| TU FRP 2010

L ecture 6:

Switched-on Yampa:
Programming Modular Synthesizersin Haskell

Henrik Nilsson and George Giorgidze

School of Computer Science

The University of Nottingham, UK

ITU FRP 2010: Lecture 6 — p.1/20

Modular synthesizers?

Steve Pocaro, Toto,
with Polyfusion Syn-
thesizer

Modern Modular Synthesizers

Keyboard1

- o e
B .]

Piteh

o) @)

Mixer1

1@ 2@ =

ITU FRP 2010: Lecture 6 — p.3/20

Where does Yampa enter the picture?

Where does Yampa enter the picture?

Music can be seen as a hybrid phenomenon.
Thus interesting to explore a hybrid approach
to programming music and musical applications.

Where does Yampa enter the picture?

Music can be seen as a hybrid phenomenon.
Thus interesting to explore a hybrid approach
to programming music and musical applications.

Yampa’'s programming model is very reminiscent
of programming modular synthesizers:

ITU FRP 2010: Lecture 6 — p.4/20

Where does Yampa enter the picture?

Music can be seen as a hybrid phenomenon.
Thus interesting to explore a hybrid approach
to programming music and musical applications.

Yampa’'s programming model is very reminiscent
of programming modular synthesizers:

Fun application! Useful for teaching?

ITU FRP 2010: Lecture 6 — p.4/20

What have we done?

What have we done?

Framework for programming modular
synthesizers in Yampa:

What have we done?

Framework for programming modular
synthesizers in Yampa:

Sound-generating and sound-shaping
modules

What have we done?

Framework for programming modular
synthesizers in Yampa:

Sound-generating and sound-shaping
modules
Additional supporting infrastructure:
Input: MIDI files (musical scores), keyboard
Output: audio files (.wav), sound card

Reading SoundFont files (instrument
definitions)

What have we done?

Framework for programming modular
synthesizers in Yampa:

Sound-generating and sound-shaping

modules

Additional supporting infrastructure:
Input: MIDI files (musical scores), keyboard
Output: audio files (.wav), sound card
Reading SoundFont files (instrument
definitions)

Status: proof-of-concept, but decent performance.

Example 1. Sine oscillator

AVAVAV;

oscSine :: Frequency — SF CV Sample
oscSine f0 = proc cv — do
let [= f0 x (2 x* cv)
phi < integral—< 2 x pi * f
returnA— sin phi

constant 0 >> oscSine 440

Example 2: Vibrato

: "\ WA/

50 | o5+ oS

constant (
S>> o0seSine 5.0

>> arr (x0.05)
S>> oscSine 440

Example 3: 50’'s Sci Fi

sciFi .2 SF () Sample

sciFi = proc () — do
und «— arr (x0.2) << oscSine 3.0—< 0
swp «— arr (+1.0) < integral — —0.25
audio <— oscSine 440 — und + swp
returnA— audio

Envelope Generators (1)

envGen :: CV — [(Time, CV')]| — (Maybe Int)
— SF (FEvent ()) (C'V, Event ())

envExr = envGen 0 [(0.5,1),(0.5,0.5),(1.0,0.5), (0.7,0)]
(Just 3)

Envelope Generators (2)

How to implement?

Envelope Generators (2)

How to implement?

ntegration of a step function yields suitable
shapes:

Envelope Generators (3)

afterEach :: [(Time, b)] — SF a (Event b)

hold ::a — SF (Fvent a) a

steps = afterEach [(0.7,2), (0.5, —1),(0.5,0), (1, —0.7), (0.7, 0)
>> hold 0

Envelope Generators (4)

Envelope generator with predetermined shape:

envGenAuz :: CV — [(Time, CV)]| — SF o CV
envGenAux 10 tls = afterEach trs >> hold r0

S>> integral =>> arr (+10)
where

(r0, trs) = toRates 10 tls

Envelope Generators (5)

Envelope generator responding to key off:
envGen :: CV — [(Time, CV)| — (Maybe Int)
— SF (FEvent ()) (CV, Event ())
envGen 10 tls (Just n) =
switch (proc noteoff — do
| — envGenAuzx 10 tls1— ()
returnA— ((I, noEvent), noteoff ‘tag‘)
(A — envGenAuz | tls2
& after (sum (map fst tls2)) ())
where
(tls1, tls2) = splitAt n tls

Example 4. Bell

oscSine (*2.33)

bell :: Frequency — SF () (Sample, Event)
bell f = proc () — do

m — oscSine (2.33 % f)— 0
audio «— oscSine f —< 2.0%xm
(ampl, end) < envBell — noFvent

returnA— (audio * ampl, end)

Example5: Tinkling Bell

tinkle :: SF () Sample
tinkle = (repeatedly 0.25 84

>> constant ()
&arr (fmap (bell o midiNoteToFreq)
>> rSwitch (constant 0))

3
Y

Example 6: Playing a C-major scale

scale :: SF' () Sample
scale = (afterEach [(0.0,60), (2.0,62), (2.0,64),
(2.0,65), (2.0,67), (2.0, 69),
(2.0,71),(2.0,72)]
>> constant ()
& arr (fmap (bell o midiNoteToFreq))
>> rSwitch (constant 0))
& after 16 ()

Example 7. Playing ssmultaneous notes

mysterySong :: SE () (Sample, Event ())
mysterySong = proc _ — do

t « tinkle —< ()

m «— mystery— ()

returnA— (0.4 x t + 0.6 x m)

A polyphonic synthesizer (1)

Sample-playing monophnic synthesizer:
Read samples (instrument recordings) from
SoundFont file into internal table.

Oscillator similar to sine oscillator, except
table lookup and interpolation instead of
computing the sine.

SoundFont synthesizer structure:

ITU FRP 2010: Lecture 6 — p.18/20

A polyphonic synthesizer (2)

Exploit Yampa’s switching capabilities to:

create and switch in a mono synth instance Is
response to each note on event;

switch out the instance in response to a
corresponding note off event.

Switched-on Yampa?

SWltched -0N Yampa’>

Software and paper vwwv cs nott ac uk/ ~g999

ITU FRP 2010: Lecture 6 — p. 20/20

	Modular synthesizers?
	Modern Modular Synthesizers
	Where does Yampa enter the picture?
	What have we done?
	Example 1: Sine oscillator
	Example 2: Vibrato
	Example 3: 50's Sci Fi
	Envelope Generators (1)
	Envelope Generators (2)
	Envelope Generators (3)
	Envelope Generators (4)
	Envelope Generators (5)
	Example 4: Bell
	Example 5: Tinkling Bell
	Example 6: Playing a C-major scale
	Example 7: Playing simultaneous notes
	A polyphonic synthesizer (1)
	A polyphonic synthesizer (2)
	Switched-on Yampa?

