This Lecture

- Monads in Haskell
- Some standard monads
- Combining effects: monad transformers
- Arrows
- FRP and Yampa

Monads in Haskell

In Haskell, the notion of a monad is captured by a Type Class:

class Monad m where
 -- return :: a -> Maybe a
 return = Just

 -- (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
 Unique b Nothing >>= _ = Nothing
 (Just x) >>= f = f x

This Lecture

- Monads in Haskell
- Some standard monads
- Combining effects: monad transformers
- Arrows
- FRP and Yampa

The Maybe Monad in Haskell

instance Monad Maybe where
 -- return :: a -> Maybe a
 return = Just

 -- (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
 Unique b Nothing >>= _ = Nothing
 (Just x) >>= f = f x

Exercise 1: A State Monad in Haskell

Haskell 98 does not permit type synonyms to be instances of classes. Hence we have to define a new type:

newtype S a = S (Int -> (a, Int))
unS :: S a -> (Int -> (a, Int))
unS (S f) = f

Provide a Monad instance for S.

Exercise 1: Solution

instance Monad S where
 return a = S (

 m >>= f = S <$>

 let (a, s') = unS m s
 in unS (f a) s'

The do-notiation (1)

Haskell provides convenient syntax for programming with monads:

```
do
  a <- expr1
  b <- expr2
  return expr3
```

is syntactic sugar for

```
expr1 >>= \a ->
expr2 >>= \b ->
return expr3
```
The do-notation (2)
Computations can be done solely for effect, ignoring the computed value:
\[
\begin{align*}
d & \{ c rp_1 \\
c & \{ c rp_2 \\
& \text{return } c rp_3
\end{align*}
\]
is syntactic sugar for
\[
\begin{align*}
crp_1 & \triangleright= _ \rightarrow \\
crp_2 & \triangleright= _ \rightarrow \\
& \text{return } c rp_3
\end{align*}
\]

The do-notation (3)
A let-construct is also provided:
\[
\begin{align*}
do & \{ \text{let } a = c rp_1 \\
b & = c rp_2 \\
& \text{return } c rp_3
\end{align*}
\]
is equivalent to
\[
\begin{align*}
do & \{ a \leftarrow \text{return } c rp_1 \\
b & \leftarrow \text{return } c rp_2 \\
& \text{return } c rp_3
\end{align*}
\]

Numbering Trees in do-notation
\[
\begin{align*}
\text{numberTree} & :: \text{Tree } a \rightarrow \text{Tree } \text{Int} \\
\text{numberTree} t & = \text{runS } (\text{ntAux } t) \\
\text{where} & \\
\text{ntAux} & :: \text{Tree } a \rightarrow S (\text{ntAux } t) \\
\text{ntAux} (\text{Leaf } _) & = \text{do} \\
& \ n \leftarrow \text{get} \\
& \ \text{set } (n + 1) \\
& \ \text{return } \text{Leaf } n \\
\text{ntAux} (\text{Node } t1 \ t2) & = \text{do} \\
& \ t1' \leftarrow \text{ntAux } t1 \\
& \ t2' \leftarrow \text{ntAux } t2 \\
& \ \text{return } \text{Node } t1' \ t2'
\end{align*}
\]

The Compiler Fragment Revisited (1)
Given a suitable “Diagnostics” monad \(D\) that collects error messages, \(\text{enterVar}\) can be turned from this:
\[
\begin{align*}
\text{enterVar} & :: \text{Id } \rightarrow \text{Int } \rightarrow \text{Type } \rightarrow \text{Env} \\
& \rightarrow \text{Either Env ErrorMsgs}
\end{align*}
\]
into this:
\[
\begin{align*}
\text{enterVarD} & :: \text{Id } \rightarrow \text{Int } \rightarrow \text{Type } \rightarrow \text{Env} \\
& \rightarrow D \ \text{Env}
\end{align*}
\]
and then \(\text{identDefs}\) from this ...

