
ITU FRP 2010
Lecture 2:

Yampa: Arrows-based FRP

Henrik Nilsson

School of Computer Science

University of Nottingham, UK

ITU FRP 2010: Lecture 2 – p.1/64



Outline

• CFRP issues
• Introduction to Yampa
• Arrows
• A closer look at Yampa

ITU FRP 2010: Lecture 2 – p.2/64



CFRP issues: Sharing

Consider:

let x = 1 + integral (x * x) in x

The recursively defined behavior, a function , is
applied over and over to the same stream of
sample times.

• Causes recomputation
• Laziness does not help
• Memoization needed to get acceptable

performance. But with care to avoid memory
leaks.

ITU FRP 2010: Lecture 2 – p.3/64



CFRP issues: Restart (1)
Consider:

let
c = hold 0 (count (repeatedly 0.5))

in
c ‘until‘ after 5 -=> c * 2

What happened at the time of the switch?

• CFRP behaviors and events are signal
generators : they will start from scratch when
swicthched in.

• But what if we just want to continue observing
an evolving signal?

ITU FRP 2010: Lecture 2 – p.4/64



CFRP issues: Restart (2)

• A version of until that starts new behaviors
from time 0.
Time and space leak!

• Support signals as well, e.g. through some
variant of runningIn :

runningIn ::
B a -> (B a -> B b) -> B b

Idea: apply behavior to start time once and for
all, then wrap up the resulting signal as a
signal generator that ignores its starting time.

ITU FRP 2010: Lecture 2 – p.5/64



CFRP issues: Restart (3)

Problems with runningIn

• No type-level distinction between signals and
signal generators: a “running behavior” is a
signal masquerading as a signal generator.
(But could be fixed though other designs.)

• Difficult to implement; requires imperative
techniques, implies certain overhead.

ITU FRP 2010: Lecture 2 – p.6/64



An alternative

By adopting signal functions as the central
notion, these problems are side stepped:

• Sharing amounts to sharing computations of
signal samples: lazy evaluation handles that
just fine.

• Observation of externally originating signals
is inherent in the notion of a signal function.

• Implementation is straightforward.

ITU FRP 2010: Lecture 2 – p.7/64



Yampa

What is Yampa?
• FRP implementation structured using arrows .

ITU FRP 2010: Lecture 2 – p.8/64



Yampa

What is Yampa?
• FRP implementation structured using arrows .
• Realised as an Embedded Domain-Specific

Language (EDSL), i.e. a combinator library.

ITU FRP 2010: Lecture 2 – p.8/64



Yampa

What is Yampa?
• FRP implementation structured using arrows .
• Realised as an Embedded Domain-Specific

Language (EDSL), i.e. a combinator library.
• Continuous-time signals (conceptually)

ITU FRP 2010: Lecture 2 – p.8/64



Yampa

What is Yampa?
• FRP implementation structured using arrows .
• Realised as an Embedded Domain-Specific

Language (EDSL), i.e. a combinator library.
• Continuous-time signals (conceptually)
• Discrete-time signals represented by

continuous-time signal carrying option type
Event.

ITU FRP 2010: Lecture 2 – p.8/64



Yampa

What is Yampa?
• FRP implementation structured using arrows .
• Realised as an Embedded Domain-Specific

Language (EDSL), i.e. a combinator library.
• Continuous-time signals (conceptually)
• Discrete-time signals represented by

continuous-time signal carrying option type
Event.

• Functions on signals, Signal Functions , is
the central abstraction, forming the arrows.

ITU FRP 2010: Lecture 2 – p.8/64



Yampa

• Signal functions are first-class entities,
signals a secondary notion, only existing
indirectly through the signal functions.

ITU FRP 2010: Lecture 2 – p.9/64



Yampa

• Signal functions are first-class entities,
signals a secondary notion, only existing
indirectly through the signal functions.

• Advanced switching constructs to describe
systems with highly dynamic structure.

ITU FRP 2010: Lecture 2 – p.9/64



Yampa

• Signal functions are first-class entities,
signals a secondary notion, only existing
indirectly through the signal functions.

• Advanced switching constructs to describe
systems with highly dynamic structure.

• People:
- Antony Courtney
- Paul Hudak
- Henrik Nilsson
- John Peterson

ITU FRP 2010: Lecture 2 – p.9/64



Yampa?

ITU FRP 2010: Lecture 2 – p.10/64



Yampa?

Yet
Another
Mostly
Pointless
Acronym

ITU FRP 2010: Lecture 2 – p.10/64



Yampa?

Yet
Another
Mostly
Pointless
Acronym

???

ITU FRP 2010: Lecture 2 – p.10/64



Yampa?

Yet
Another
Mostly
Pointless
Acronym

???

No . . .

