
ITU FRP 2010
Lecture 5:

The Yampa Implementation

Henrik Nilsson

School of Computer Science and Information Technology

University of Nottingham, UK

ITU FRP 2010: Lecture 5 – p.1/33

Outline

• The basic implementation approach
• Optimization
• Aggressive optimization using GADTs

ITU FRP 2010: Lecture 5 – p.2/33

A basic implementation: SF (1)

Each signal function is essentially represented
by a transition function. Arguments:

• Time passed since the previous time step.
• The current input value.

Returns:
• A (possibly) updated representation of the

signal function, the continuation.
• The current value of the output signal.

ITU FRP 2010: Lecture 5 – p.3/33

A basic implementation: SF (2)

type DTime = Double

data SF a b =
SF {sfTF :: DTime -> a

-> Transition a b}

type Transition a b = (SF a b, b)

The continuation encapsulates any internal state
of the signal function. The type synonym DTime
is the type used for the time deltas, > 0.

ITU FRP 2010: Lecture 5 – p.4/33

A basic impl.: reactimate (1)

The function reactimate is responsible for
animating a signal function:

ITU FRP 2010: Lecture 5 – p.5/33

A basic impl.: reactimate (1)

The function reactimate is responsible for
animating a signal function:

• Loops over the sampling points.

ITU FRP 2010: Lecture 5 – p.5/33

A basic impl.: reactimate (1)

The function reactimate is responsible for
animating a signal function:

• Loops over the sampling points.
• At each sampling point:

ITU FRP 2010: Lecture 5 – p.5/33

A basic impl.: reactimate (1)

The function reactimate is responsible for
animating a signal function:

• Loops over the sampling points.
• At each sampling point:

- reads input sample and time from the
external environment (typically I/O action)

ITU FRP 2010: Lecture 5 – p.5/33

A basic impl.: reactimate (1)

The function reactimate is responsible for
animating a signal function:

• Loops over the sampling points.
• At each sampling point:

- reads input sample and time from the
external environment (typically I/O action)

- feeds sample and time passed since
previous sampling into the signal function’s
transition function

ITU FRP 2010: Lecture 5 – p.5/33

A basic impl.: reactimate (1)

The function reactimate is responsible for
animating a signal function:

• Loops over the sampling points.
• At each sampling point:

- reads input sample and time from the
external environment (typically I/O action)

- feeds sample and time passed since
previous sampling into the signal function’s
transition function

- writes the resulting output sample to the
environment (typically I/O action).

ITU FRP 2010: Lecture 5 – p.5/33

A basic impl.: reactimate (2)

• The loop then repeats, but uses the
continuation returned from the transition
function on the next iteration, thus ensuring
any internal state is maintained.

ITU FRP 2010: Lecture 5 – p.6/33

A basic implementation: arr

arr :: (a -> b) -> SF a b
arr f = sf
where
sf = SF {sfTF = _ a -> (sf, f a)}

Note: It is obvious that arr constructs a
stateless signal function since the returned
continuation is exactly the signal function being
defined, i.e. it never changes.

ITU FRP 2010: Lecture 5 – p.7/33

A basic implementation: >>>
For >>>, we have to combine their continuations
into updated continuation for the composed arrow:

(>>>) :: SF a b -> SF b c -> SF a c
(SF {sfTF = tf1}) >>> (SF {sfTF=tf2}) =

SF {sfTF = tf}
where
tf dt a = (sf1’ >>> sf2’, c)
where
(sf1’, b) = tf1 dt a
(sf2’, c) = tf2 dt b

Note how same time delta is fed to both subordinate
signal functions, thus ensuring synchrony.

ITU FRP 2010: Lecture 5 – p.8/33

A basic impl.: How to get started? (1)

What should the very first time delta be?

ITU FRP 2010: Lecture 5 – p.9/33

A basic impl.: How to get started? (1)

What should the very first time delta be?

• Could use 0, but that would violate the
assumption of positive time deltas (time
always progressing), and is a bit of a hack.

ITU FRP 2010: Lecture 5 – p.9/33

A basic impl.: How to get started? (1)

What should the very first time delta be?

• Could use 0, but that would violate the
assumption of positive time deltas (time
always progressing), and is a bit of a hack.