The Compiler Fragment Revisited (2)
\[
\begin{align*}
\text{identDefs} \ l \ \text{env} \ [\] & = ([], \text{env}, []) \\
\text{identDefs} \ l \ \text{env} \ ((i,t,e) : ds) & = \\
& ((i,t,e') : ds'', \text{env''}) \\
\text{where} & \\
& e' = \text{identAux } l \ \text{env e} \\
& \text{env'} = \text{enterVar } l \ i \ t \ \text{env} \\
& (ds'', \text{env''}) = \text{identDefs} \ l \ \text{env''} \ ds
\end{align*}
\]
The monadic version is very close to ideal, without sacrificing functionality, clarity, or pureness!

The List Monad
Computation with many possible results, “nondeterminism”:
\[
\begin{align*}
\text{instance Monad } [] \text{ where} \\
& \text{return } a = [a] \\
& m >>= f = \text{concat } (\text{map } f \ m) \\
& \text{fail } s = []
\end{align*}
\]
Example:
\[
\begin{align*}
x & \leftarrow [1, 2] \\
y & \leftarrow ['a', 'b']
\end{align*}
\]

The Reader Monad
Computation in an environment:
\[
\begin{align*}
\text{instance Monad } ((\rightarrow) \ e) \text{ where} \\
& \text{return } a = \text{const } a \\
& m >>= f = \text{_e} \rightarrow f \ (m \ e) \\
\text{getEnv} & :: ((\rightarrow) \ e) \ e \\
\text{getEnv} & = \text{id}
\end{align*}
\]

(Suffix D just to remind us the types have changed.)
The Haskell IO Monad

In Haskell, IO is handled through the IO monad. IO is abstract! Conceptually:

```haskell
newtype IO a = IO (World -> (a, World))
```

Some operations:

- `putChar :: Char -> IO ()`
- `putStr :: String -> IO ()`
- `putStrLn :: String -> IO ()`
- `getChar :: IO Char`
- `getLine :: IO String`
- `getContents :: String`...

Monad Transformers (1)

What if we need to support more than one type of effect? For example: State and Error/Partiality? We could implement a suitable monad from scratch:

```haskell
newtype SE s a = SE (s -> Maybe (a, s))
```

However:

- Not always obvious how: e.g., should the combination of state and error have been.
- Duplication of effort: similar patterns related to specific effects are going to be repeated over and over in the various combinations.

Monad Transformers (2)

Monad Transformers (3)

Monad Transformers can help:

- A **monad transformer** transforms a monad by adding support for an additional effect.
- A library of monad transformers can be developed, each adding a specific effect (state, error, ...), allowing the programmer to mix and match.
- A form of **aspect-oriented programming**.

Monad Transformers in Haskell (1)

A **monad transformer** maps monads to monads. Represented by a type constructor `T` of the following kind:

```haskell
T :: ( * -> * ) -> ( * -> * )
```

Additionally, a monad transformer **adds** computational effects. A mapping `lift` from computations in the underlying monad to computations in the transformed monad is needed:

```haskell
lift :: M a -> T M a
```

Monad Transformers in Haskell (2)

These requirements are captured by the following (multi-parameter) type class:

```haskell
class Monad m => E m where
eFail :: m a
eHandle :: m a -> m a -> m a
```

```haskell
class Monad m => S m s | m -> s where
sSet :: s -> m ()
sGet :: m s
```

Classes for Specific Effects

A monad transformer adds specific effects to any monad. Thus the effect-specific operations needs to be overloaded. For example:

```haskell
class Monad m => E m where
eFail :: m a
eHandle :: m a -> m a -> m a
```

```haskell
class Monad m => S m s | m -> s where
sSet :: s -> m ()
sGet :: m s
```

The Identity Monad

We are going to construct monads by successive transformations of the identity monad:

```haskell
newtype I a = I aunI (I a) = a
```

instance Monad I where

```haskell
return a = I a
m >>= f = f (unI m)
runI :: I a -> arunI = unI
```