ITU FRP 2010: Lecture 2 – p.10/64



Yampa?

Yampa is a river . . .

ITU FRP 2010: Lecture 2 – p.10/64



Yampa?

. . . with long calmly flowing sections . . .

ITU FRP 2010: Lecture 2 – p.10/64



Yampa?

. . . and abrupt whitewater transitions in between.

A good metaphor for hybrid systems!
ITU FRP 2010: Lecture 2 – p.10/64



Signal functions (1)

Key concept: functions on signals .

ITU FRP 2010: Lecture 2 – p.11/64



Signal functions (1)

Key concept: functions on signals .

Intuition:

Signal α ≈ Time → α

SF α β ≈ Signal α → Signal β

x :: Signal T1
y :: Signal T2
f :: SF T1 T2

ITU FRP 2010: Lecture 2 – p.11/64



Signal functions (2)

Additionally, causality required: output at time t

must be determined by input on interval [0, t].

ITU FRP 2010: Lecture 2 – p.12/64



Signal functions (2)

Additionally, causality required: output at time t

must be determined by input on interval [0, t].

Signal functions are said to be
• pure or stateless if output at time t only

depends on input at time t

ITU FRP 2010: Lecture 2 – p.12/64



Signal functions (2)

Additionally, causality required: output at time t

must be determined by input on interval [0, t].

Signal functions are said to be
• pure or stateless if output at time t only

depends on input at time t

• impure or stateful if output at time t depends
on input over the interval [0, t].

ITU FRP 2010: Lecture 2 – p.12/64



Signal functions and state

Alternative view:

ITU FRP 2010: Lecture 2 – p.13/64



Signal functions and state

Alternative view:

Signal functions can encapsulate state .

state(t) summarizes input history x(t′), t′ ∈ [0, t].
Thus, really a kind of process .

ITU FRP 2010: Lecture 2 – p.13/64



Signal functions and state

Alternative view:

Signal functions can encapsulate state .

state(t) summarizes input history x(t′), t′ ∈ [0, t].
Thus, really a kind of process .

From this perspective, signal functions are:
• stateful if y(t) depends on x(t) and state(t)

• stateless if y(t) depends only on x(t)

ITU FRP 2010: Lecture 2 – p.13/64



Yampa and arrows (1)

In Yampa, systems are described by combining
signal functions (forming new signal functions).

ITU FRP 2010: Lecture 2 – p.14/64



Yampa and arrows (1)

In Yampa, systems are described by combining
signal functions (forming new signal functions).

For example, serial composition:

ITU FRP 2010: Lecture 2 – p.14/64



Yampa and arrows (1)

In Yampa, systems are described by combining
signal functions (forming new signal functions).

For example, serial composition:

A combinator can be defined that captures this
idea:

(>>>) :: SF a b -> SF b c -> SF a c

ITU FRP 2010: Lecture 2 – p.14/64



Yampa and arrows (2)

But systems can be complex:

ITU FRP 2010: Lecture 2 – p.15/64



Yampa and arrows (2)

But systems can be complex:

How many and what combinators do we need
to be able to describe arbitrary systems?

ITU FRP 2010: Lecture 2 – p.15/64



Yampa and arrows (3)

John Hughes’ arrow framework:
• Abstract data type interface for function-like

types.

ITU FRP 2010: Lecture 2 – p.16/64



Yampa and arrows (3)

John Hughes’ arrow framework:
• Abstract data type interface for function-like

types.
• Particularly suitable for types representing

process-like computations.

ITU FRP 2010: Lecture 2 – p.16/64



Yampa and arrows (3)

John Hughes’ arrow framework:
• Abstract data type interface for function-like

types.
• Particularly suitable for types representing

process-like computations.
• Related to monads , since arrows are

(effectful) computations, but more general:
any monad m induces an arrow, the Kleisli
arrow, α → m β, but not vice versa.

ITU FRP 2010: Lecture 2 – p.16/64



Yampa and arrows (3)

John Hughes’ arrow framework:
• Abstract data type interface for function-like

types.
• Particularly suitable for types representing

process-like computations.
• Related to monads , since arrows are

(effectful) computations, but more general:
any monad m induces an arrow, the Kleisli
arrow, α → m β, but not vice versa.

• Provides a minimal set of “wiring” combinators.

ITU FRP 2010: Lecture 2 – p.16/64



What is an arrow? (1)

• A type constructor a of arity two.

