
ITU FRP 2010
Lecture 4:

Dynamic System Structure

Henrik Nilsson

School of Computer Science and Information Technology

University of Nottingham, UK

ITU FRP 2010: Lecture 4 – p.1/31

Outline

• Describing systems with highly dynamic
structure: a generalized switch -construct.

• Example: Space Invaders

ITU FRP 2010: Lecture 4 – p.2/31

Highly dynamic system structure?

The basic switch allows one signal function to be
replaced by another.

ITU FRP 2010: Lecture 4 – p.3/31

Highly dynamic system structure?

The basic switch allows one signal function to be
replaced by another.

• What about more general structural changes?

ITU FRP 2010: Lecture 4 – p.3/31

Highly dynamic system structure?

The basic switch allows one signal function to be
replaced by another.

• What about more general structural changes?

• What about state?

ITU FRP 2010: Lecture 4 – p.3/31

The challenge

George Russel said on the Haskell GUI list:

“I have to say I’m very sceptical about
things like Fruit which rely on reactive
animation, ever since I set our students an
exercise implementing a simple
space-invaders game in such a system,
and had no end of a job producing an
example solution. . . .

ITU FRP 2010: Lecture 4 – p.4/31

The challenge

George Russel said on the Haskell GUI list:

. . . My suspicion is that reactive animation
works very nicely for the examples
constructed by reactive animation folk, but
not for my examples.”

ITU FRP 2010: Lecture 4 – p.4/31

Example: Space Invaders

ITU FRP 2010: Lecture 4 – p.5/31

Overall game structure

gun

alien

bullet

alien

...

killOrSpawn

ObjInput ObjOutput

} [ObjectOutput]

dpSwitch

route

ITU FRP 2010: Lecture 4 – p.6/31

Dynamic signal function collections

Idea:

ITU FRP 2010: Lecture 4 – p.7/31

Dynamic signal function collections

Idea:
• Switch over collections of signal functions.

ITU FRP 2010: Lecture 4 – p.7/31

Dynamic signal function collections

Idea:
• Switch over collections of signal functions.
• On event, “freeze” running signal functions

into collection of signal function continuations ,
preserving encapsulated state .

ITU FRP 2010: Lecture 4 – p.7/31

Dynamic signal function collections

Idea:
• Switch over collections of signal functions.
• On event, “freeze” running signal functions

into collection of signal function continuations ,
preserving encapsulated state .

• Modify collection as needed and switch back in.

ITU FRP 2010: Lecture 4 – p.7/31

Dynamic signal function collections

s1

s0

ITU FRP 2010: Lecture 4 – p.8/31

Dynamic signal function collections

s1

s0

te

ITU FRP 2010: Lecture 4 – p.8/31

Dynamic signal function collections

s1

s0

te

s2

s3

ITU FRP 2010: Lecture 4 – p.8/31

Dynamic signal function collections

s1

s0

te

s2

s3

ITU FRP 2010: Lecture 4 – p.8/31

Dynamic signal function collections

s1

s0

te

s2

s3

te2

ITU FRP 2010: Lecture 4 – p.8/31

Dynamic signal function collections

s1

s0

te

s2

s3

te2

ITU FRP 2010: Lecture 4 – p.8/31

dpSwitch

Need ability to express:
• How input routed to each signal function.
• When collection changes shape.
• How collection changes shape.

dpSwitch :: Functor col =>

(forall sf . (a -> col sf -> col (b,sf)))

-> col (SF b c)

-> SF (a, col c) (Event d)

-> (col (SF b c) -> d -> SF a (col c))

-> SF a (col c)

ITU FRP 2010: Lecture 4 – p.9/31

dpSwitch

Need ability to express:
• How input routed to each signal function.
• When collection changes shape.
• How collection changes shape.

dpSwitch :: Functor col =>

(forall sf . (a -> col sf -> col (b,sf)))

-> col (SF b c) Routing function

-> SF (a, col c) (Event d)

