ITU FRP 2010

Lecture3: _
YFrob: Functional Reactive Robotics

Henrik Nilsson

School of Computer Science

University of Nottingham, UK

ITU FRP 2010: Lecture 3 —p.1/21

Outline

Introduction to YFrob
The Task monad

cture 3 — p.2/21

YErob (1)

YFrob, Yampa version of Frob: Functional Robotics.

Framework for robot programming on top of
Yampa.

Intended to be generic:

Programs written in terms of specific
features: specific kinds of sensors and
actuators.

A program will (in principle) run on any
specific platform that provides the
assumed features.

.YFrob (2)

Platforms:
Pioneer (historical)

RobotSim: a simulated environment
oroviding the Simbot platform.

cture 3 — p.4/21

Robot Controller

type SinmbotController =
Si nbot Properties
-> SF Si nbot | nput Si nbot Qut put

Input Features (1)

cl ass HasRobot Status 1 where
rsBattStat :: | -> BatteryStatus
rslsStuck :: 1 -> Bool

data BatteryStatus = BSH gh | BSLow | BSCriti cal
deriving (Eq, Show)

ITU FRP 2010: Lecture 3 — p.7/21

Input Features (2)

-- derived event sources:

rsBatt St at Changed

rsBatt St at Low

rsBattStatCriti cal

rsSt uck

HasRobot Status | =>

SF i1 (Event BatteryStatus)
HasRobot Status |1 =>

SF i (Event ())

HasRobot Status | =>

SF i (Event ())

HasRobot Status |1 =>

SFi1 (Event ())

ITU FRP 2010: Lecture 3 — p.8/21

Input Features (3)

cl ass HasCdonetry I where
odonetryPosition :: I -> Position2
odonmetryHeading :: | -> Headi ng

ITU FRP 2010: Lecture 3 — p.9/21

Input Features (4)

cl ass HasRangeFi nder | where
r f Range . 1 -> Angle -> Distance
rf MaxRange :: 1 -> Distance

-- derived range finders:

rf Front :: HasRangeFinder | => 1 -> D stance
rf Back :: HasRangeFinder i1 =>1 -> D stance
rfLeft :: HasRangeFinder i1 => 1 -> D stance

rf R ght :: HasRangeFinder | =>1 -> D stance

ITU FRP 2010: Lecture 3 — p.10/21

Input Features (5)

cl ass HasAni mat e(pj ect Tracker | where
aot & herRobots :: | -> [(Robot Type, Robotld,
Angl e, Di stance)]
aot Bal | s .. 1 ->[(Angle, D stance)]

ITU FRP 2010: Lecture 3 — p.11/21

Input Features (6)

cl ass HasText ual Consol el nput | where

tciKey :: 1 -> Maybe Char
t ci NewKeyDown :: HasTextual Consol el nput 1 =>
Maybe Char -> SF | (Event Char)
t ci KeyDown .. HasTextual Consol el nput 1 =>

SF I (Event Char)

ITU FRP 2010: Lecture 3 — p.12/21

Output Features

cl ass Mergeabl eRecord o => HasDiffDrive o where
ddBr ake . MR O
ddVel Diff :: Velocity -> Velocity -> MR 0
ddvVel TR :: Vel ocity -> Rot Vel -> MR O

cl ass Mer geabl eRecord o => HasText Consol eQut put
tcoPrintMessage :: Event String -> MR O

ITU FRP 2010: Lecture 3 — p.13/21

Mergable Records

nr Mer ge .. Mergeabl eRecord a => MR a
nt Finalize :: Mergeabl eRecord a => MR a
For example, the expression:

sbo :: S nbot Qut put
sbo = mrFinalize
(ddvVel Diff vell vel 2 ‘nrMerge’ tc

merges the velocity output with a console
message.

The Task Monad

You might have noticed that the type of switch
looks a lot like monadic bind:
swmtch :: SF a (b, Event c¢)

-> (c -> SF a b)

-> SF ab

A task Is a signal function along with a terminating
event. Instance of monad. Useful for sequencing.

YFrob Installation (1)

Download YFr ob- 0. 4. t ar. gz from the
course web page.

Unpack it.
Go to the top directory: cd YFr ob.

Compile and install (Linux/Unix):
cabal configure
cabal build
sudo cabal i1nstall --gl obal

YFrob Installation (2)

Try one of the applications, e.g. af p- soccer
(Linux/Unix):

cd af p-soccer

make

. [af p- soccer

YRSC 2010 “Protocol” (1)

To make it easy to set up games for the Yampa
Robot Soccer Cup (YRSC) 2010, follow this

“protocol”:

Each player writes a single module with a
distinct module name (e.g. using his or her
own name).

This module exports all the robot controllers
the player wants to use for controlling the
robots of his or her team.

YRSC 2010 “Protocol” (2)

If a controller needs to know what team the
robot it controls belong to (likely), it should
have an extra parameter to allow this
iInformation to be passed in from the code that
sets up an initial game configuration. For
example:

attacker :: Int -> SinmbotControll er

For simplicity, let us say the convention is that
1 stands for the left team, and 2 for the right
team.

YRSC 2010 “Protocol” (3)

For identifying team mates, use the animate
object tracker. The left team have IDs 1, 2, 3,
the right team 11, 12, 13.

Reading

Paul Hudak, Antony Courtney, Henrik
Nilsson, John Peterson. Arrows, Robots, and
Functional Reactive Programming. In
Summer School on Advanced Functional
Programming 2002, Oxford University,
volume 2638 of Lecture Notes in Computer
Science, pages 159-187, Springer-Verlag,
2003.

	Outline
	YFrob (1)
	YFrob (2)
	YFrob (3)
	Robot Controller
	Input Features (1)
	Input Features (2)
	Input Features (3)
	Input Features (4)
	Input Features (5)
	Input Features (6)
	Output Features
	Mergable Records
	The Task Monad
	YFrob Installation (1)
	YFrob Installation (2)
	YRSC 2010 ``Protocol'' (1)
	YRSC 2010 ``Protocol'' (2)
	YRSC 2010 ``Protocol'' (3)
	Reading