The Error Monad Transformer (1)

```haskell
newtype ET m a = ET (m (Maybe a))
```

Any monad transformed by `ET` is a monad:

```haskell
instance Monad ET m a where
return a = ET (return (Just a))
m >>= f = ET $ do
  ma <- unET m
case ma of
  Nothing -> return Nothing
  Just a -> unET (f a)
```

```haskell
unET (ET m) = m
```
The Error Monad Transformer (2)

We need the ability to run transformed monads:

\[
\text{runET} :: \text{Monad } m \Rightarrow \text{ET } m \ a \rightarrow m \ a
\]

\[
\text{runET} \ etm = \begin{cases} ma & \text{if } ma \neq \text{Nothing} \\ \text{error } \text{"Should not happen"} & \text{otherwise} \end{cases}
\]

ET is a monad transformer:

\[\text{instance Monad } m \Rightarrow \text{MonadTransformer } \text{ET } m \text{ where} \]

\[\text{lift } m = \text{ET } (\text{m } \gg \gg \ \lambda a \to \text{return (Just a)})\]

The Error Monad Transformer (3)

Any monad transformed by ET is an instance of E:

\[\text{instance Monad } m \Rightarrow \text{E } \text{(ET } m) \text{ where} \]

\[\text{eFail } \text{= ET } (\text{return Nothing}) \]

\[\text{m } \text{\"eHandle\" } m2 = \text{ET } \text{\{ do } ma \leftarrow \text{unET } m1 \\
\text{case } ma \text{ of} \text{ Just } a \rightarrow \text{return a} \\ \text{Nothing} \rightarrow \text{error } \text{\"Should not happen\"} \text{\})} \]

The Error Monad Transformer (4)

A state monad transformed by ET is a state monad:

\[\text{instance S } m \ s \Rightarrow \text{S } \text{(ET } m \ s) \text{ where} \]

\[\text{sSet } s \to \text{ lift } (\text{sSet } s) \]

\[\text{sGet } = \text{lift } \text{sGet} \]

Exercise 2: Running Transf. Monads

Let

\[\text{ex2 } \text{= eFail } \text{\"eHandle\" } \text{return 1}\]

1. Suggest a possible type for ex2.
 (Assume \(1 :: \text{Int}\).)

2. Given your type, use the appropriate combination of "run functions" to run ex2.

Exercise 2: Solution

\[\text{ex2 } :: \text{ET I Int} \]

\[\text{ex2 } = \text{eFail } \text{\"eHandle\" } \text{return 1}\]

\[\text{ex2result } :: \text{Int} \]

\[\text{ex2result } = \text{runI} \ (\text{runET } \text{ex2})\]

Exercise 3: Effect Ordering

Consider the code fragment

\[\text{ex3a } :: \text{(ST Int (ET I)) Int} \]

\[\text{ex3a } = (\text{sSet } 42 \gg \text{eFail}) \text{\"eHandle\" } \text{sGet}\]

Note that the exact same code fragment also can be typed as follows:

\[\text{ex3b } :: \text{(ET (ST Int I)) Int} \]

\[\text{ex3b } = (\text{sSet } 42 \gg \text{eFail}) \text{\"eHandle\" } \text{sGet}\]

What is

\[\text{runI } (\text{runET } (\text{runST } \text{ex3a } 0)) \]

\[\text{runI } (\text{runST } (\text{runET } \text{ex3b } 0))\]
Exercise 3: Solution

\[
\begin{align*}
\text{runI (runET (runST ex3a 0))} &= 0 \\
\text{runI (runST (runET ex3b) 0)} &= 42
\end{align*}
\]

Why? Because:

\[
\begin{align*}
\text{ST s (ET I) a} &\cong s \to (\text{ET I}) (a, s) \\
\text{I (Maybe (a, s)}) &\cong s \to (\text{I (Maybe (a, s))}) \\
\text{ET (ST s I) a} &\cong (\text{ST s I}) \text{ (Maybe a)} \\
\text{I (Maybe a, s)} &\cong s \to (\text{I (Maybe a, s)}) \\
\text{ET (ST s I) a} &\cong s \to (\text{ET I) (a, s)} \\
\end{align*}
\]

Exercise 4: Alternative ST?

