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Outline

• The basic implementation approach
• Optimization
• Aggressive optimization using GADTs
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A basic implementation: SF (1)

Each signal function is essentially represented
by a transition function. Arguments:

• Time passed since the previous time step.
• The current input value.

Returns:
• A (possibly) updated representation of the

signal function, the continuation.
• The current value of the output signal.
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A basic implementation: SF (2)

type DTime = Double

data SF a b =
SF {sfTF :: DTime -> a

-> Transition a b}

type Transition a b = (SF a b, b)

The continuation encapsulates any internal state
of the signal function. The type synonym DTime
is the type used for the time deltas, > 0.
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A basic impl.: reactimate (1)

The function reactimate is responsible for
animating a signal function:
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A basic impl.: reactimate (1)

The function reactimate is responsible for
animating a signal function:

• Loops over the sampling points.
• At each sampling point:

- reads input sample and time from the
external environment (typically I/O action)

- feeds sample and time passed since
previous sampling into the signal function’s
transition function
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A basic impl.: reactimate (1)

The function reactimate is responsible for
animating a signal function:

• Loops over the sampling points.
• At each sampling point:

- reads input sample and time from the
external environment (typically I/O action)

- feeds sample and time passed since
previous sampling into the signal function’s
transition function

- writes the resulting output sample to the
environment (typically I/O action).
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A basic impl.: reactimate (2)

• The loop then repeats, but uses the
continuation returned from the transition
function on the next iteration, thus ensuring
any internal state is maintained.
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A basic implementation: arr

arr :: (a -> b) -> SF a b
arr f = sf
where
sf = SF {sfTF = \_ a -> (sf, f a)}

Note: It is obvious that arr constructs a
stateless signal function since the returned
continuation is exactly the signal function being
defined, i.e. it never changes.
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A basic implementation: >>>
For >>>, we have to combine their continuations
into updated continuation for the composed arrow:

(>>>) :: SF a b -> SF b c -> SF a c
(SF {sfTF = tf1}) >>> (SF {sfTF=tf2}) =

SF {sfTF = tf}
where
tf dt a = (sf1’ >>> sf2’, c)
where
(sf1’, b) = tf1 dt a
(sf2’, c) = tf2 dt b

Note how same time delta is fed to both subordinate
signal functions, thus ensuring synchrony.
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A basic impl.: How to get started? (1)

What should the very first time delta be?
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A basic impl.: How to get started? (1)

What should the very first time delta be?

• Could use 0, but that would violate the
assumption of positive time deltas (time
always progressing), and is a bit of a hack.

ITU FRP 2010: Lecture 5 – p.9/33



A basic impl.: How to get started? (1)

What should the very first time delta be?

• Could use 0, but that would violate the
assumption of positive time deltas (time
always progressing), and is a bit of a hack.

• Instead:
- Initial SF representation makes a first

transition given just an input sample.
- Makes that transition into a representation

that expects time deltas from then on.
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A basic impl.: How to get started? (2)

data SF a b =
SF {sfTF :: a -> Transition a b}

data SF’ a b =
SF’ {sfTF’ :: DTime -> a

-> Transition a b}

type Transition a b = (SF’ a b, b)

SF’ is internal, can be thought of as representing
a “running” signal function.
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Optmimizing >>>: First Attempt (1)

The arrow identity law:

arr id >>> a = a = a >>> arr id
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Optmimizing >>>: First Attempt (1)

The arrow identity law:

arr id >>> a = a = a >>> arr id

How can this be exploited?

1. Introduce a constructor representing arr id
data SF a b = ...

| SFId
| ...
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Optmimizing >>>: First Attempt (1)

The arrow identity law:

arr id >>> a = a = a >>> arr id

How can this be exploited?

1. Introduce a constructor representing arr id
data SF a b = ...

| SFId
| ...

2. Make SF abstract by hiding all its
constructors.
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Optmimizing >>>: First Attempt (2)

3. Ensure SFId only gets used at intended type:
identity :: SF a a
identity = SFId
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Optmimizing >>>: First Attempt (2)

3. Ensure SFId only gets used at intended type:
identity :: SF a a
identity = SFId

4. Define optimizing version of >>>:
(>>>) :: SF a b -> SF b c -> SF a c
...
SFId >>> sf = sf

...

