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Outline

• Describing systems with highly dynamic
structure: a generalized switch -construct.

• Example: Space Invaders
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Highly dynamic system structure?

The basic switch allows one signal function to be
replaced by another.
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Highly dynamic system structure?

The basic switch allows one signal function to be
replaced by another.

• What about more general structural changes?
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Highly dynamic system structure?

The basic switch allows one signal function to be
replaced by another.

• What about more general structural changes?

• What about state?
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The challenge

George Russel said on the Haskell GUI list:

“I have to say I’m very sceptical about
things like Fruit which rely on reactive
animation, ever since I set our students an
exercise implementing a simple
space-invaders game in such a system,
and had no end of a job producing an
example solution. . . .
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The challenge

George Russel said on the Haskell GUI list:

. . . My suspicion is that reactive animation
works very nicely for the examples
constructed by reactive animation folk, but
not for my examples.”
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Example: Space Invaders
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Overall game structure

gun

alien

bullet

alien

...

killOrSpawn

ObjInput ObjOutput

} [ObjectOutput]

dpSwitch

route
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Dynamic signal function collections

Idea:
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Dynamic signal function collections

Idea:
• Switch over collections of signal functions.
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Dynamic signal function collections

Idea:
• Switch over collections of signal functions.
• On event, “freeze” running signal functions

into collection of signal function continuations ,
preserving encapsulated state .
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Dynamic signal function collections

Idea:
• Switch over collections of signal functions.
• On event, “freeze” running signal functions

into collection of signal function continuations ,
preserving encapsulated state .

• Modify collection as needed and switch back in.
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Dynamic signal function collections

s1

s0
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Dynamic signal function collections

s1

s0

te
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Dynamic signal function collections
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Dynamic signal function collections

s1

s0
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s3
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Dynamic signal function collections

s1

s0

te

s2

s3

te2
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dpSwitch

Need ability to express:
• How input routed to each signal function.
• When collection changes shape.
• How collection changes shape.

dpSwitch :: Functor col =>

(forall sf . (a -> col sf -> col (b,sf)))

-> col (SF b c)

-> SF (a, col c) (Event d)

-> (col (SF b c) -> d -> SF a (col c))

-> SF a (col c)
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dpSwitch

Need ability to express:
• How input routed to each signal function.
• When collection changes shape.
• How collection changes shape.

dpSwitch :: Functor col =>

(forall sf . (a -> col sf -> col (b,sf)))

-> col (SF b c) Routing function

-> SF (a, col c) (Event d)

-> (col (SF b c) -> d -> SF a (col c))

-> SF a (col c)
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dpSwitch

Need ability to express:
• How input routed to each signal function.
• When collection changes shape.
• How collection changes shape.

dpSwitch :: Functor col =>

(forall sf . (a -> col sf -> col (b,sf)))

-> col (SF b c) Initial collection

-> SF (a, col c) (Event d)

-> (col (SF b c) -> d -> SF a (col c))

-> SF a (col c)
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dpSwitch

Need ability to express:
• How input routed to each signal function.
• When collection changes shape.
• How collection changes shape.

dpSwitch :: Functor col =>

(forall sf . (a -> col sf -> col (b,sf)))

-> col (SF b c) Event source

-> SF (a, col c) (Event d)

-> (col (SF b c) -> d -> SF a (col c))

-> SF a (col c)
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dpSwitch

Need ability to express:
• How input routed to each signal function.
• When collection changes shape.
• How collection changes shape.

dpSwitch :: Functor col =>

(forall sf . (a -> col sf -> col (b,sf)))

-> col (SF b c) Function yielding SF to switch into

-> SF (a, col c) (Event d)

-> (col (SF b c) -> d -> SF a (col c))

-> SF a (col c)
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Routing

Idea:
• The routing function decides which parts of

the input to pass to each running signal
function instance.

a col sf col (b,sf)
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Routing

Idea:
• The routing function decides which parts of

the input to pass to each running signal
function instance.

