ITU FRP 2010

Lecture 2: Yampa: Arrows-based FRP

Henrik Nilsson

School of Computer Science University of Nottingham, UK

ITU FRP 2010: Lecture 2 - p.1/64

Outline

- CFRP issues
- Introduction to Yampa
- Arrows
- A closer look at Yampa

CFRP issues: Sharing

Consider:

let x = 1 + integral (x * x) in x

The recursively defined behavior, a *function*, is applied over and over to the *same* stream of sample times.

- Causes recomputation
- Laziness does not help
- Memoization needed to get acceptable performance. But with care to avoid memory leaks.

CFRP issues: Restart (1)

Consider:

let c = hold 0 (count (repeatedly 0.5) in c `until` after 5 -=> c * 2 What happened at the time of the switch?

 CFRP behaviors and events are signal generators: they will start from scratch when swicthched in.

But what if we just want to continue observing an evolving signal?

CFRP issues: Restart (2)

- A version of until that starts new behaviors from time 0.
 Time and space leak!
- Support signals as well, e.g. through some variant of runningIn:

runningIn ::

 $Ba \rightarrow (Ba \rightarrow Bb) \rightarrow Bb$

Idea: apply behavior to start time once and for all, then wrap up the resulting signal as a signal generator that ignores its starting time.

CFRP issues: Restart (3)

Problems with runningIn

- No type-level distinction between signals and signal generators: a "running behavior" is a signal masquerading as a signal generator. (But could be fixed though other designs.)
- Difficult to implement; requires imperative techniques, implies certain overhead.

An alternative

By adopting *signal functions* as the central notion, these problems are side stepped:

- Sharing amounts to sharing computations of signal samples: lazy evaluation handles that just fine.
- Observation of externally originating signals is inherent in the notion of a signal function.
- Implementation is straightforward.

What is Yampa?

FRP implementation structured using arrows.

- FRP implementation structured using arrows.
- Realised as an *Embedded Domain-Specific* Language (EDSL), i.e. a combinator library.

- FRP implementation structured using arrows.
- Realised as an *Embedded Domain-Specific* Language (EDSL), i.e. a combinator library.
- Continuous-time signals (conceptually)

- FRP implementation structured using arrows.
- Realised as an *Embedded Domain-Specific* Language (EDSL), i.e. a combinator library.
- Continuous-time signals (conceptually)
- Discrete-time signals represented by continuous-time signal carrying option type
 Event.

- FRP implementation structured using arrows.
- Realised as an *Embedded Domain-Specific* Language (EDSL), i.e. a combinator library.
- Continuous-time signals (conceptually)
- Discrete-time signals represented by continuous-time signal carrying option type
 Event.
- Functions on signals, Signal Functions, is the central abstraction, forming the arrows.

 Signal functions are first-class entities, signals a secondary notion, only existing indirectly through the signal functions.

- Signal functions are first-class entities, signals a secondary notion, only existing indirectly through the signal functions.
- Advanced switching constructs to describe systems with highly dynamic structure.

- Signal functions are first-class entities, signals a secondary notion, only existing indirectly through the signal functions.
- Advanced switching constructs to describe systems with highly dynamic structure.

ITU FRP 2010: Lecture 2 – p.9/64

People:

- Antony Courtney
- Paul Hudak
- Henrik Nilsson
- John Peterson

Yet Another Mostly Pointless Acronym

Yet Another Mostly Pointless Acronym

???

ITU FRP 2010: Lecture 2 - p.10/64

Yet Another Mostly Pointless Acronym

???

ITU FRP 2010: Lecture 2 - p.10/64

Yampa is a river ...

... with long calmly flowing sections ...

... and abrupt whitewater transitions in between.

A good metaphor for hybrid systems!

ITU FRP 2010: Lecture 2 - p.10/64

Signal functions (1)

Key concept: *functions on signals*.

$$x \qquad f \qquad y$$

Signal functions (1)

Key concept: *functions on signals*.

ITU FRP 2010: Lecture 2 – p.11/64

Intuition:

- Signal $\alpha \approx \text{Time} \rightarrow \alpha$ SF $\alpha \ \beta \approx \text{Signal} \ \alpha \rightarrow \text{Signal} \ \beta$
- x :: Signal T1
 y :: Signal T2
 f :: SF T1 T2

Signal functions (2)

Additionally, *causality* required: output at time t must be determined by input on interval [0, t].