To think about.

Could \text{ST} have been defined in some other way, e.g.

\[
\text{newtype ST s m a = ST (m (s \to (a, s)))}
\]

or perhaps

\[
\text{newtype ST s m a = ST (s \to (m a, s))}
\]

Problems with Monad Transformers

- With one transformer for each possible effect, we get a lot of combinations: the number grows quadratically; each has to be instantiated explicitly.
- Jaskelioff (2008, 2009) has proposed a possible, more extensible alternative.

Arrows (1)

System descriptions in the form of block diagrams are very common. Blocks have inputs and outputs and can be combined into larger blocks. For example, serial composition:

A combinator can be defined that captures this idea:

\[
(\ggg) :: B \: a \: b \to B \: b \: c \to B \: a \: c
\]

Arrows (2)

But systems can be complex:

How many and what combinators do we need to be able to describe arbitrary systems?

Arrows (3)

John Hughes’ \text{arrow} framework:
- Abstract data type interface for function-like types (or “blocks”, if you prefer).
- Particularly suitable for types representing process-like computations.
- Related to \text{monads}, since arrows are computations, but more general.
- Provides a minimal set of “wiring” combinators.

What is an arrow? (1)

- A type constructor a of arity two.
- Three operators:
 - lifting: \text{arr} :: (b -> c) -> a b c
 - composition: (\ggg) :: a b c -> a c d -> a b d
 - widening: \text{first} :: a b c -> a (b, d) (c, d)
- A set of algebraic laws that must hold.

What is an arrow? (2)

These diagrams convey the general idea:

The Arrow class

In Haskell, a type class is used to capture these ideas (except for the laws):

\[
\begin{align*}
\text{class Arrow a where} \\
\text{arr} &:: (b \to c) \to a \: b \: c \\
\text{ggg} &:: a \: b \: c \to a \: c \: d \to a \: b \: d \\
\text{first} &:: a \: b \: c \to a \: (b, d) \: (c, d)
\end{align*}
\]
Functions are arrows (1)

Functions are a simple example of arrows, with \(\rightarrow \) as the arrow type constructor.

Exercise 5: Suggest suitable definitions of
- `arr`
- `>>>(`) for this case!

(We have not looked at what the laws are yet, but they are “natural”.)

Functions are arrows (2)

Solution:
- \(arr = id \)
- `first` ar\(\text{r} \):
 \[
 \text{id} :: t \rightarrow t
 \]
 \[
 arr :: (b\rightarrow c) \rightarrow a \ b \ c
 \]

Instantiate with:
- \(a = \rightarrow \)
- \(t = b \rightarrow c = (\rightarrow) b \ c \)

Functions are arrows (3)

- \(f >>> g = \lambda a \rightarrow g (f \ a) \) **or**
- \(f >>> g = g \ . \ f \) **or even**
- `>>>(`) = `flip (.)`
- `first f = \(\backslash (b,d) \rightarrow (f \ b,d) \)

Functions are arrows (4)

Arrow instance declaration for functions:

```haskell
instance Arrow (\rightarrow) where
  arr = id
  (>>>) = flip (.)
  first f = \( \backslash (b,d) \rightarrow (f \ b,d) \)
```

Some arrow laws

- \((f >>> g) >>> h = f >>> (g >>> h) \)
- `arr (f >>> g) = arr f >>> arr g`
- \(f >>> arr id = f \)
- \(\text{first} (arr f) = arr (\text{first} f) \)
- \(\text{first} (f >>> g) = \text{first} f >>> \text{first} g \)

The loop combinator (1)