• Instead:
- Initial SF representation makes a first

transition given just an input sample.
- Makes that transition into a representation

that expects time deltas from then on.

ITU FRP 2010: Lecture 5 – p.9/33

A basic impl.: How to get started? (2)

data SF a b =
SF {sfTF :: a -> Transition a b}

data SF’ a b =
SF’ {sfTF’ :: DTime -> a

-> Transition a b}

type Transition a b = (SF’ a b, b)

SF’ is internal, can be thought of as representing
a “running” signal function.

ITU FRP 2010: Lecture 5 – p.10/33

Optmimizing >>>: First Attempt (1)

The arrow identity law:

arr id >>> a = a = a >>> arr id

ITU FRP 2010: Lecture 5 – p.11/33

Optmimizing >>>: First Attempt (1)

The arrow identity law:

arr id >>> a = a = a >>> arr id

How can this be exploited?

ITU FRP 2010: Lecture 5 – p.11/33

Optmimizing >>>: First Attempt (1)

The arrow identity law:

arr id >>> a = a = a >>> arr id

How can this be exploited?

1. Introduce a constructor representing arr id
data SF a b = ...

| SFId
| ...

ITU FRP 2010: Lecture 5 – p.11/33

Optmimizing >>>: First Attempt (1)

The arrow identity law:

arr id >>> a = a = a >>> arr id

How can this be exploited?

1. Introduce a constructor representing arr id
data SF a b = ...

| SFId
| ...

2. Make SF abstract by hiding all its
constructors.

ITU FRP 2010: Lecture 5 – p.11/33

Optmimizing >>>: First Attempt (2)

3. Ensure SFId only gets used at intended type:
identity :: SF a a
identity = SFId

ITU FRP 2010: Lecture 5 – p.12/33

Optmimizing >>>: First Attempt (2)

3. Ensure SFId only gets used at intended type:
identity :: SF a a
identity = SFId

4. Define optimizing version of >>>:
(>>>) :: SF a b -> SF b c -> SF a c
...
SFId >>> sf = sf

...

ITU FRP 2010: Lecture 5 – p.12/33

Optmimizing >>>: First Attempt (2)

3. Ensure SFId only gets used at intended type:
identity :: SF a a
identity = SFId

4. Define optimizing version of >>>:
(>>>) :: SF a b -> SF b c -> SF a c
...
SFId >>> sf = sf

...

:: SF b c 6= SF a c

ITU FRP 2010: Lecture 5 – p.12/33

No optimization possible?

The type system does not get in the way of all
optimizations. For example, for:

constant :: b -> SF a b
constant b = arr (const b)

the following laws can readily be exploited:

sf >>> constant c = constant c

constant c >>> arr f = constant (f c)

But to do better, we need GADTs.

ITU FRP 2010: Lecture 5 – p.13/33

Generalized Algebraic Data Types

GADTs allow
• individual specification of return type of

constructors
• the more precise type information to be taken

into account during case analysis.

ITU FRP 2010: Lecture 5 – p.14/33

Optmimizing >>>: Second Attempt (1)

Instead of

data SF a b = ...
| SFId
| ...

ITU FRP 2010: Lecture 5 – p.15/33

Optmimizing >>>: Second Attempt (1)

Instead of

data SF a b = ...
| SFId
| ... :: SF a b

ITU FRP 2010: Lecture 5 – p.15/33

Optmimizing >>>: Second Attempt (1)

Instead of

data SF a b = ...
| SFId
| ... :: SF a b

we define

data SF a b where
...
SFId :: SF a a
...

ITU FRP 2010: Lecture 5 – p.15/33

Optmimizing >>>: Second Attempt (2)

Define optimizing version of >>> exactly as
before:

(>>>) :: SF a b -> SF b c -> SF a c
...

ITU FRP 2010: Lecture 5 – p.16/33

Optmimizing >>>: Second Attempt (2)

Define optimizing version of >>> exactly as
before:

(>>>) :: SF a b -> SF b c -> SF a c
...

SFId >>> sf = sf
...

ITU FRP 2010: Lecture 5 – p.16/33

Optmimizing >>>: Second Attempt (2)

Define optimizing version of >>> exactly as
before:

(>>>) :: SF a b -> SF b c -> SF a c
...

SFId >>> sf = sf
...