Signal functions (2)

Additionally, *causality* required: output at time t must be determined by input on interval [0, t].

Signal functions are said to be

 pure or stateless if output at time t only depends on input at time t

Signal functions (2)

Additionally, *causality* required: output at time t must be determined by input on interval [0, t].

Signal functions are said to be

- pure or stateless if output at time t only depends on input at time t
- impure or stateful if output at time t depends on input over the interval [0, t].

Signal functions and state

Alternative view:

ITU FRP 2010: Lecture 2 – p.13/64

Signal functions and state

Alternative view:

Signal functions can encapsulate state.

state(t) summarizes input history x(t'), $t' \in [0, t]$. Thus, really a kind of process.

Signal functions and state

Alternative view:

Signal functions can encapsulate state.

$$\begin{array}{c|c} x(t) & f & y(t) \\ \hline [state(t)] & \end{array}$$

state(t) summarizes input history x(t'), $t' \in [0, t]$. Thus, really a kind of process.

From this perspective, signal functions are:

- stateful if y(t) depends on x(t) and state(t)
- stateless if y(t) depends only on x(t)

Yampa and arrows (1)

In Yampa, systems are described by combining signal functions (forming new signal functions).

Yampa and arrows (1)

In Yampa, systems are described by combining signal functions (forming new signal functions).

For example, serial composition:

$$f \rightarrow g \rightarrow$$

Yampa and arrows (1)

In Yampa, systems are described by combining signal functions (forming new signal functions).

For example, serial composition:

$$f \rightarrow g$$

A *combinator* can be defined that captures this idea:

(>>>) :: SF a b -> SF b c -> SF a c

Yampa and arrows (2)

But systems can be complex:

Yampa and arrows (2)

But systems can be complex:

How many and what combinators do we need to be able to describe arbitrary systems?

Yampa and arrows (3)

John Hughes' arrow framework:

Abstract data type interface for function-like types.

Yampa and arrows (3)

John Hughes' arrow framework:

- Abstract data type interface for function-like types.
- Particularly suitable for types representing process-like computations.

Yampa and arrows (3)

John Hughes' arrow framework:

- Abstract data type interface for function-like types.
- Particularly suitable for types representing process-like computations.
- Related to *monads*, since arrows are (effectful) computations, but more general: any monad *m* induces an arrow, the Kleisli arrow, $\alpha \rightarrow m \beta$, but not vice versa.

Yampa and arrows (3)

John Hughes' arrow framework:

- Abstract data type interface for function-like types.
- Particularly suitable for types representing process-like computations.
- Related to *monads*, since arrows are (effectful) computations, but more general: any monad m induces an arrow, the Kleisli arrow, $\alpha \rightarrow m \beta$, but not vice versa.
- Provides a minimal set of "wiring" combinators.

• A type constructor a of arity two.

- A type constructor a of arity two.
- Three operators:

- A type constructor a of arity two.
- Three operators:
 - lifting:

arr :: (b->c) -> a b c

- A type constructor a of arity two.
- Three operators:
 - lifting:
 - arr :: (b->c) -> a b c
 - composition:
 - (>>>) :: a b c -> a c d -> a b d

- A type constructor a of arity two.
- Three operators:
 - lifting:
 - arr :: (b->c) -> a b c
 - composition:
 - (>>>) :: a b c -> a c d -> a b d
 - widening:
 - first :: $a b c \rightarrow a (b,d) (c,d)$

- A type constructor a of arity two.
- Three operators:
 - lifting:
 - arr :: (b->c) -> a b c
 - composition:
 - (>>>) :: a b c -> a c d -> a b d
 - widening:
 - first :: $a b c \rightarrow a (b,d) (c,d)$

A set of algebraic laws that must hold.