ITU FRP 2010: Lecture 2 – p.17/64



What is an arrow? (1)

• A type constructor a of arity two.
• Three operators:

ITU FRP 2010: Lecture 2 – p.17/64



What is an arrow? (1)

• A type constructor a of arity two.
• Three operators:

- lifting :
arr :: (b->c) -> a b c

ITU FRP 2010: Lecture 2 – p.17/64



What is an arrow? (1)

• A type constructor a of arity two.
• Three operators:

- lifting :
arr :: (b->c) -> a b c

- composition :
(>>>) :: a b c -> a c d -> a b d

ITU FRP 2010: Lecture 2 – p.17/64



What is an arrow? (1)

• A type constructor a of arity two.
• Three operators:

- lifting :
arr :: (b->c) -> a b c

- composition :
(>>>) :: a b c -> a c d -> a b d

- widening :
first :: a b c -> a (b,d) (c,d)

ITU FRP 2010: Lecture 2 – p.17/64



What is an arrow? (1)

• A type constructor a of arity two.
• Three operators:

- lifting :
arr :: (b->c) -> a b c

- composition :
(>>>) :: a b c -> a c d -> a b d

- widening :
first :: a b c -> a (b,d) (c,d)

• A set of algebraic laws that must hold.

ITU FRP 2010: Lecture 2 – p.17/64



What is an arrow? (2)

These diagrams convey the general idea:

arr f f >>> g

first f

ITU FRP 2010: Lecture 2 – p.18/64



The Arrow class

In Haskell, a type class is used to capture these
ideas (except for the laws):

class Arrow a where
arr :: (b -> c) -> a b c
(>>>) :: a b c -> a c d -> a b d
first :: a b c -> a (b,d) (c,d)

ITU FRP 2010: Lecture 2 – p.19/64



Arrow laws

(f >>> g) >>> h = f >>> (g >>> h)

ITU FRP 2010: Lecture 2 – p.20/64



Arrow laws

(f >>> g) >>> h = f >>> (g >>> h)

arr (g . f) = arr f >>> arr g

ITU FRP 2010: Lecture 2 – p.20/64



Arrow laws

(f >>> g) >>> h = f >>> (g >>> h)

arr (g . f) = arr f >>> arr g

arr id >>> f = f

ITU FRP 2010: Lecture 2 – p.20/64



Arrow laws

(f >>> g) >>> h = f >>> (g >>> h)

arr (g . f) = arr f >>> arr g

arr id >>> f = f

f = f >>> arr id

ITU FRP 2010: Lecture 2 – p.20/64



Arrow laws

(f >>> g) >>> h = f >>> (g >>> h)

arr (g . f) = arr f >>> arr g

arr id >>> f = f

f = f >>> arr id

first (arr f) = arr (f × id)

ITU FRP 2010: Lecture 2 – p.20/64



Arrow laws

(f >>> g) >>> h = f >>> (g >>> h)

arr (g . f) = arr f >>> arr g

arr id >>> f = f

f = f >>> arr id

first (arr f) = arr (f × id)

first (f >>> g) = first f >>> first g

ITU FRP 2010: Lecture 2 – p.20/64



Arrow laws

(f >>> g) >>> h = f >>> (g >>> h)

arr (g . f) = arr f >>> arr g

arr id >>> f = f

f = f >>> arr id

first (arr f) = arr (f × id)

first (f >>> g) = first f >>> first g

first f >>> arr (id × g) = arr (id × g) >>> first f

ITU FRP 2010: Lecture 2 – p.20/64



Arrow laws

(f >>> g) >>> h = f >>> (g >>> h)

arr (g . f) = arr f >>> arr g

arr id >>> f = f

f = f >>> arr id

first (arr f) = arr (f × id)

first (f >>> g) = first f >>> first g

first f >>> arr (id × g) = arr (id × g) >>> first f

first f >>> arr fst = arr fst >>> f

ITU FRP 2010: Lecture 2 – p.20/64



Arrow laws

(f >>> g) >>> h = f >>> (g >>> h)

arr (g . f) = arr f >>> arr g

arr id >>> f = f

f = f >>> arr id

first (arr f) = arr (f × id)

first (f >>> g) = first f >>> first g

first f >>> arr (id × g) = arr (id × g) >>> first f

first f >>> arr fst = arr fst >>> f

first (first f) >>> arr assoc = arr assoc >>> first f

ITU FRP 2010: Lecture 2 – p.20/64



Functions are arrows (1)

Functions are a simple example of arrows. The
arrow type constructor is just (->) in that case.

Exercise 1: Suggest suitable definitions of
• arr

• (>>>)

• first

for this case!