:: SF b c 6= SF a c
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No optimization possible?

The type system does not get in the way of all
optimizations. For example, for:

constant :: b -> SF a b
constant b = arr (const b)

the following laws can readily be exploited:

sf >>> constant c = constant c

constant c >>> arr f = constant (f c)

But to do better, we need GADTs.
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Generalized Algebraic Data Types

GADTs allow
• individual specification of return type of

constructors
• the more precise type information to be taken

into account during case analysis.

ITU FRP 2010: Lecture 5 – p.14/33



Optmimizing >>>: Second Attempt (1)

Instead of

data SF a b = ...
| SFId
| ...
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Optmimizing >>>: Second Attempt (1)

Instead of

data SF a b = ...
| SFId
| ... :: SF a b
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Optmimizing >>>: Second Attempt (1)

Instead of

data SF a b = ...
| SFId
| ... :: SF a b

we define

data SF a b where
...
SFId :: SF a a
...
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Optmimizing >>>: Second Attempt (2)

Define optimizing version of >>> exactly as
before:

(>>>) :: SF a b -> SF b c -> SF a c
...
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Optmimizing >>>: Second Attempt (2)

Define optimizing version of >>> exactly as
before:

(>>>) :: SF a b -> SF b c -> SF a c
...

SFId >>> sf = sf
...

:: SF a a :: SF a c

ITU FRP 2010: Lecture 5 – p.16/33



Other Ways?

There are other ways to implement this kind of
optimisation (e.g. Hughes 2004). However:
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optimisation (e.g. Hughes 2004). However:

• GADTs offer a completely straightforward
solution

• absolutely no run-time overhead.
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Other Ways?

There are other ways to implement this kind of
optimisation (e.g. Hughes 2004). However:

• GADTs offer a completely straightforward
solution

• absolutely no run-time overhead.

The latter is important for Yampa, since the signal
function network constantly must be monitored
for emerging optimization opportunities:

arr g >>> switch (...) (\_ -> arr f)
switch
=⇒ arr g >>> arr f = arr (f . g)
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Laws Exploited for Optimizations

General arrow laws:

(f >>> g) >>> h = f >>> (g >>> h)

arr (g . f) = arr f >>> arr g

arr id >>> f = f

f = f >>> arr id

Laws involving const (the first is Yampa-specific):

sf >>> arr (const k) = arr (const k)

arr (const k)>>>arr f = arr (const(f k))
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Implementation (1)

data SF a b where
SFArr ::
(DTime -> a -> (SF a b, b))
-> FunDesc a b
-> SF a b

SFCpAXA ::
(DTime -> a -> (SF a d, d))
-> FunDesc a b->SF b c->FunDesc c d
-> SF a d

SF ::
(DTime -> a -> (SF a b, b))
-> SF a b
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Implementation (2)

data FunDesc a b where
FDI :: FunDesc a a
FDC :: b -> FunDesc a b
FDG :: (a -> b) -> FunDesc a b
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Implementation (2)

data FunDesc a b where
FDI :: FunDesc a a
FDC :: b -> FunDesc a b
FDG :: (a -> b) -> FunDesc a b

Recovering the function from a FunDesc:
fdFun :: FunDesc a b -> (a -> b)
fdFun FDI = id
fdFun (FDC b) = const b
fdFun (FDG f) = f
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Implementation (3)

fdComp :: FunDesc a b -> FunDesc b c
-> FunDesc a c

fdComp FDI fd2 = fd2
fdComp fd1 FDI = fd1
fdComp (FDC b) fd2 =

FDC ((fdFun fd2) b)
fdComp _ (FDC c) = FDC c
fdComp (FDG f1) fd2 =

FDG (fdFun fd2 . f1)

ITU FRP 2010: Lecture 5 – p.21/33



Events

Yampa models discrete-time signals by lifting
the range of continuous-time signals:

data Event a = NoEvent | Event a

Discrete-time signal = Signal (Eventα).
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Events

Yampa models discrete-time signals by lifting
the range of continuous-time signals:

data Event a = NoEvent | Event a

Discrete-time signal = Signal (Eventα).