These diagrams convey the general idea:

The Arrow class

In Haskell, a *type class* is used to capture these ideas (except for the laws):

class Arrow a where arr :: (b -> c) -> a b c (>>>) :: a b c -> a c d -> a b d <u>first</u> :: a b c -> a (b,d) (c,d)

(f >>> g) >>> h = f >>> (g >>> h)

ITU FRP 2010: Lecture 2 – p.20/64

(f >>> g) >>> h = f >>> (g >>> h) arr (g . f) = arr f >>> arr g

(f >>> g) >>> h = f >>> (g >>> h) arr (g . f) = arr f >>> arr g arr id >>> f = f

(f >>> g) >>> h = f >>> (g >>> h)
 arr (g . f) = arr f >>> arr g
 arr id >>> f = f
 f = f >>> arr id

(f >>> g) >>> h = f >>> (g >>> h)
 arr (g . f) = arr f >>> arr g
 arr id >>> f = f
 f = f >>> arr id
 first (arr f) = arr (f × id)

(f >>> g) >>> h = f >>> (g >>> h) arr (g . f) = arr f >>> arr g arr id >>> f = f f = f >>> arr id first (arr f) = arr (f × id) first (f >>> g) = first f >>> first g

(f >>> g) >>> h = f >>> (g >>> h) arr (g . f) = arr f >>> arr g arr id >>> f = f f = f >>> arr id first (arr f) = arr (f × id) first (f >>> g) = first f >>> first g first f >>> arr (id × g) = arr (id × g) >>> first f

(f >>> g) >>> h = f >>> (g >>> h) arr (g . f) = arr f >>> arr g arr id >>> f = f f = f >>> arr id first (arr f) = arr (f × id) first (f >>> g) = first f >>> first g first f >>> arr (id × g) = arr (id × g) >>> first f first f >>> arr fst = arr fst >>> f

(f >>> g) >>> h = f >>> (g >>> h) arr (g . f) = arr f >>> arr g arr id >>> f = f f = f >>> arr id first (arr f) = arr (f × id) first (f >>> g) = first f >>> first g first f >>> arr (id × g) = arr (id × g) >>> first f first f >>> arr fst = arr fst >>> f first (first f) >>> arr assoc = arr assoc >>> first f

Functions are a simple example of arrows. The arrow type constructor is just (->) in that case. Exercise 1: Suggest suitable definitions of

ITU FRP 2010: Lecture 2 – p.21/64

- arr
- (>>>)
- first

for this case!

Solution: • <u>arr = id</u>

Solution:

arr = id To see this, recall id :: t -> t arr :: (b->c) -> a b c

Solution:

arr = id
To see this, recall
id :: t -> t
arr :: (b->c) -> a b c
Instantiate with

$$a = (->)$$

t = b->c = (->) b c

ITU FRP 2010: Lecture 2 - p.22/64

• f >>> g = \a -> g (f a)

f >>> g = \a -> g (f a) Or
f >>> g = g . f Or even
(>>>) = flip (.)

- f >>> g = \a -> g (f a) **O**
- f >>> g = g . f **or even**
- (>>>) = flip (.)
- first f = $\langle (b,d) \rangle \rightarrow (f b,d)$

Arrow instance declaration for functions:

The arrow laws reformulated

Exploiting that functions are arrows, some of the laws can be formulated more neatly. E.g:

arr (f >>> g) = arr f >>> arr g
first (arr f) = arr (first f)

The loop combinator (1)

Another important operator is 100p: a fixed-point operator used to express recursive arrows or feedback:

ITU FRP 2010: Lecture 2 – p.26/64

The loop combinator (2)

Not all arrow instances support 100p. It is thus a method of a separate class:

class Arrow a => ArrowLoop a where loop :: a (b, d) (c, d) -> a b c

Remarkably, the four combinators arr, >>>, first, and loop are sufficient to express any conceivable wiring!

Some more arrow combinators (1)

second :: Arrow a =>
 a b c -> a (d,b) (d,c)

(***) :: Arrow a => a b c -> a d e -> a (b,d) (c,e)

(&&&) :: Arrow a => a b c -> a b d -> a b (c,d)

Some more arrow combinators (2)

As diagrams:

ITU FRP 2010: Lecture 2 - p.29/64

Some more arrow combinators (3)

Exercise 2: Describe the following circuit using arrow combinators:

al, a2, a3 :: A Double Double

Exercise 3: The combinators second, (***), and (&&&) are not primitive, but defined in terms of arr, (>>>), and first. Suggest suitable definitions!

Exercise 2: One solution

Exercise 2: Describe the following circuit using arrow combinators:

al, a2, a3 :: A Double Double

Exercise 2: One solution

Exercise 2: Describe the following circuit using arrow combinators:

al, a2, a3 :: A Double Double

Exercise 2: Another solution

Exercise 2: Describe the following circuit:

Exercise 2: Another solution

Exercise 2: Describe the following circuit:

al, a2, a3 :: A Double Double

Exercise 3: Suggest definitions of second, (***), and (&&&).