ITU FRP 2010: Lecture 2 – p.21/64



Functions are arrows (2)

Solution:
• arr = id

ITU FRP 2010: Lecture 2 – p.22/64



Functions are arrows (2)

Solution:
• arr = id

To see this, recall
id :: t -> t
arr :: (b->c) -> a b c

ITU FRP 2010: Lecture 2 – p.22/64



Functions are arrows (2)

Solution:
• arr = id

To see this, recall
id :: t -> t
arr :: (b->c) -> a b c

Instantiate with

a = (->)

t = b->c = (->) b c

ITU FRP 2010: Lecture 2 – p.22/64



Functions are arrows (3)

• f >>> g = \a -> g (f a)

ITU FRP 2010: Lecture 2 – p.23/64



Functions are arrows (3)

• f >>> g = \a -> g (f a) or
• f >>> g = g . f

ITU FRP 2010: Lecture 2 – p.23/64



Functions are arrows (3)

• f >>> g = \a -> g (f a) or
• f >>> g = g . f or even
• (>>>) = flip (.)

ITU FRP 2010: Lecture 2 – p.23/64



Functions are arrows (3)

• f >>> g = \a -> g (f a) or
• f >>> g = g . f or even
• (>>>) = flip (.)

• first f = \(b,d) -> (f b,d)

ITU FRP 2010: Lecture 2 – p.23/64



Functions are arrows (4)

Arrow instance declaration for functions:

instance Arrow (->) where
arr = id
(>>>) = flip (.)
first f = \(b,d) -> (f b,d)

ITU FRP 2010: Lecture 2 – p.24/64



The arrow laws reformulated

Exploiting that functions are arrows, some of the
laws can be formulated more neatly. E.g:

arr (f >>> g) = arr f >>> arr g

first (arr f) = arr (first f)

ITU FRP 2010: Lecture 2 – p.25/64



The loop combinator (1)

Another important operator is loop : a fixed-point
operator used to express recursive arrows or
feedback :

loop f

ITU FRP 2010: Lecture 2 – p.26/64



The loop combinator (2)

Not all arrow instances support loop . It is thus a
method of a separate class:

class Arrow a => ArrowLoop a where
loop :: a (b, d) (c, d) -> a b c

Remarkably, the four combinators arr , >>>,
first , and loop are sufficient to express any
conceivable wiring!

ITU FRP 2010: Lecture 2 – p.27/64



Some more arrow combinators (1)

second :: Arrow a =>
a b c -> a (d,b) (d,c)

( *** ) :: Arrow a =>
a b c -> a d e -> a (b,d) (c,e)

(&&&) :: Arrow a =>
a b c -> a b d -> a b (c,d)

ITU FRP 2010: Lecture 2 – p.28/64



Some more arrow combinators (2)

As diagrams:

second f
f *** g

f &&& g
ITU FRP 2010: Lecture 2 – p.29/64



Some more arrow combinators (3)

Exercise 2: Describe the following circuit using
arrow combinators:

a1, a2, a3 :: A Double Double

Exercise 3: The combinators second , ( *** ) ,
and (&&&) are not primitive, but defined in terms
of arr , (>>>) , and first . Suggest suitable
definitions!

ITU FRP 2010: Lecture 2 – p.30/64



Exercise 2: One solution

Exercise 2: Describe the following circuit using
arrow combinators:

a1, a2, a3 :: A Double Double

ITU FRP 2010: Lecture 2 – p.31/64



Exercise 2: One solution

Exercise 2: Describe the following circuit using
arrow combinators:

a1, a2, a3 :: A Double Double

circuit_v1 :: A Double Double
circuit_v1 = (a1 &&& arr id)

>>> (a2 *** a3)
>>> arr (uncurry (+))

ITU FRP 2010: Lecture 2 – p.31/64



Exercise 2: Another solution

Exercise 2: Describe the following circuit:

a1, a2, a3 :: A Double Double

ITU FRP 2010: Lecture 2 – p.32/64



Exercise 2: Another solution

Exercise 2: Describe the following circuit:

a1, a2, a3 :: A Double Double

circuit_v2 :: A Double Double
circuit_v2 = arr (\x -> (x,x))

>>> first a1
>>> (a2 *** a3)
>>> arr (uncurry (+))

ITU FRP 2010: Lecture 2 – p.32/64



Exercise 3: Solution

Exercise 3: Suggest definitions of second ,
( *** ) , and (&&&) .

ITU FRP 2010: Lecture 2 – p.33/64



Exercise 3: Solution

Exercise 3: Suggest definitions of second ,
( *** ) , and (&&&) .

second :: Arrow a => a b c -> a (d,b) (d,c)

second f = arr swap >>> first f >>> arr swap

swap (x,y) = (y,x)

ITU FRP 2010: Lecture 2 – p.33/64



Exercise 3: Solution

Exercise 3: Suggest definitions of second ,
( *** ) , and (&&&) .

second :: Arrow a => a b c -> a (d,b) (d,c)

second f = arr swap >>> first f >>> arr swap

swap (x,y) = (y,x)