-> (col (SF b c) -> d -> SF a (col c))

-> SF a (col c)

ITU FRP 2010: Lecture 4 – p.9/31

dpSwitch

Need ability to express:
• How input routed to each signal function.
• When collection changes shape.
• How collection changes shape.

dpSwitch :: Functor col =>

(forall sf . (a -> col sf -> col (b,sf)))

-> col (SF b c) Initial collection

-> SF (a, col c) (Event d)

-> (col (SF b c) -> d -> SF a (col c))

-> SF a (col c)

ITU FRP 2010: Lecture 4 – p.9/31

dpSwitch

Need ability to express:
• How input routed to each signal function.
• When collection changes shape.
• How collection changes shape.

dpSwitch :: Functor col =>

(forall sf . (a -> col sf -> col (b,sf)))

-> col (SF b c) Event source

-> SF (a, col c) (Event d)

-> (col (SF b c) -> d -> SF a (col c))

-> SF a (col c)

ITU FRP 2010: Lecture 4 – p.9/31

dpSwitch

Need ability to express:
• How input routed to each signal function.
• When collection changes shape.
• How collection changes shape.

dpSwitch :: Functor col =>

(forall sf . (a -> col sf -> col (b,sf)))

-> col (SF b c) Function yielding SF to switch into

-> SF (a, col c) (Event d)

-> (col (SF b c) -> d -> SF a (col c))

-> SF a (col c)

ITU FRP 2010: Lecture 4 – p.9/31

Routing

Idea:
• The routing function decides which parts of

the input to pass to each running signal
function instance.

a col sf col (b,sf)

(

(

(

(

)

)

)

)

,

,

,

,

ITU FRP 2010: Lecture 4 – p.10/31

Routing

Idea:
• The routing function decides which parts of

the input to pass to each running signal
function instance.

• It achieves this by pairing a projection of the
input with each running instance:

a col sf

1

2

3

4

f

col (b,sf)

1

2

3

4

(

(

(

(

)

)

)

)

,

,

,

,

ITU FRP 2010: Lecture 4 – p.10/31

The routing function type

Universal quantification over the collection
members:

Functor col =>

(forall sf . (a -> col sf -> col (b,sf)))

Collection members thus opaque :
• Ensures only signal function instances from

argument can be returned.
• Unfortunately, does not prevent duplication or

discarding of signal function instances.

ITU FRP 2010: Lecture 4 – p.11/31

How many different kinds of switches?

There might seem to be quite a few different
kinds of switches around:

switch, dSwitch, rSwitch,
drSwitch, pSwitch, dpSwitch,
...

In fact, they can all easily be defined in terms of,
respectively, switch or dSwitch . But for the
parallel (and other continuation-based)
switches, an additional notion is needed to
provide the capability to freeze signal functions:
ageing .

ITU FRP 2010: Lecture 4 – p.12/31

Aging (1)

The primitive age continuously makes a frozen,
aged, version of its argument signal function
available:

age :: SF a b -> SF a (b, SF a b)

This is used to define the simple
continuation-based switched, kSwitch :

kSwitch ::
SF a b -> SF (a,b) (Event c)
-> (SF a b -> c -> SF a b)
-> SF a b

ITU FRP 2010: Lecture 4 – p.13/31

Aging (2)

kSwitch :: SF a b -> SF (a,b) (Event c)

-> (SF a b -> c -> SF a b) -> SF a b

kSwitch sf1 sfe k =

switch sf (\(c, sf1’) -> k sf1’ c)

where

-- sf :: SF a (b, Event (c, SF a b))

sf = (identity &&& age sf1)

>>> arr (\(a, (b, sf1’)) ->

((a,b), (b, sf1’)))

>>> first sfe

>>> arr (\(e, (b, sf1’)) ->

(b, e ‘attach‘ sf1’))
ITU FRP 2010: Lecture 4 – p.14/31

Aging (3)

Aging of collections:

agePar :: Functor col =>

(forall sf . (a -> col sf -> col (b, sf)))

-> col (SF b c)

-> SF a (col c, col (SF b c))

This can be used to define pSwitch and
dpSwitch in terms of switch and dSwitch ,
respectively, in a similar way to kSwitch .

