basic switch (1)

Idea:
• Allows one signal function to be replaced by

another.
• Switching takes place on the first occurrence

of the switching event source.

switch ::

SF a (b, Event c)

-> (c -> SF a b)

-> SF a b
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The basic switch (1)

Idea:
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another.
• Switching takes place on the first occurrence

of the switching event source.

switch :: Initial SF with event source

SF a (b, Event c)

-> (c -> SF a b)

-> SF a b
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The basic switch (1)

Idea:
• Allows one signal function to be replaced by

another.
• Switching takes place on the first occurrence

of the switching event source.

switch :: Function yielding SF to switch into

SF a (b, Event c)

-> (c -> SF a b)

-> SF a b
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The basic switch (2)

Exercise 6: Define an event counter countFrom

countFrom ::
Int -> SF (Event a) Int

using

switch :: SF a (b, Event c)
-> (c -> SF a b)
-> SF a b

constant :: b -> SF a b
notYet :: SF (Event a) (Event a)

and any other basic combinators you might need.
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Solution exercise 6

countFrom :: Int -> SF (Event a) Int
countFrom n =

switch
(constant n &&& identity
(const (notYet >>> countFrom (n+1)))
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Solution exercise 6

Another version that ignores any event at time 0
also from the very start:

countFrom :: Int -> SF (Event a) Int
countFrom n =

switch
(constant n &&& notYet)
(const (countFrom (n+1)))
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Modelling the bouncing ball: part 3

Making the ball bounce:

bouncingBall :: Pos -> SF () (Pos, Vel)

bouncingBall y0 = bbAux y0 0.0

where

bbAux y0 v0 =

switch (fallingBall’ y0 v0) $ \(y,v) ->

bbAux y (-v)
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Simulation of bouncing ball
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Modelling using impulses (1)
From a modelling perspective, using a device like
switch to model the interaction between the ball
and the floor may seem rather unnatural.
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is that an impulsive force is acting on the ball for
a short time.
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Modelling using impulses (1)
From a modelling perspective, using a device like
switch to model the interaction between the ball
and the floor may seem rather unnatural.

A more appropriate account of what is going on
is that an impulsive force is acting on the ball for
a short time.

This can be abstracted into Dirac Impulses :
impulses that act instantaneously. See

Henrik Nilsson. Functional Automatic
Differentiation with Dirac Impulses. In
Proceedings of ICFP 2003.
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Modelling using impulses (2)

However, Yampa does provide a derived version
of integral capturing the basic idea:

impulseIntegral ::
VectorSpace a k =>

SF (a, Event a) a
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The decoupled switch

dSwitch ::
SF a (b, Event c)
-> (c -> SF a b)
-> SF a b

• Output at the point of switch is taken from the
old subordinate signal function, not the new
residual signal function.

• This means the output at the current point in
time is independent of whether or not the
switching event occurs at that point in time.
Hence decoupled.
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The recurring switch

rSwitch, drSwitch ::
SF a b -> SF (a,Event (SF a b)) b

• Switching events received on the signal
function input, carrying signal function to
switch into.

• Switching occurs whenever an event occurs,
not just once.

• Can be defined in terms of switch /dSwitch .
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Reading (1)

• John Hughes. Generalising monads to
arrows. Science of Computer Programming,
37:67–111, May 2000

• John Hughes. Programming with arrows. In
Advanced Functional Programming, 2004.
Springer Verlag.

• Ross Paterson. A New Notation for Arrows. In
Proceedings of the 2001 ACM SIGPLAN
International Conference on Functional
Programming, pp. 229–240, Firenze, Italy,
2001.
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Reading (2)

• Henrik Nilsson, Antony Courtney, and John
Peterson. Functional reactive programming,
continued. In Proceedings of the 2002
Haskell Workshop, pp. 51–64, October 2002.

• Paul Hudak, Antony Courtney, Henrik
Nilsson, and John Peterson. Arrows, robots,
and functional reactive programming. In
Advanced Functional Programming, 2002.
LNCS 2638, pp. 159–187.
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Reading (3)

• Hai Liu, Eric Cheng and Paul Hudak. Causal
Commutative Arrows and Their Optimization.
In The 14th ACM SIGPLAN International
Conference on Functional Programming
(ICFP 2009), Edinburgh, Scotland,
September, 2009

• Richard S. Bird. A calculus of functions for
program derivation. In Research Topics in
Functional Programming, Addison-Wesley,
1990.

ITU FRP 2010: Lecture 2 – p.64/64


	Outline
	CFRP issues: Sharing
	CFRP issues: Restart (1)
	CFRP issues: Restart (2)
	CFRP issues: Restart (3)
	An alternative
	Yampa
	Yampa
	Yampa?
	Signal functions (1)
	Signal functions (2)
	Signal functions and state
	Yampa and arrows (1)
	Yampa and arrows (2)
	Yampa and arrows (3)
	What is an arrow? (1)
	What is an arrow? (2)
	The 	exttt {Arrow} class
	Arrow laws
	Functions are arrows (1)
	Functions are arrows (2)
	Functions are arrows (3)
	Functions are arrows (4)
	The arrow laws reformulated
	The 	exttt {loop} combinator (1)
	The 	exttt {loop} combinator (2)
	Some more arrow combinators (1)
	Some more arrow combinators (2)
	Some more arrow combinators (3)
	Exercise 2: One solution
	Exercise 2: Another solution
	Exercise 3: Solution
	Note on the definition of 	exttt {(***)} (1)
	Note on the definition of 	exttt {(***)} (2)
	Yet another attempt at exercise 2
	Point-free vs. pointed programming
	The arrow 	exttt {do} notation (1)
	The arrow 	exttt {do} notation (2)
	The arrow 	exttt {do} notation (3)
	The arrow 	exttt {do} notation (4)
	Solution exercise 4
	Some basic signal functions (1)
	Some basic signal functions (2)
	A bouncing ball
	Modelling the bouncing ball: part 1
	Events
	Some basic event sources
	Stateful event suppression
	Modelling the bouncing ball: part 2
	Switching
	The basic switch (1)
	The basic switch (2)
	Solution exercise 6
	Solution exercise 6
	Modelling the bouncing ball: part 3
	Simulation of bouncing ball
	Modelling using impulses (1)
	Modelling using impulses (2)
	The decoupled switch
	The recurring switch
	Reading (1)
	Reading (2)
	Reading (3)