Exercise 3: Suggest definitions of second, (***), and (&&&).

second :: Arrow a => a b c -> a (d,b) (d,c)
second f = arr swap >>> first f >>> arr swap
swap (x,y) = (y,x)

Exercise 3: Suggest definitions of second, (***), and (&&&).

second :: Arrow a => a b c -> a (d,b) (d,c)
second f = arr swap >>> first f >>> arr swap
swap (x,y) = (y,x)

Exercise 3: Suggest definitions of second, (***), and (&&&).

second :: Arrow a => a b c -> a (d,b) (d,c)
second f = arr swap >>> first f >>> arr swap
swap (x,y) = (y,x)

(***) :: Arrow a => a b c -> a d e -> a (b,d) (c,e) f *** g = first f >>> second g (&&&) :: Arrow a => a b c -> a b d -> a b (c,d) f &&& g = arr (\x->(x,x)) >>> (f *** g)

Note on the definition of (***) (1)

Are the following two definitions of (***) equivalent?

f *** g = first f >>> second g
f *** g = second g >>> first f

Note on the definition of (* * *) (1)

Are the following two definitions of (***) equivalent?

f *** g = first f >>> second g

• f *** g = second g >>> first f

No, in general

first f >>> second $g \neq$ second g >>> first fsince the order of the two possibly effectful computations f and g are different.

Note on the definition of (***) (2)

Similarly

 $(f * * * g) >>> (h * * * k) \neq (f >>> h) * * * (g >>> k)$

since the order of f and g differs.

ITU FRP 2010: Lecture 2 - p.35/64

Note on the definition of (***) (2)

Similarly

 $(f * * * g) >>> (h * * * k) \neq (f >>> h) * * * (g >>> k)$

since the order of f and g differs.

However, Yampa's signal functions have no effectful interaction: they are Causal Commutative Arrows (Liu, Cheng, Hudak 2009) Both considered identities actually hold.

Yet another attempt at exercise 2

ITU FRP 2010: Lecture 2 - p.36/64

Yet another attempt at exercise 2

circuit_v3 :: A Double Double circuit_v3 = (a1 &&& a3) >> first a2 >> arr (uncurry (+))

Are circuit_v1, circuit_v2, and circuit_v3 all equivalent?

Point-free vs. pointed programming

What we have seen thus far is an example of *point-free* programming: the values being manipulated are not given any names.

Point-free vs. pointed programming

What we have seen thus far is an example of *point-free* programming: the values being manipulated are not given any names.

This is often appropriate, especially for small definitions, and it facilitates equational reasoning as shown by Bird & Meertens (Bird 1990).

Point-free vs. pointed programming

What we have seen thus far is an example of *point-free* programming: the values being manipulated are not given any names.

This is often appropriate, especially for small definitions, and it facilitates equational reasoning as shown by Bird & Meertens (Bird 1990).

However, large programs are much better expressed in a *pointed* style, where names can be given to values being manipulated.

The arrow do notation (1)

Ross Paterson's do-notation for arrows supports pointed arrow programming. Only syntactic sugar.

> $pat_n <-sfexp_n -<exp_n$ returnA -< exp

Also: let $pat = exp \equiv pat < - arr id - < exp$

The arrow do notation (2)

Let us redo exercise 3 using this notation:

circuit_v4 :: A Double Double circuit_v4 = proc x -> do y1 <- a1 -< x y2 <- a2 -< y1 y3 <- a3 -< x returnA -< y2 + y3

The arrow do notation (3)

We can also mix and match:

The arrow do notation (4)

Exercise 4: Describe the following circuit using the arrow do-notation:

a1, a2 :: A Double Double
a3 :: A (Double,Double) Double

ITU FRP 2010: Lecture 2 – p.41/64

The arrow do notation (4)

Exercise 4: Describe the following circuit using the arrow do-notation:

al, a2 :: A Double Double

a3 :: A (Double, Double) Double

Exercise 5: As 4, but directly using only the arrow combinators.