ITU FRP 2010: Lecture 4 – p.15/31

Side note: Application of Freezing
The DIVE virtual reality environment (Blom
2009), implemented using an somewhat
customised version of Yampa, allows objects in a
virtual world to be continuously manipulated in a
similar way to a real world.

But in such a setting, how to implement an undo
facility?

DIVE used Yampa’s capability to age and freeze
signal functions to good effect: whenever a point
is reached one might want to return to, just
capture the aged signal function representing the
system and store it for possible later use.

ITU FRP 2010: Lecture 4 – p.16/31

The game core

gameCore :: IL Object

-> SF (GameInput, IL ObjOutput)

(IL ObjOutput)

gameCore objs =

dpSwitch route

objs

(arr killOrSpawn >>> notYet)

(\sfs’ f -> gameCore (f sfs’))

ITU FRP 2010: Lecture 4 – p.17/31

Describing the alien behavior (1)

type Object = SF ObjInput ObjOutput

alien :: RandomGen g =>

g -> Position2 -> Velocity -> Object

alien g p0 vyd = proc oi -> do

rec

-- Pick a desired horizontal position

rx <- noiseR (xMin, xMax) g -< ()

smpl <- occasionally g 5 () -< ()

xd <- hold (point2X p0) -< smpl ‘tag‘ rx

...

ITU FRP 2010: Lecture 4 – p.18/31

Describing the alien behavior (2)

...

-- Controller

let axd = 5 * (xd - point2X p)

- 3 * (vector2X v)

ayd = 20 * (vyd - (vector2Y v))

ad = vector2 axd ayd

h = vector2Theta ad

...

ITU FRP 2010: Lecture 4 – p.19/31

Describing the alien behavior (3)

...

-- Physics

let a = vector2Polar

(min alienAccMax

(vector2Rho ad))

h

vp <- iPre v0 -< v

ffi <- forceField -< (p, vp)

v <- (v0 ˆ+ˆ) ˆ<< impulseIntegral

-< (gravity ˆ+ˆ a, ffi)

p <- (p0 .+ˆ) ˆ<< integral -< v

...
ITU FRP 2010: Lecture 4 – p.20/31

Describing the alien behavior (4)

...

-- Shields

sl <- shield -< oiHit oi

die <- edge -< sl <= 0

returnA -< ObjOutput {

ooObsObjState = oosAlien p h v,

ooKillReq = die,

ooSpawnReq = noEvent

}

where

v0 = zeroVector
ITU FRP 2010: Lecture 4 – p.21/31

Recap: Overall game structure

gun

alien

bullet

alien

...

killOrSpawn

ObjInput ObjOutput

} [ObjectOutput]

dpSwitch

route

ITU FRP 2010: Lecture 4 – p.22/31

Closing the feedback loop (1)

game :: RandomGen g =>

g -> Int -> Velocity -> Score ->

SF GameInput ((Int, [ObsObjState]),

Event (Either Score Score))

game g nAliens vydAlien score0 = proc gi -> do

rec

oos <- gameCore objs0 -< (gi, oos)

score <- accumHold score0

-< aliensDied oos

gameOver <- edge -< alienLanded oos

newRound <- edge -< noAliensLeft oos

...
ITU FRP 2010: Lecture 4 – p.23/31

Closing the feedback loop (2)
...

returnA -< ((score,

map ooObsObjState

(elemsIL oos)),

(newRound ‘tag‘ (Left score))

‘lMerge‘ (gameOver

‘tag‘ (Right score)))

where

objs0 =

listToIL

(gun (Point2 0 50)

: mkAliens g (xMin+d) 900 nAliens)

ITU FRP 2010: Lecture 4 – p.24/31

Other functional approaches?