( *** ) :: Arrow a =>

a b c -> a d e -> a (b,d) (c,e)

f *** g = first f >>> second g

ITU FRP 2010: Lecture 2 – p.33/64



Exercise 3: Solution

Exercise 3: Suggest definitions of second ,
( *** ) , and (&&&) .

second :: Arrow a => a b c -> a (d,b) (d,c)

second f = arr swap >>> first f >>> arr swap

swap (x,y) = (y,x)

( *** ) :: Arrow a =>

a b c -> a d e -> a (b,d) (c,e)

f *** g = first f >>> second g

(&&&) :: Arrow a => a b c -> a b d -> a b (c,d)

f &&& g = arr (\x->(x,x)) >>> (f *** g)

ITU FRP 2010: Lecture 2 – p.33/64



Note on the definition of(***) (1)

Are the following two definitions of ( *** )
equivalent?

• f *** g = first f >>> second g

• f *** g = second g >>> first f

ITU FRP 2010: Lecture 2 – p.34/64



Note on the definition of(***) (1)

Are the following two definitions of ( *** )
equivalent?

• f *** g = first f >>> second g

• f *** g = second g >>> first f

No, in general

first f >>> second g 6= second g >>> first f

since the order of the two possibly effectful
computations f and g are different.

ITU FRP 2010: Lecture 2 – p.34/64



Note on the definition of(***) (2)

Similarly

(f *** g) >>> (h *** k) 6= (f >>> h) *** (g >>> k)

since the order of f and g differs.

ITU FRP 2010: Lecture 2 – p.35/64



Note on the definition of(***) (2)

Similarly

(f *** g) >>> (h *** k) 6= (f >>> h) *** (g >>> k)

since the order of f and g differs.

However, Yampa’s signal functions have no
effectful interaction: they are Causal
Commutative Arrows (Liu, Cheng, Hudak 2009)
Both considered identities actually hold.

ITU FRP 2010: Lecture 2 – p.35/64



Yet another attempt at exercise 2

circuit_v3 :: A Double Double
circuit_v3 = (a1 &&& a3)

>>> first a2
>>> arr (uncurry (+))

ITU FRP 2010: Lecture 2 – p.36/64



Yet another attempt at exercise 2

circuit_v3 :: A Double Double
circuit_v3 = (a1 &&& a3)

>>> first a2
>>> arr (uncurry (+))

Are circuit_v1 , circuit_v2 , and
circuit_v3 all equivalent?

ITU FRP 2010: Lecture 2 – p.36/64



Point-free vs. pointed programming

What we have seen thus far is an example of
point-free programming: the values being
manipulated are not given any names.

ITU FRP 2010: Lecture 2 – p.37/64



Point-free vs. pointed programming

What we have seen thus far is an example of
point-free programming: the values being
manipulated are not given any names.

This is often appropriate, especially for small
definitions, and it facilitates equational reasoning
as shown by Bird & Meertens (Bird 1990).

ITU FRP 2010: Lecture 2 – p.37/64



Point-free vs. pointed programming

What we have seen thus far is an example of
point-free programming: the values being
manipulated are not given any names.

This is often appropriate, especially for small
definitions, and it facilitates equational reasoning
as shown by Bird & Meertens (Bird 1990).

However, large programs are much better
expressed in a pointed style, where names can
be given to values being manipulated.

ITU FRP 2010: Lecture 2 – p.37/64



The arrow do notation (1)

Ross Paterson’s do-notation for arrows supports
pointed arrow programming. Only syntactic
sugar .

proc pat -> do [ rec ]
pat1 <- sfexp1 -< exp1

pat2 <- sfexp2 -< exp2

. . .
pat

n
<- sfexp

n
-< exp

n

returnA -< exp

Also: let pat = exp ≡ pat <- arr id -< exp
ITU FRP 2010: Lecture 2 – p.38/64



The arrow do notation (2)

Let us redo exercise 3 using this notation:

circuit_v4 :: A Double Double
circuit_v4 = proc x -> do

y1 <- a1 -< x
y2 <- a2 -< y1
y3 <- a3 -< x
returnA -< y2 + y3

ITU FRP 2010: Lecture 2 – p.39/64



The arrow do notation (3)

We can also mix and match:

circuit_v5 :: A Double Double
circuit_v5 = proc x -> do

y2 <- a2 <<< a1 -< x
y3 <- a3 -< x
returnA -< y2 + y3

ITU FRP 2010: Lecture 2 – p.40/64



The arrow do notation (4)

Exercise 4: Describe the following circuit using
the arrow do-notation:

a1, a2 :: A Double Double
a3 :: A (Double,Double) Double

ITU FRP 2010: Lecture 2 – p.41/64



The arrow do notation (4)

Exercise 4: Describe the following circuit using
the arrow do-notation:

a1, a2 :: A Double Double
a3 :: A (Double,Double) Double

Exercise 5: As 4, but directly using only the
arrow combinators.