ITU FRP 2010: Lecture 2 – p.41/64

Solution exercise 4

circuit = proc x -> do rec y1 <- a1 -< x y2 <- a2 -< y1 y3 <- a3 -< (x, y) let y = y2 + y3 returnA -< y

identity :: SF a a identity = arr id

- identity :: SF a a identity = arr id
- constant :: b -> SF a b constant b = arr (const b)

- identity :: SF a a identity = arr id
- constant :: b -> SF a b
 constant b = arr (const b)
- integral :: VectorSpace a s=>SF a a
 It is defined through:

$$y(t) = \int_{0}^{t} x(\tau) \,\mathrm{d}\tau$$

• iPre :: a -> SF a a

ITU FRP 2010: Lecture 2 – p.44/64

- iPre :: a -> SF a a
- (^<<) :: (b->c) -> SF a b -> SF a c
 f (^<<) sf = sf >>> arr f

- iPre :: a -> SF a a
- (^<<) :: (b->c) -> SF a b -> SF a c
 f (^<<) sf = sf >>> arr f
- time :: SF a Time

- · iPre :: a -> SF a a
- (^<<) :: (b->c) -> SF a b -> SF a c
 f (^<<) sf = sf >>> arr f
- time :: SF a Time
 - Quick Exercise: Define time!

- iPre :: a -> SF a a
- (^<<) :: (b->c) -> SF a b -> SF a c
 f (^<<) sf = sf >>> arr f
- time :: SF a Time
 - Quick Exercise: Define time!
 - time = constant 1.0 >>> integral

- iPre :: a -> SF a a
- (^<<) :: (b->c) -> SF a b -> SF a c
 f (^<<) sf = sf >>> arr f
- time :: SF a Time
 - Quick Exercise: Define time!
 - time = constant 1.0 >>> integral

Note: there is **no** built-in notion of global time in Yampa: time is always **local**, measured from when a signal function started.

A bouncing ball

y y_0 \cdots m m mg

$$y = y_0 + \int v \, \mathrm{d}t$$
$$v = v_0 + \int -9.81$$

On impact:

v = -v(t-)

(fully elastic collision)

ITU FRP 2010: Lecture 2 - p.45/64

Modelling the bouncing ball: part 1

Free-falling ball:

type Pos = Double type Vel = Double

fallingBall :: Pos -> Vel -> SF () (Pos, Vel) fallingBall y0 v0 = proc () -> do v <- (v0 +) ^<< integral -< -9.81 y <- (y0 +) ^<< integral -< v returnA -< (y, v)</pre>

Events

Conceptually, *discrete-time* signals are only defined at discrete points in time, often associated with the occurrence of some *event*.

Events

Conceptually, *discrete-time* signals are only defined at discrete points in time, often associated with the occurrence of some *event*.

Yampa models discrete-time signals by lifting the range of continuous-time signals:

data Event a = NoEvent | Event a

Events

Conceptually, *discrete-time* signals are only defined at discrete points in time, often associated with the occurrence of some *event*. Yampa models discrete-time signals by lifting the range of continuous-time signals: data Event a = NoEvent | Event a

Discrete-time signal = Signal (Event α).

Events

Conceptually, *discrete-time* signals are only defined at discrete points in time, often associated with the occurrence of some event. Yampa models discrete-time signals by lifting the range of continuous-time signals: data Event a = NoEvent Event a **Discrete-time signal** = Signal (Event α). Associating information with an event occurrence:

tag :: Event a -> b -> Event b

Some basic event sources

- never :: SF a (Event b)
- now :: b -> SF a (Event b)
- after :: Time -> b -> SF a (Event b)
- repeatedly ::
 - Time -> b -> SF a (Event b)
- edge :: SF Bool (Event ())

Stateful event suppression

notYet :: SF (Event a) (Event a)
once :: SF (Event a) (Event a)

Modelling the bouncing ball: part 2

Detecting when the ball goes through the floor:

Q: How and when do signal functions "start"?

Q: How and when do signal functions "start"?

A: • Switchers "apply" a signal functions to its input signal at some point in time.

Q: How and when do signal functions "start"?

- A: Switchers "apply" a signal functions to its input signal at some point in time.
 - This creates a "running" signal function instance.

Q: How and when do signal functions "start"?

- A: Switchers "apply" a signal functions to its input signal at some point in time.
 - This creates a "running" signal function instance.
 - The new signal function instance often replaces the previously running instance.

Q: How and when do signal functions "start"?

- A: Switchers "apply" a signal functions to its input signal at some point in time.
 - This creates a "running" signal function instance.
 - The new signal function instance often replaces the previously running instance.