Transition function operating on world model with
explicit state (e.g. Asteroids by Lüth):

• Model snapshot of world with all state
components.

• Transition function takes input and current
world snapshot to output and the next world
snapshot.

One could also use this technique within Yampa
to avoid switching over dynamic collections.

ITU FRP 2010: Lecture 4 – p.25/31

Why use Yampa, then?

• Yampa provides a lot of functionality for
programming with time-varying values:
- Captures common patterns.
- Carefully designed to facilitate reuse.

• Yampa allows state to be nicely encapsulated
by signal functions:
- Avoids keeping track of all state globally.
- Adding more state usually does not imply

any major changes to type or code
structure.

ITU FRP 2010: Lecture 4 – p.26/31

State in alien

Each of the following signal functions used in
alien encapsulate state:

• noiseR

• occasionally

• hold

• iPre

• forceField

• impulseIntegral

• integral

• shield

• edge

ITU FRP 2010: Lecture 4 – p.27/31

Why not imperative, then?

If state is so important, why not stick to
imperative/object-oriented programming where
we have “state for free”?

ITU FRP 2010: Lecture 4 – p.28/31

Why not imperative, then?

If state is so important, why not stick to
imperative/object-oriented programming where
we have “state for free”?

• Advantages of declarative programming
retained:
- High abstraction level.
- Referential transparency, algebraic laws:

formal reasoning ought to be simpler.

ITU FRP 2010: Lecture 4 – p.28/31

Why not imperative, then?

If state is so important, why not stick to
imperative/object-oriented programming where
we have “state for free”?

• Advantages of declarative programming
retained:
- High abstraction level.
- Referential transparency, algebraic laws:

formal reasoning ought to be simpler.
• Synchronous approach avoids

“event-call-back soup”, meaning robust,
easy-to-understand semantics.

ITU FRP 2010: Lecture 4 – p.28/31

Elerea
For an entirely different approach to dynamic
collections of time-varying entities, see Elerea
(Patai 2010):

• Elera has first class signals, and thus signals
can carry collections of signals.

• A signal carrying a collection of signals is
turned into a signal carrying a signal of a
collection of values.

• A signal if signals is given meaning through a
monadic join:

join :: S (S a) -> S a
ITU FRP 2010: Lecture 4 – p.29/31

Reading (1)

• Henrik Nilsson, Antony Courtney, and John
Peterson. Functional reactive programming,
continued. In Proceedings of the 2002
Haskell Workshop, pp. 51–64, October 2002.

• Antony Courtney and Henrik Nilsson and
John Peterson. The Yampa Arcade. In
Proceedings of the 2003 Haskell Workshop,
pp. 7–18, August 2003.

ITU FRP 2010: Lecture 4 – p.30/31

Reading (2)

• Kristopher J. Blom. Dynamic Interactive
Virtual Environments. PhD Thesis, University
of Hamburg, Department of Informatics, 2009

• Gergely Patai. Efficient and Compositional
Higher-Order Streams. In Proceedings of
Functional and (Constraint) Logic
Programming (WFLP) 2010, Madrid, Spain,
January 2010.

ITU FRP 2010: Lecture 4 – p.31/31

	Outline
	Highly dynamic system structure?
	The challenge
	Example: Space Invaders
	Overall game structure
	Dynamic signal function collections
	Dynamic signal function collections
		exttt {dpSwitch}
	Routing
	The routing function type
	How many different kinds of switches?
	Aging (1)
	Aging (2)
	Aging (3)
	Side note: Application of Freezing
	The game core
	Describing the alien behavior (1)
	Describing the alien behavior (2)
	Describing the alien behavior (3)
	Describing the alien behavior (4)
	Recap: Overall game structure
	Closing the feedback loop (1)
	Closing the feedback loop (2)
	Other functional approaches?
	Why use Yampa, then?
	State in 	exttt {alien}
	Why not imperative, then?
	Elerea
	Reading (1)
	Reading (2)

