ITU FRP 2010

Lecture 3:
YFrob: Functional Reactive Robotics

Henrik Nilsson

School of Computer Science
University of Nottingham, UK
Outline

- Introduction to YFrob
- The Task monad
YFrob (1)

YFrob, Yampa version of Frob: Functional Robotics.

- Framework for robot programming on top of Yampa.
- Intended to be generic:
 - Programs written in terms of specific
 features: specific kinds of sensors and actuators.
 - A program will (in principle) run on any specific platform that provides the assumed features.
Platforms:
- Pioneer (historical)
- RobotSim: a simulated environment providing the Simbot platform.
Robot Controller

type SimbotController = SimbotProperties -> SF SimbotInput SimbotOutput
class HasRobotStatus i where
 rsBattStat :: i -> BatteryStatus
 rsIsStuck :: i -> Bool

data BatteryStatus = BSHigh | BSLow | BSCritical
 deriving (Eq, Show)
Input Features (2)

-- derived event sources:
rsBattStatChanged :: HasRobotStatus i =>
 SF i (Event BatteryStatus)
rsBattStatLow :: HasRobotStatus i =>
 SF i (Event ())
rsBattStatCritical :: HasRobotStatus i =>
 SF i (Event ())
rsStuck :: HasRobotStatus i =>
 SF i (Event ())
class HasOdometry i where
 odometryPosition :: i -> Position2
 odometryHeading :: i -> Heading
class HasRangeFinder i where
 rfRange :: i -> Angle -> Distance
 rfMaxRange :: i -> Distance

 -- derived range finders:
 rfFront :: HasRangeFinder i => i -> Distance
 rfBack :: HasRangeFinder i => i -> Distance
 rfLeft :: HasRangeFinder i => i -> Distance
 rfRight :: HasRangeFinder i => i -> Distance
class HasAnimateObjectTracker i where
 aotOtherRobots :: i -> [(RobotType, RobotId, Angle, Distance)]
 aotBalls :: i -> [(Angle, Distance)]
class HasTextualConsoleInput i where
 tciKey :: i -> Maybe Char

 tciNewKeyDown :: HasTextualConsoleInput i =>
 Maybe Char -> SF i (Event Char)

 tciKeyDown :: HasTextualConsoleInput i =>
 SF i (Event Char)
Output Features

class MergeableRecord o => HasDiffDrive o where
 ddBrake :: MR o
 ddVelDiff :: Velocity -> Velocity -> MR o
 ddVelTR :: Velocity -> RotVel -> MR o

class MergeableRecord o => HasTextConsoleOutput o
 tcoPrintMessage :: Event String -> MR o
Mergable Records

mrMerge :: MergeableRecord a => MR a → MR a
mrFinalize :: MergeableRecord a => MR a → MR a

For example, the expression:

sbo :: SimbotOutput
sbo = mrFinalize
 (ddVelDiff vel1 vel2 'mrMerge' tcoPrintMessage)

merges the velocity output with a console message.
You might have noticed that the type of switch looks a lot like monadic bind:

\[
\text{switch} :: \text{SF} \ a \ (b, \ \text{Event} \ c) \\
\quad \rightarrow (c \rightarrow \text{SF} \ a \ b) \ \\
\quad \rightarrow \text{SF} \ a \ b
\]

A task is a signal function along with a terminating event. Instance of monad. Useful for sequencing.
YFrob Installation (1)

- Download YFrob-0.4.tar.gz from the course web page.
- Unpack it.
- Go to the top directory: `cd YFrob`
- Compile and install (Linux/Unix):
 - `cabal configure`
 - `cabal build`
 - `sudo cabal install --global`
YFrob Installation (2)

- Try one of the applications, e.g. `afp-soccer` (Linux/Unix):
 - `cd afp-soccer`
 - `make`
 - `./afp-soccer`
To make it easy to set up games for the Yampa Robot Soccer Cup (YRSC) 2010, follow this “protocol”:

- Each player writes a single module with a distinct module name (e.g. using his or her own name).
- This module exports all the robot controllers the player wants to use for controlling the robots of his or her team.
If a controller needs to know what team the robot it controls belong to (likely), it should have an extra parameter to allow this information to be passed in from the code that sets up an initial game configuration. For example:

```haskell
attacker :: Int -> SimbotController
```

For simplicity, let us say the convention is that 1 stands for the left team, and 2 for the right team.
For identifying team mates, use the animate object tracker. The left team have IDs 1, 2, 3, the right team 11, 12, 13.