Switchers thus allow systems with *varying* structure to be described.

The basic switch (1)

Idea:

 Allows one signal function to be replaced by another.

 Switching takes place on the first occurrence of the switching event source.

```
switch ::
```

SF a (b, Event c) -> (c -> SF a b) -> SF a b

The basic switch (1)

Idea:

- Allows one signal function to be replaced by another.
- Switching takes place on the first occurrence of the switching event source.

ITU FRP 2010: Lecture 2 – p.52/64

The basic switch (1)

Idea:

- Allows one signal function to be replaced by another.
- Switching takes place on the first occurrence of the switching event source.

The basic switch (2)

Exercise 6: Define an event counter countFrom

countFrom :: Int -> SF (Event a) Int

using

switch :: SF a (b, Event c) -> (c -> SF a b) -> SF a b constant :: b -> SF a b notYet :: SF (Event a) (Event a) and any other basic combinators you might need.

Solution exercise 6

countFrom :: Int -> SF (Event a) Int countFrom n = switch (constant n &&& identity (const (notYet >>> countFrom (n+1)))

Solution exercise 6

Another version that ignores any event at time 0 also from the very start:

countFrom :: Int -> SF (Event a) Int countFrom n = switch (constant n && notYet) (const (countFrom (n+1)))

Modelling the bouncing ball: part 3

Making the ball bounce:

bouncingBall :: Pos -> SF () (Pos, Vel) bouncingBall y0 = bbAux y0 0.0 where bbAux y0 v0 = switch (fallingBall' y0 v0) \$ \(y,v) -> bbAux y (-v)

Simulation of bouncing ball

Modelling using impulses (1)

From a modelling perspective, using a device like switch to model the interaction between the ball and the floor may seem rather unnatural.

Modelling using impulses (1)

From a modelling perspective, using a device like switch to model the interaction between the ball and the floor may seem rather unnatural.

A more appropriate account of what is going on is that an *impulsive* force is acting on the ball for a short time.

Modelling using impulses (1)

From a modelling perspective, using a device like switch to model the interaction between the ball and the floor may seem rather unnatural.

A more appropriate account of what is going on is that an *impulsive* force is acting on the ball for a short time.

This can be abstracted into *Dirac Impulses*: impulses that act instantaneously. See

Henrik Nilsson. Functional Automatic Differentiation with Dirac Impulses. In *Proceedings of ICFP 2003*.

Modelling using impulses (2)

However, Yampa does provide a derived version of integral capturing the basic idea:

impulseIntegral ::
 VectorSpace a k =>
 SF (a, Event a) a

The decoupled switch

dSwitch :: SF a (b, Event c) -> (c -> SF a b) -> SF a b

- Output at the point of switch is taken from the old subordinate signal function, not the new residual signal function.
- This means the *output* at the current point in time is *independent* of whether or not the *switching event* occurs at that point in time. Hence decoupled.

The recurring switch

rSwitch, drSwitch ::
 SF a b -> SF (a,Event (SF a b)) b

- Switching events received on the signal function input, carrying signal function to switch into.
- Switching occurs whenever an event occurs, not just once.
- Can be defined in terms of switch/dSwitch.

Reading (1)

- John Hughes. Generalising monads to arrows. Science of Computer Programming, 37:67–111, May 2000
- John Hughes. Programming with arrows. In Advanced Functional Programming, 2004. Springer Verlag.
- Ross Paterson. A New Notation for Arrows. In Proceedings of the 2001 ACM SIGPLAN International Conference on Functional Programming, pp. 229–240, Firenze, Italy, 2001.

Reading (2)

- Henrik Nilsson, Antony Courtney, and John Peterson. Functional reactive programming, continued. In *Proceedings of the 2002 Haskell Workshop*, pp. 51–64, October 2002.
- Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson. Arrows, robots, and functional reactive programming. In *Advanced Functional Programming*, 2002. LNCS 2638, pp. 159–187.

Reading (3)

- Hai Liu, Eric Cheng and Paul Hudak. Causal Commutative Arrows and Their Optimization.
 In *The 14th ACM SIGPLAN International Conference on Functional Programming (ICFP 2009)*, Edinburgh, Scotland, September, 2009
- Richard S. Bird. A calculus of functions for program derivation. In *Research Topics in Functional Programming*, Addison-Wesley, 1990.