:: SF a a

ITU FRP 2010: Lecture 5 – p.16/33

Optmimizing >>>: Second Attempt (2)

Define optimizing version of >>> exactly as
before:

(>>>) :: SF a b -> SF b c -> SF a c
...

SFId >>> sf = sf
...

:: SF a a :: SF a c

ITU FRP 2010: Lecture 5 – p.16/33

Other Ways?

There are other ways to implement this kind of
optimisation (e.g. Hughes 2004). However:

ITU FRP 2010: Lecture 5 – p.17/33

Other Ways?

There are other ways to implement this kind of
optimisation (e.g. Hughes 2004). However:

• GADTs offer a completely straightforward
solution

ITU FRP 2010: Lecture 5 – p.17/33

Other Ways?

There are other ways to implement this kind of
optimisation (e.g. Hughes 2004). However:

• GADTs offer a completely straightforward
solution

• absolutely no run-time overhead.

ITU FRP 2010: Lecture 5 – p.17/33

Other Ways?

There are other ways to implement this kind of
optimisation (e.g. Hughes 2004). However:

• GADTs offer a completely straightforward
solution

• absolutely no run-time overhead.

The latter is important for Yampa, since the signal
function network constantly must be monitored
for emerging optimization opportunities:

arr g >>> switch (...) (_ -> arr f)
switch
=⇒ arr g >>> arr f = arr (f . g)

ITU FRP 2010: Lecture 5 – p.17/33

Laws Exploited for Optimizations

General arrow laws:

(f >>> g) >>> h = f >>> (g >>> h)

arr (g . f) = arr f >>> arr g

arr id >>> f = f

f = f >>> arr id

Laws involving const (the first is Yampa-specific):

sf >>> arr (const k) = arr (const k)

arr (const k)>>>arr f = arr (const(f k))

ITU FRP 2010: Lecture 5 – p.18/33

Laws Exploited for Optimizations

General arrow laws:

(f >>> g) >>> h = f >>> (g >>> h)

arr (g . f) = arr f >>> arr g

arr id >>> f = f

f = f >>> arr id

Laws involving const (the first is Yampa-specific):

sf >>> arr (const k) = arr (const k)

arr (const k)>>>arr f = arr (const(f k))

ITU FRP 2010: Lecture 5 – p.18/33

Implementation (1)

data SF a b where
SFArr ::
(DTime -> a -> (SF a b, b))
-> FunDesc a b
-> SF a b

SFCpAXA ::
(DTime -> a -> (SF a d, d))
-> FunDesc a b->SF b c->FunDesc c d
-> SF a d

SF ::
(DTime -> a -> (SF a b, b))
-> SF a b

ITU FRP 2010: Lecture 5 – p.19/33

Implementation (2)

data FunDesc a b where
FDI :: FunDesc a a
FDC :: b -> FunDesc a b
FDG :: (a -> b) -> FunDesc a b

ITU FRP 2010: Lecture 5 – p.20/33

Implementation (2)

data FunDesc a b where
FDI :: FunDesc a a
FDC :: b -> FunDesc a b
FDG :: (a -> b) -> FunDesc a b

ITU FRP 2010: Lecture 5 – p.20/33

Implementation (2)

data FunDesc a b where
FDI :: FunDesc a a
FDC :: b -> FunDesc a b
FDG :: (a -> b) -> FunDesc a b

Recovering the function from a FunDesc:
fdFun :: FunDesc a b -> (a -> b)
fdFun FDI = id
fdFun (FDC b) = const b
fdFun (FDG f) = f

ITU FRP 2010: Lecture 5 – p.20/33

Implementation (2)

data FunDesc a b where
FDI :: FunDesc a a
FDC :: b -> FunDesc a b
FDG :: (a -> b) -> FunDesc a b

Recovering the function from a FunDesc:
fdFun :: FunDesc a b -> (a -> b)
fdFun FDI = id
fdFun (FDC b) = const b
fdFun (FDG f) = f

ITU FRP 2010: Lecture 5 – p.20/33

Implementation (3)

fdComp :: FunDesc a b -> FunDesc b c
-> FunDesc a c

fdComp FDI fd2 = fd2
fdComp fd1 FDI = fd1
fdComp (FDC b) fd2 =

FDC ((fdFun fd2) b)
fdComp _ (FDC c) = FDC c
fdComp (FDG f1) fd2 =

FDG (fdFun fd2 . f1)

ITU FRP 2010: Lecture 5 – p.21/33

Events

Yampa models discrete-time signals by lifting
the range of continuous-time signals:

data Event a = NoEvent | Event a

Discrete-time signal = Signal (Eventα).