Another important operator is `loop`: a fixed-point operator used to express recursive arrows or *feedback*:

![loop f diagram]

Some more arrow combinators (1)

- \(\text{second} :: \Arrow a \Rightarrow a \ b \ c \rightarrow a \ (d,b) \ (d,c) \)
- \((*** :: \Arrow a \Rightarrow a \ (b,d) \ (c,e) \rightarrow a \ b \ c \)
- \((&&& :: \Arrow a \Rightarrow a \ b \ d \rightarrow a \ b \ (c,d) \)

Some more arrow combinators (2)

As diagrams:

![second f diagram]

![loop f diagram]

![f *** g diagram]
Some more arrow combinators (3)

second :: Arrow a => a b c -> a (d,b) (d,c)
second f = arr swap >>> first f >>> arr swap

(***) :: Arrow a => a b c -> a d e -> a (b,d) (c,e)
f *** g = first f >>> second g

Exercise 6

Describe the following circuit using arrow combinators:

```
 a1         a2
  |         |
  v         v
a3
```

Exercise 6: One solution

```
circuit_v1 :: A Double Double
circuit_v1 = (a1 (***) arr id)
            >>> (a2 *** a3)
            >>> arr (uncurry (+))
```

Exercise 3: Describe the following circuit:

```
 a1         a2
  |         |
  v         v
a3
```

Exercise 3: Describe the following circuit using arrow combinators:

```
circuit_v4 :: A Double Double
circuit_v4 = proc x -> do
            y1 <- a1 <<< a1 <<< x
            y2 <- a2 <<< y1
            y3 <- a3 <<< (x, y)
            returnA <- y2 + y3
```

Exercise 5: Describe this using only the arrow combinators.

The arrow do notation (1)

Ross Paterson's `do`-notation for arrows supports **pointed** arrow programming. Only **syntactic sugar**.

```
proc pat -> do [ rec ]
    pat1 <- sfexp1 <<< exp1
    pat2 <- sfexp2 <<< exp2
    ...
    patn <- sfexpn <<< expn
    returnA <- exp
```

Also: `let pat = exp` is **equivalent** to `pat <- arr id <<< exp`

The arrow do notation (2)

Let us redo exercise 3 using this notation:

```
circuit_v4 :: A Double Double
circuit_v4 = proc x -> do
            y1 <- a1 <<< a1 <<< x
            y2 <- a2 <<< y1
            y3 <- a3 <<< (x, y)
            returnA <- y2 + y3
```

The arrow do notation (4)

Recursive networks: `do`-notation:

```
 a1         a2
  |         |
  v         v
a3
```

Exercise 5: Describe this using only the arrow combinators.

The arrow do notation (5)

```
circuit <- proc x -> do
    rec
    y1 <- a1 <<< x
    y2 <- a2 <<< y1
    y3 <- a3 <<< (x, y)
    let y = y2 + y3
    returnA <- y
```
Arrows generalize monads: for every monad type there is an arrow, the *Kleisli category* for the monad:

```haskell
newtype Kleisli m a b = K (a -> m b)
instance Monad m => Arrow (Kleisli m) where
  arr f = K (\b -> return (f b))
  K f >>> K g = K (\b -> f b >>= g)
```

But not every arrow is a monad. However, arrows that support an additional *apply* operation are effectively monads:

```haskell
apply :: Arrow a => a (a b c, b) c
```

Exercise 7: Verify that

```haskell
newtype M b = M (A () b)
is a monad if A is an arrow supporting *apply*, i.e., define *return* and *bind* in terms of the arrow operations (and verify that the monad laws hold).
```

An application: FRP

Functional Reactive Programming (FRP):

- Paradigm for *reactive programming* in a functional setting:
 - Input arrives *incrementally* while system is running.
 - Output is generated in response to input in an interleaved and *timely* fashion.
- Originated from Functional Reactive Animation (Fran) (Elliott & Hudak).
- Has evolved in a number of directions and into different concrete implementations.