• It achieves this by pairing a projection of the
input with each running instance:

a col sf
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col (b,sf)
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The routing function type

Universal quantification over the collection
members:

Functor col =>

(forall sf . (a -> col sf -> col (b,sf)))

Collection members thus opaque :
• Ensures only signal function instances from

argument can be returned.
• Unfortunately, does not prevent duplication or

discarding of signal function instances.
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How many different kinds of switches?

There might seem to be quite a few different
kinds of switches around:

switch, dSwitch, rSwitch,
drSwitch, pSwitch, dpSwitch,
...

In fact, they can all easily be defined in terms of,
respectively, switch or dSwitch . But for the
parallel (and other continuation-based )
switches, an additional notion is needed to
provide the capability to freeze signal functions:
ageing .
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Aging (1)

The primitive age continuously makes a frozen,
aged, version of its argument signal function
available:

age :: SF a b -> SF a (b, SF a b)

This is used to define the simple
continuation-based switched, kSwitch :

kSwitch ::
SF a b -> SF (a,b) (Event c)
-> (SF a b -> c -> SF a b)
-> SF a b
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Aging (2)

kSwitch :: SF a b -> SF (a,b) (Event c)

-> (SF a b -> c -> SF a b) -> SF a b

kSwitch sf1 sfe k =

switch sf (\(c, sf1’) -> k sf1’ c)

where

-- sf :: SF a (b, Event (c, SF a b))

sf = (identity &&& age sf1)

>>> arr (\(a, (b, sf1’)) ->

((a,b), (b, sf1’)))

>>> first sfe

>>> arr (\(e, (b, sf1’)) ->

(b, e ‘attach‘ sf1’))
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Aging (3)

Aging of collections:

agePar :: Functor col =>

(forall sf . (a -> col sf -> col (b, sf)))

-> col (SF b c)

-> SF a (col c, col (SF b c))

This can be used to define pSwitch and
dpSwitch in terms of switch and dSwitch ,
respectively, in a similar way to kSwitch .
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Side note: Application of Freezing
The DIVE virtual reality environment (Blom
2009), implemented using an somewhat
customised version of Yampa, allows objects in a
virtual world to be continuously manipulated in a
similar way to a real world.

But in such a setting, how to implement an undo
facility?

DIVE used Yampa’s capability to age and freeze
signal functions to good effect: whenever a point
is reached one might want to return to, just
capture the aged signal function representing the
system and store it for possible later use.
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The game core

gameCore :: IL Object

-> SF (GameInput, IL ObjOutput)

(IL ObjOutput)

gameCore objs =

dpSwitch route

objs

(arr killOrSpawn >>> notYet)

(\sfs’ f -> gameCore (f sfs’))
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Describing the alien behavior (1)

type Object = SF ObjInput ObjOutput

alien :: RandomGen g =>

g -> Position2 -> Velocity -> Object

alien g p0 vyd = proc oi -> do

rec

-- Pick a desired horizontal position

rx <- noiseR (xMin, xMax) g -< ()

smpl <- occasionally g 5 () -< ()

xd <- hold (point2X p0) -< smpl ‘tag‘ rx

...
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Describing the alien behavior (2)

...

-- Controller

let axd = 5 * (xd - point2X p)

- 3 * (vector2X v)

ayd = 20 * (vyd - (vector2Y v))

ad = vector2 axd ayd

h = vector2Theta ad

...
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Describing the alien behavior (3)

...

-- Physics

let a = vector2Polar

(min alienAccMax

(vector2Rho ad))

h

vp <- iPre v0 -< v

ffi <- forceField -< (p, vp)

v <- (v0 ˆ+ˆ) ˆ<< impulseIntegral

-< (gravity ˆ+ˆ a, ffi)

p <- (p0 .+ˆ) ˆ<< integral -< v

...
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Describing the alien behavior (4)

...