ITU FRP 2010: Lecture 5 – p.22/33

Events

Yampa models discrete-time signals by lifting
the range of continuous-time signals:

data Event a = NoEvent | Event a

Discrete-time signal = Signal (Eventα).

Consider composition of pure event processing:
f :: Event a -> Event b
g :: Event b -> Event c

arr f >>> arr g

ITU FRP 2010: Lecture 5 – p.22/33

Optimizing Event Processing (1)

Additional function descriptor:
data FunDesc a b where
...
FDE :: (Event a -> b) -> b

-> FunDesc (Event a) b

ITU FRP 2010: Lecture 5 – p.23/33

Optimizing Event Processing (1)

Additional function descriptor:
data FunDesc a b where
...
FDE :: (Event a -> b) -> b

-> FunDesc (Event a) b

ITU FRP 2010: Lecture 5 – p.23/33

Optimizing Event Processing (1)

Additional function descriptor:
data FunDesc a b where
...
FDE :: (Event a -> b) -> b

-> FunDesc (Event a) b

Extend the composition function:
fdComp (FDE f1 f1ne) fd2 =
FDE (f2 . f1) (f2 f1ne)
where
f2 = fdFun fd2

ITU FRP 2010: Lecture 5 – p.23/33

Optimizing Event Processing (2)

Extend the composition function:
fdComp (FDG f1) (FDE f2 f2ne) = FDG f
where
f a =
case f1 a of
NoEvent -> f2ne
f1a -> f2 f1a

ITU FRP 2010: Lecture 5 – p.24/33

Optimizing Event Processing (2)

Extend the composition function:
fdComp (FDG f1) (FDE f2 f2ne) = FDG f
where
f a =
case f1 a of
NoEvent -> f2ne
f1a -> f2 f1a

ITU FRP 2010: Lecture 5 – p.24/33

Optimizing Stateful Event Processing

A general stateful event processor:

ep :: (c -> a -> (c,b,b)) -> c -> b
-> SF (Event a) b

ITU FRP 2010: Lecture 5 – p.25/33

Optimizing Stateful Event Processing

A general stateful event processor:

ep :: (c -> a -> (c,b,b)) -> c -> b
-> SF (Event a) b

Composes nicely with stateful and stateless
event processors!

ITU FRP 2010: Lecture 5 – p.25/33

Optimizing Stateful Event Processing

A general stateful event processor:

ep :: (c -> a -> (c,b,b)) -> c -> b
-> SF (Event a) b

Composes nicely with stateful and stateless
event processors!
Introduce explicit representation:

data SF a b where
...
SFEP :: ...

-> (c -> a -> (c, b, b)) -> c -> b
-> SF (Event a) b

ITU FRP 2010: Lecture 5 – p.25/33

Cause for Concern

Code with GADT-based optimizations is getting
large and complicated:

• Many more cases to consider.
• Larger size of signal function representation.

ITU FRP 2010: Lecture 5 – p.26/33

Cause for Concern

Code with GADT-based optimizations is getting
large and complicated:

• Many more cases to consider.
• Larger size of signal function representation.

Example: Size of >>>:

ITU FRP 2010: Lecture 5 – p.26/33

Cause for Concern

Code with GADT-based optimizations is getting
large and complicated:

• Many more cases to consider.
• Larger size of signal function representation.

Example: Size of >>>:
• Completely unoptimized: 15 lines

ITU FRP 2010: Lecture 5 – p.26/33

Cause for Concern

Code with GADT-based optimizations is getting
large and complicated:

• Many more cases to consider.
• Larger size of signal function representation.

Example: Size of >>>:
• Completely unoptimized: 15 lines
• Some optimizations (current): 45 lines

ITU FRP 2010: Lecture 5 – p.26/33

Cause for Concern

Code with GADT-based optimizations is getting
large and complicated:

• Many more cases to consider.
• Larger size of signal function representation.