ITU FRP 2010: Lecture 2 – p.41/64



Solution exercise 4

circuit = proc x -> do
rec

y1 <- a1 -< x
y2 <- a2 -< y1
y3 <- a3 -< (x, y)
let y = y2 + y3

returnA -< y

ITU FRP 2010: Lecture 2 – p.42/64



Some basic signal functions (1)

• identity :: SF a a
identity = arr id

ITU FRP 2010: Lecture 2 – p.43/64



Some basic signal functions (1)

• identity :: SF a a
identity = arr id

• constant :: b -> SF a b
constant b = arr (const b)

ITU FRP 2010: Lecture 2 – p.43/64



Some basic signal functions (1)

• identity :: SF a a
identity = arr id

• constant :: b -> SF a b
constant b = arr (const b)

• integral :: VectorSpace a s=>SF a a
It is defined through:

y(t) =

t∫

0

x(τ) dτ

ITU FRP 2010: Lecture 2 – p.43/64



Some basic signal functions (2)

• iPre :: a -> SF a a

ITU FRP 2010: Lecture 2 – p.44/64



Some basic signal functions (2)

• iPre :: a -> SF a a

• (^<<) :: (b->c) -> SF a b -> SF a c
f (^<<) sf = sf >>> arr f

ITU FRP 2010: Lecture 2 – p.44/64



Some basic signal functions (2)

• iPre :: a -> SF a a

• (^<<) :: (b->c) -> SF a b -> SF a c
f (^<<) sf = sf >>> arr f

• time :: SF a Time

ITU FRP 2010: Lecture 2 – p.44/64



Some basic signal functions (2)

• iPre :: a -> SF a a

• (^<<) :: (b->c) -> SF a b -> SF a c
f (^<<) sf = sf >>> arr f

• time :: SF a Time

Quick Exercise: Define time!

ITU FRP 2010: Lecture 2 – p.44/64



Some basic signal functions (2)

• iPre :: a -> SF a a

• (^<<) :: (b->c) -> SF a b -> SF a c
f (^<<) sf = sf >>> arr f

• time :: SF a Time

Quick Exercise: Define time!

time = constant 1.0 >>> integral

ITU FRP 2010: Lecture 2 – p.44/64



Some basic signal functions (2)

• iPre :: a -> SF a a

• (^<<) :: (b->c) -> SF a b -> SF a c
f (^<<) sf = sf >>> arr f

• time :: SF a Time

Quick Exercise: Define time!

time = constant 1.0 >>> integral

Note: there is no built-in notion of global time in
Yampa: time is always local , measured from
when a signal function started.

ITU FRP 2010: Lecture 2 – p.44/64



A bouncing ball

y = y0 +

∫
v dt

v = v0 +

∫
−9.81

On impact:

v = −v(t−)

(fully elastic collision)

ITU FRP 2010: Lecture 2 – p.45/64



Modelling the bouncing ball: part 1

Free-falling ball:

type Pos = Double

type Vel = Double

fallingBall ::

Pos -> Vel -> SF () (Pos, Vel)

fallingBall y0 v0 = proc () -> do

v <- (v0 +) ˆ<< integral -< -9.81

y <- (y0 +) ˆ<< integral -< v

returnA -< (y, v)

ITU FRP 2010: Lecture 2 – p.46/64



Events

Conceptually, discrete-time signals are only
defined at discrete points in time, often
associated with the occurrence of some event .

ITU FRP 2010: Lecture 2 – p.47/64



Events

Conceptually, discrete-time signals are only
defined at discrete points in time, often
associated with the occurrence of some event .

Yampa models discrete-time signals by lifting the
range of continuous-time signals:

data Event a = NoEvent | Event a

ITU FRP 2010: Lecture 2 – p.47/64



Events

Conceptually, discrete-time signals are only
defined at discrete points in time, often
associated with the occurrence of some event .

Yampa models discrete-time signals by lifting the
range of continuous-time signals:

data Event a = NoEvent | Event a

Discrete-time signal = Signal (Event α).

ITU FRP 2010: Lecture 2 – p.47/64



Events

Conceptually, discrete-time signals are only
defined at discrete points in time, often
associated with the occurrence of some event .

Yampa models discrete-time signals by lifting the
range of continuous-time signals:

data Event a = NoEvent | Event a

Discrete-time signal = Signal (Event α).