-- Shields

sl <- shield -< oiHit oi

die <- edge -< sl <= 0

returnA -< ObjOutput {

ooObsObjState = oosAlien p h v,

ooKillReq = die,

ooSpawnReq = noEvent

}

where

v0 = zeroVector
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Recap: Overall game structure

gun

alien

bullet

alien

...

killOrSpawn

ObjInput ObjOutput

} [ObjectOutput]

dpSwitch

route
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Closing the feedback loop (1)

game :: RandomGen g =>

g -> Int -> Velocity -> Score ->

SF GameInput ((Int, [ObsObjState]),

Event (Either Score Score))

game g nAliens vydAlien score0 = proc gi -> do

rec

oos <- gameCore objs0 -< (gi, oos)

score <- accumHold score0

-< aliensDied oos

gameOver <- edge -< alienLanded oos

newRound <- edge -< noAliensLeft oos

...
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Closing the feedback loop (2)
...

returnA -< ((score,

map ooObsObjState

(elemsIL oos)),

(newRound ‘tag‘ (Left score))

‘lMerge‘ (gameOver

‘tag‘ (Right score)))

where

objs0 =

listToIL

(gun (Point2 0 50)

: mkAliens g (xMin+d) 900 nAliens)
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Other functional approaches?

Transition function operating on world model with
explicit state (e.g. Asteroids by Lüth):

• Model snapshot of world with all state
components.

• Transition function takes input and current
world snapshot to output and the next world
snapshot.

One could also use this technique within Yampa
to avoid switching over dynamic collections.
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Why use Yampa, then?

• Yampa provides a lot of functionality for
programming with time-varying values:
- Captures common patterns.
- Carefully designed to facilitate reuse.

• Yampa allows state to be nicely encapsulated
by signal functions:
- Avoids keeping track of all state globally.
- Adding more state usually does not imply

any major changes to type or code
structure.
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State in alien

Each of the following signal functions used in
alien encapsulate state:

• noiseR

• occasionally

• hold

• iPre

• forceField

• impulseIntegral

• integral

• shield

• edge
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Why not imperative, then?

If state is so important, why not stick to
imperative/object-oriented programming where
we have “state for free”?
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Why not imperative, then?

If state is so important, why not stick to
imperative/object-oriented programming where
we have “state for free”?

• Advantages of declarative programming
retained:
- High abstraction level.
- Referential transparency, algebraic laws:

formal reasoning ought to be simpler.
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Why not imperative, then?

If state is so important, why not stick to
imperative/object-oriented programming where
we have “state for free”?

• Advantages of declarative programming
retained:
- High abstraction level.
- Referential transparency, algebraic laws:

formal reasoning ought to be simpler.
• Synchronous approach avoids

“event-call-back soup”, meaning robust,
easy-to-understand semantics.
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Elerea
For an entirely different approach to dynamic
collections of time-varying entities, see Elerea
(Patai 2010):

• Elera has first class signals, and thus signals
can carry collections of signals.

• A signal carrying a collection of signals is
turned into a signal carrying a signal of a
collection of values.

• A signal if signals is given meaning through a
monadic join:

join :: S (S a) -> S a
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Reading (1)

• Henrik Nilsson, Antony Courtney, and John
Peterson. Functional reactive programming,
continued. In Proceedings of the 2002
Haskell Workshop, pp. 51–64, October 2002.

• Antony Courtney and Henrik Nilsson and
John Peterson. The Yampa Arcade. In
Proceedings of the 2003 Haskell Workshop,
pp. 7–18, August 2003.
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Reading (2)

• Kristopher J. Blom. Dynamic Interactive
Virtual Environments. PhD Thesis, University
of Hamburg, Department of Informatics, 2009

• Gergely Patai. Efficient and Compositional
Higher-Order Streams. In Proceedings of
Functional and (Constraint) Logic
Programming (WFLP) 2010, Madrid, Spain,
January 2010.
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