Example: Size of >>>:
• Completely unoptimized: 15 lines
• Some optimizations (current): 45 lines
• GADT-based optimizations: 240 lines

ITU FRP 2010: Lecture 5 – p.26/33

Cause for Concern

Code with GADT-based optimizations is getting
large and complicated:

• Many more cases to consider.
• Larger size of signal function representation.

Example: Size of >>>:
• Completely unoptimized: 15 lines
• Some optimizations (current): 45 lines
• GADT-based optimizations: 240 lines

Is the result really a performance improvement?

ITU FRP 2010: Lecture 5 – p.26/33

Micro Benchmarks (1)

A number of Micro Benchmarks were carried out
to verify that individual optimizations worked as
intended:

ITU FRP 2010: Lecture 5 – p.27/33

Micro Benchmarks (1)

A number of Micro Benchmarks were carried out
to verify that individual optimizations worked as
intended:

• Yes, works as expected.

ITU FRP 2010: Lecture 5 – p.27/33

Micro Benchmarks (1)

A number of Micro Benchmarks were carried out
to verify that individual optimizations worked as
intended:

• Yes, works as expected.
• No significant performance overhead.

ITU FRP 2010: Lecture 5 – p.27/33

Micro Benchmarks (1)

A number of Micro Benchmarks were carried out
to verify that individual optimizations worked as
intended:

• Yes, works as expected.
• No significant performance overhead.
• Particularly successful for optimizing event

processing: additional stages can be added
to event-processing pipelines with almost no
overhead.

ITU FRP 2010: Lecture 5 – p.27/33

Micro Benchmarks (2)

Most important gains:
• Insensitive to bracketing.
• A number of “pre-composed” combinators no

longer needed, thus simplifying the Yampa
API (and implementation).

• Much better event processing.

ITU FRP 2010: Lecture 5 – p.28/33

Micro Benchmarks (2)

Most important gains:
• Insensitive to bracketing.
• A number of “pre-composed” combinators no

longer needed, thus simplifying the Yampa
API (and implementation).

• Much better event processing.

But what about overall, system-wide performance
impact? Does it make a difference???

ITU FRP 2010: Lecture 5 – p.28/33

Benchmark 1: Space Invaders

ITU FRP 2010: Lecture 5 – p.29/33

Benchmark 2: MIDI Event Processor

High-level model of a MIDI event processor
programmed to perform typical duties:

ITU FRP 2010: Lecture 5 – p.30/33

The MEP4

ITU FRP 2010: Lecture 5 – p.31/33

Results

Benchmark TU [s] TS [s] TG [s] TS/TU TG/TS

Space Inv. 0.95 0.86 0.88 0.91 1.02
MEP 19.39 10.31 9.36 0.53 0.91

ITU FRP 2010: Lecture 5 – p.32/33

Reading

• Henrik Nilsson. Dynamic Optimization for
Functional Reactive Programming using
Generalized Algebraic Data Types. In
Proceedings of the Tenth ACM SIGPLAN
International Conference on Functional
Programming (ICFP’05), pages 54–65,
Tallinn, Estonia, September, 2005.

ITU FRP 2010: Lecture 5 – p.33/33

	Outline
	A basic implementation: 	exttt {SF} (1)
	A basic implementation: 	exttt {SF} (2)
	A basic impl.: 	exttt {reactimate} (1)
	A basic impl.: 	exttt {reactimate} (2)
	A basic implementation: 	exttt {arr}
	A basic implementation: comp {}
	A basic impl.: How to get started? (1)
	A basic impl.: How to get started? (2)
	Optmimizing 	exttt {comp }: First Attempt (1)
	Optmimizing 	exttt {comp }: First Attempt (2)
	No optimization possible?
	Generalized Algebraic Data Types
	Optmimizing 	exttt {comp }: Second Attempt (1)
	Optmimizing 	exttt {comp }: Second Attempt (2)
	Other Ways?
	Laws Exploited for Optimizations
	Implementation (1)
	Implementation (2)
	Implementation (3)
	Events
	Optimizing Event Processing (1)
	Optimizing Event Processing (2)
	Optimizing Stateful Event Processing
	Cause for Concern
	Micro Benchmarks (1)
	Micro Benchmarks (2)
	Benchmark 1: Space Invaders
	Benchmark 2: MIDI Event Processor
	The MEP4
	Results
	Reading