Associating information with an event
occurrence:

tag :: Event a -> b -> Event b
ITU FRP 2010: Lecture 2 – p.47/64



Some basic event sources

• never :: SF a (Event b)

• now :: b -> SF a (Event b)

• after :: Time -> b -> SF a (Event b)

• repeatedly ::
Time -> b -> SF a (Event b)

• edge :: SF Bool (Event ())

ITU FRP 2010: Lecture 2 – p.48/64



Stateful event suppression

• notYet :: SF (Event a) (Event a)

• once :: SF (Event a) (Event a)

ITU FRP 2010: Lecture 2 – p.49/64



Modelling the bouncing ball: part 2

Detecting when the ball goes through the floor:

fallingBall’ ::

Pos -> Vel

-> SF () ((Pos,Vel), Event (Pos,Vel))

fallingBall’ y0 v0 = proc () -> do

yv@(y, _) <- fallingBall y0 v0 -< ()

hit <- edge -< y <= 0

returnA -< (yv, hit ‘tag‘ yv)

ITU FRP 2010: Lecture 2 – p.50/64



Switching

Q: How and when do signal functions “start”?

ITU FRP 2010: Lecture 2 – p.51/64



Switching

Q: How and when do signal functions “start”?

A: • Switchers “apply” a signal functions to its
input signal at some point in time.

ITU FRP 2010: Lecture 2 – p.51/64



Switching

Q: How and when do signal functions “start”?

A: • Switchers “apply” a signal functions to its
input signal at some point in time.

• This creates a “running” signal function
instance .

ITU FRP 2010: Lecture 2 – p.51/64



Switching

Q: How and when do signal functions “start”?

A: • Switchers “apply” a signal functions to its
input signal at some point in time.

• This creates a “running” signal function
instance .

• The new signal function instance often
replaces the previously running instance.

ITU FRP 2010: Lecture 2 – p.51/64



Switching

Q: How and when do signal functions “start”?

A: • Switchers “apply” a signal functions to its
input signal at some point in time.

• This creates a “running” signal function
instance .

• The new signal function instance often
replaces the previously running instance.

Switchers thus allow systems with varying
structure to be described.

ITU FRP 2010: Lecture 2 – p.51/64



The basic switch (1)

Idea:
• Allows one signal function to be replaced by

another.
• Switching takes place on the first occurrence

of the switching event source.

switch ::

SF a (b, Event c)

-> (c -> SF a b)

-> SF a b

ITU FRP 2010: Lecture 2 – p.52/64



The basic switch (1)

Idea:
• Allows one signal function to be replaced by

another.
• Switching takes place on the first occurrence

of the switching event source.

switch :: Initial SF with event source

SF a (b, Event c)

-> (c -> SF a b)

-> SF a b

ITU FRP 2010: Lecture 2 – p.52/64



The basic switch (1)

Idea:
• Allows one signal function to be replaced by

another.
• Switching takes place on the first occurrence

of the switching event source.

switch :: Function yielding SF to switch into

SF a (b, Event c)

-> (c -> SF a b)

-> SF a b

ITU FRP 2010: Lecture 2 – p.52/64



The basic switch (2)

Exercise 6: Define an event counter countFrom

countFrom ::
Int -> SF (Event a) Int

using

switch :: SF a (b, Event c)
-> (c -> SF a b)
-> SF a b

constant :: b -> SF a b
notYet :: SF (Event a) (Event a)

and any other basic combinators you might need.
ITU FRP 2010: Lecture 2 – p.53/64



Solution exercise 6

countFrom :: Int -> SF (Event a) Int
countFrom n =

switch
(constant n &&& identity
(const (notYet >>> countFrom (n+1)))

ITU FRP 2010: Lecture 2 – p.54/64



Solution exercise 6

Another version that ignores any event at time 0
also from the very start:

countFrom :: Int -> SF (Event a) Int
countFrom n =

switch
(constant n &&& notYet)
(const (countFrom (n+1)))

ITU FRP 2010: Lecture 2 – p.55/64



Modelling the bouncing ball: part 3

Making the ball bounce:

bouncingBall :: Pos -> SF () (Pos, Vel)

bouncingBall y0 = bbAux y0 0.0

where

bbAux y0 v0 =

switch (fallingBall’ y0 v0) $ \(y,v) ->

bbAux y (-v)

ITU FRP 2010: Lecture 2 – p.56/64



Simulation of bouncing ball

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

y
dy/dt

ITU FRP 2010: Lecture 2 – p.57/64



Modelling using impulses (1)
From a modelling perspective, using a device like
switch to model the interaction between the ball
and the floor may seem rather unnatural.

ITU FRP 2010: Lecture 2 – p.58/64



Modelling using impulses (1)
From a modelling perspective, using a device like
switch to model the interaction between the ball
and the floor may seem rather unnatural.

A more appropriate account of what is going on
is that an impulsive force is acting on the ball for
a short time.

ITU FRP 2010: Lecture 2 – p.58/64



Modelling using impulses (1)
From a modelling perspective, using a device like
switch to model the interaction between the ball
and the floor may seem rather unnatural.