Consider composition of pure event processing:
f :: Event a -> Event b
g :: Event b -> Event c

arr f >>> arr g
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Optimizing Event Processing (1)

Additional function descriptor:
data FunDesc a b where
...
FDE :: (Event a -> b) -> b

-> FunDesc (Event a) b
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Optimizing Event Processing (1)

Additional function descriptor:
data FunDesc a b where
...
FDE :: (Event a -> b) -> b

-> FunDesc (Event a) b

Extend the composition function:
fdComp (FDE f1 f1ne) fd2 =
FDE (f2 . f1) (f2 f1ne)
where
f2 = fdFun fd2
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Optimizing Event Processing (2)

Extend the composition function:
fdComp (FDG f1) (FDE f2 f2ne) = FDG f
where
f a =
case f1 a of
NoEvent -> f2ne
f1a -> f2 f1a
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Optimizing Event Processing (2)

Extend the composition function:
fdComp (FDG f1) (FDE f2 f2ne) = FDG f
where
f a =
case f1 a of
NoEvent -> f2ne
f1a -> f2 f1a
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Optimizing Stateful Event Processing

A general stateful event processor:

ep :: (c -> a -> (c,b,b)) -> c -> b
-> SF (Event a) b
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Optimizing Stateful Event Processing

A general stateful event processor:

ep :: (c -> a -> (c,b,b)) -> c -> b
-> SF (Event a) b

Composes nicely with stateful and stateless
event processors!
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Optimizing Stateful Event Processing

A general stateful event processor:

ep :: (c -> a -> (c,b,b)) -> c -> b
-> SF (Event a) b

Composes nicely with stateful and stateless
event processors!
Introduce explicit representation:

data SF a b where
...
SFEP :: ...

-> (c -> a -> (c, b, b)) -> c -> b
-> SF (Event a) b
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Cause for Concern

Code with GADT-based optimizations is getting
large and complicated:

• Many more cases to consider.
• Larger size of signal function representation.
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Code with GADT-based optimizations is getting
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• Larger size of signal function representation.

Example: Size of >>>:
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• Some optimizations (current): 45 lines
• GADT-based optimizations: 240 lines
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Cause for Concern

Code with GADT-based optimizations is getting
large and complicated:

• Many more cases to consider.
• Larger size of signal function representation.

Example: Size of >>>:
• Completely unoptimized: 15 lines
• Some optimizations (current): 45 lines
• GADT-based optimizations: 240 lines

Is the result really a performance improvement?
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Micro Benchmarks (1)

A number of Micro Benchmarks were carried out
to verify that individual optimizations worked as
intended:
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A number of Micro Benchmarks were carried out
to verify that individual optimizations worked as
intended:

• Yes, works as expected.
• No significant performance overhead.
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Micro Benchmarks (1)

A number of Micro Benchmarks were carried out
to verify that individual optimizations worked as
intended:

• Yes, works as expected.
• No significant performance overhead.
• Particularly successful for optimizing event

processing: additional stages can be added
to event-processing pipelines with almost no
overhead.
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Micro Benchmarks (2)

Most important gains:
• Insensitive to bracketing.
• A number of “pre-composed” combinators no

longer needed, thus simplifying the Yampa
API (and implementation).

• Much better event processing.
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Micro Benchmarks (2)

Most important gains:
• Insensitive to bracketing.
• A number of “pre-composed” combinators no

longer needed, thus simplifying the Yampa
API (and implementation).

• Much better event processing.

But what about overall, system-wide performance
impact? Does it make a difference???
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Benchmark 1: Space Invaders
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Benchmark 2: MIDI Event Processor

High-level model of a MIDI event processor
programmed to perform typical duties:
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The MEP4
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Results

Benchmark TU [s] TS [s] TG [s] TS/TU TG/TS

Space Inv. 0.95 0.86 0.88 0.91 1.02
MEP 19.39 10.31 9.36 0.53 0.91
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Reading

• Henrik Nilsson. Dynamic Optimization for
Functional Reactive Programming using
Generalized Algebraic Data Types. In
Proceedings of the Tenth ACM SIGPLAN
International Conference on Functional
Programming (ICFP’05), pages 54–65,
Tallinn, Estonia, September, 2005.
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