FRP related to:

- Synchronous languages, like Esterel, Lucid Synchron.
- Modeling languages, like Simulink.

Distinguishing features of FRP:

- First class reactive components.
- Allows highly dynamic system structure.
- Supports hybrid (mixed continuous and discrete) systems.

FRP applications

Some domains where FRP has been used:

- Graphical Animation (Fran: Elliott, Hudak)
- Robotics (Frob: Peterson, Hager, Hudak, Elliott, Pembeci, Nilsson)
- Vision (FVision: Peterson, Hudak, Reid, Hager)
- GUIs (Fruit: Courtney)
- Hybrid modeling (Nilsson, Hudak, Peterson)

Related languages

FRP related to:

- Synchronous languages, like Esterel, Lucid Synchron.
- Modeling languages, like Simulink.

Yampa

- The most recent Yale FRP implementation.
- *Embedding* in Haskell (a Haskell library).
- *Arrows* used as the basic structuring framework.
- *Continuous time*.
 - Discrete-time signals modelled by continuous-time signals and an option type.
 - Advanced *switching constructs* allows for highly dynamic system structure.

Yampa?

Yampa is a river with long calmly flowing sections and abrupt whitewater transitions in between.

A good metaphor for hybrid systems!

Signal functions

Key concept: *functions on signals*.

![Diagram of signal functions](image)

Intuition:

\[\text{Signal } \alpha \approx \text{Time} \to \alpha \]

\[x :: \text{Signal } T1 \]

\[y :: \text{Signal } T2 \]

\[\text{SF } \alpha \beta \approx \text{Signal } \alpha \to \text{Signal } \beta \]

\[f :: \text{SF } T1 T2 \]

Additionally: *causality* requirement.

Signal functions and state

Alternative view:

Signal functions can encapsulate *state*.

![Diagram of signal functions and state](image)

\[\text{state}(t) \] summarizes input history \(x(t'), t' \in [0, t] \).

Functions on signals are either:

- *Stateful*: \(y(t) \) depends on \(x(t) \) and \(\text{state}(t) \)
- *Stateless*: \(y(t) \) depends only on \(x(t) \)
Yampa and Arrows

SF is an arrow. Signal function instances of core combinators:

- `arr :: (a -> b) -> SF a b`
- `>>> :: SF a b -> SF b c -> SF a c`
- `first :: SF a b -> SF (a,c) (b,c)`
- `loop :: SF (a,c) (b,c) -> SF a b`

But apply has no useful meaning. Hence SF is **not** a monad.

Some further basic signal functions

- `identity :: SF a aidentity = arr id`
- `constant :: b -> SF a bconstant b = arr (const b)`
- `integral :: VectorSpace a =>SF a a`
- `time :: SF a Time`
 `time = constant 1.0 >>> integral`
- `(^<<) :: (b->c) -> SF a b -> SF a cf (^<<) sf = sf >>> arr f`

Example: A bouncing ball

\[
y = y_0 + \int v \, dt
\]
\[
v = v_0 + \int -9.81 \, dt
\]

On impact:
\[
v = -v(t-)
\]
(fully elastic collision)

Free-falling ball:

```
type Pos = Double
type Vel = Double

fallingBall :: Pos -> Vel -> SF () (Pos, Vel)
fallingBall y0 v0 = proc () -> do
  v <- (v0 +) \(^<<\) integral <- -9.81
  y <- (y0 +) \(^<<\) integral <- v
  returnA <- (y, v)
```

Dynamic system structure

Switching allows the structure of the system to evolve over time:

Example: Space Invaders

```
\begin{align*}
\text{bullet} &\rightarrow \text{alien} \\
\text{alien} &\rightarrow \text{killOrSpawn} \\
\text{gun} &\rightarrow \text{ObjInput} \\
\text{ObjOutput} &\rightarrow \text{ObjInput}
\end{align*}
```

Reading (1)

Reading (2)

Reading (3)

Reading (4)