A more appropriate account of what is going on
is that an impulsive force is acting on the ball for
a short time.

This can be abstracted into Dirac Impulses :
impulses that act instantaneously. See

Henrik Nilsson. Functional Automatic
Differentiation with Dirac Impulses. In
Proceedings of ICFP 2003.

ITU FRP 2010: Lecture 2 – p.58/64



Modelling using impulses (2)

However, Yampa does provide a derived version
of integral capturing the basic idea:

impulseIntegral ::
VectorSpace a k =>

SF (a, Event a) a

ITU FRP 2010: Lecture 2 – p.59/64



The decoupled switch

dSwitch ::
SF a (b, Event c)
-> (c -> SF a b)
-> SF a b

• Output at the point of switch is taken from the
old subordinate signal function, not the new
residual signal function.

• This means the output at the current point in
time is independent of whether or not the
switching event occurs at that point in time.
Hence decoupled.

ITU FRP 2010: Lecture 2 – p.60/64



The recurring switch

rSwitch, drSwitch ::
SF a b -> SF (a,Event (SF a b)) b

• Switching events received on the signal
function input, carrying signal function to
switch into.

• Switching occurs whenever an event occurs,
not just once.

• Can be defined in terms of switch /dSwitch .

ITU FRP 2010: Lecture 2 – p.61/64



Reading (1)

• John Hughes. Generalising monads to
arrows. Science of Computer Programming,
37:67–111, May 2000

• John Hughes. Programming with arrows. In
Advanced Functional Programming, 2004.
Springer Verlag.

• Ross Paterson. A New Notation for Arrows. In
Proceedings of the 2001 ACM SIGPLAN
International Conference on Functional
Programming, pp. 229–240, Firenze, Italy,
2001.

ITU FRP 2010: Lecture 2 – p.62/64



Reading (2)

• Henrik Nilsson, Antony Courtney, and John
Peterson. Functional reactive programming,
continued. In Proceedings of the 2002
Haskell Workshop, pp. 51–64, October 2002.

• Paul Hudak, Antony Courtney, Henrik
Nilsson, and John Peterson. Arrows, robots,
and functional reactive programming. In
Advanced Functional Programming, 2002.
LNCS 2638, pp. 159–187.

ITU FRP 2010: Lecture 2 – p.63/64



Reading (3)

• Hai Liu, Eric Cheng and Paul Hudak. Causal
Commutative Arrows and Their Optimization.
In The 14th ACM SIGPLAN International
Conference on Functional Programming
(ICFP 2009), Edinburgh, Scotland,
September, 2009

• Richard S. Bird. A calculus of functions for
program derivation. In Research Topics in
Functional Programming, Addison-Wesley,
1990.

ITU FRP 2010: Lecture 2 – p.64/64


	Outline
	CFRP issues: Sharing
	CFRP issues: Restart (1)
	CFRP issues: Restart (2)
	CFRP issues: Restart (3)
	An alternative
	Yampa
	Yampa
	Yampa?
	Signal functions (1)
	Signal functions (2)
	Signal functions and state
	Yampa and arrows (1)
	Yampa and arrows (2)
	Yampa and arrows (3)
	What is an arrow? (1)
	What is an arrow? (2)
	The 	exttt {Arrow} class
	Arrow laws
	Functions are arrows (1)
	Functions are arrows (2)
	Functions are arrows (3)
	Functions are arrows (4)
	The arrow laws reformulated
	The 	exttt {loop} combinator (1)
	The 	exttt {loop} combinator (2)
	Some more arrow combinators (1)
	Some more arrow combinators (2)
	Some more arrow combinators (3)
	Exercise 2: One solution
	Exercise 2: Another solution
	Exercise 3: Solution
	Note on the definition of 	exttt {(***)} (1)
	Note on the definition of 	exttt {(***)} (2)
	Yet another attempt at exercise 2
	Point-free vs. pointed programming
	The arrow 	exttt {do} notation (1)
	The arrow 	exttt {do} notation (2)
	The arrow 	exttt {do} notation (3)
	The arrow 	exttt {do} notation (4)
	Solution exercise 4
	Some basic signal functions (1)
	Some basic signal functions (2)
	A bouncing ball
	Modelling the bouncing ball: part 1
	Events
	Some basic event sources
	Stateful event suppression
	Modelling the bouncing ball: part 2
	Switching
	The basic switch (1)
	The basic switch (2)
	Solution exercise 6
	Solution exercise 6
	Modelling the bouncing ball: part 3
	Simulation of bouncing ball
	Modelling using impulses (1)
	Modelling using impulses (2)
	The decoupled switch
	The recurring switch
	Reading (1)
	Reading (2)
	Reading (3)

