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ABSTRACT
Functional Reactive Programming (FRP) is a framework for
constructing interactive applications in a declarative man-
ner. FRP augments a host programming language to express
time flow in a simple, semantically uniform manner. FRP
has been demonstrated in domains such as animation, vi-
sion, robotics and other control systems. In this paper we
present an implementation of the FRP programming style
using C++ as a host language. There are two primary tech-
nical challenges: the implementation of signals in a manner
faithful to the FRP semantic model and the use of the C++
type system, the template mechanism and operator over-
loading in particular, to achieve the same degree of type
safety operator re-use that the Haskell type system provides.
The resulting FRP implementation thus retains the essen-
tial “look and feel” of previous FRP implementations while
also offering seamless interoperation with C++ code.

We demonstrate FRP/C++ in a complete human-guided
robot navigation system that integrates vision, control, and
human-machine interfaces. This system shows that the high-
level semantic model expressed by FRP can be captured
conveniently in C++ and provide the same declarative pro-
gramming style found in the Haskell based implementations
of FRP without compromising type safety.

1. INTRODUCTION
Functional Reactive Programming (FRP) is a programming
framework for declarative programming of reactive, hybrid
systems; i.e., systems that exhibit both continuous and dis-
crete behavior [19]. Originally a Domain Specific Language
(DSL) [9] for reactive animation [5], FRP has also been used
for vision, robotics, and control-system applications [18, 16].

While one could imagine a version of FRP in the form of
a complete, self-contained language (with its own syntax,
type system, etc.), most present FRP implementations are
embedded in a host language. This means that the FRP im-
plementations only need to provide the key abstractions for

declarative reactive programming, while the host language
provides the syntax, type system, as well as all the usual
programming facilities which are not specific to the reactive
domain.

Up until now, the only host-language for full-scale FRP has
been Haskell. In many ways this is an excellent choice, since
Haskell provides higher-order functions, lazy evaluation, a
powerful polymorphic type system, and so on, yielding a
very flexible and expressive compound language for reactive
programming. However, the fact that FRP only has been
realized as Haskell embeddings does raise the question to
what extent FRP in practice is separable from Haskell-like
languages. This is an important issue, since a Haskell em-
bedding arguably implies a steep learning curve for people
with little or no functional programming background. More
importantly, much software development for complex inter-
active systems has taken place in C++. For example, the
XVision library for visual tracking defines hundreds of C++
objects and methods for the programmer. While it is possi-
ble to move this functionality to a language such as Haskell,
it is much easier to capture the FRP functionality in C++.
This eliminates a complex and error-prone language inter-
face problem.

The aim of the present paper is to show that FRP usefully
can be embedded in C++, a language radically different
from Haskell. We call this embedding FRP/C++. The
advantages of declarative, reactive programming are thus
brought to the C++ community, along with much of the
syntactic flavor of the Haskell embedding: FRP expressions
can be transliterated into the FRP/C++ almost verbatim,
both “functional” and “reactive” aspects are preserved. An-
other key aspect of FRP, a polymorphic type system, is
also retained. Additional advantages of the C++ embed-
ding include easy interoperation with imperative software
components with heavily object-oriented APIs (especially
when they are fundamentally template based, like XVision
[7]), more controllable resource consumption patterns, and
not having to link the resulting application with a Haskell
interpreter or run-time system which potentially could be
a problem, for example in a multi-threaded setting. Fi-
nally, FRP/C++ has a pure, standard C++ implementa-
tion, completely compatible with most existing C++ pro-
gramming environments. The paper explains the implemen-
tation, which has a number of interesting features in its own
right, in considerable detail



2. A BRIEF INTRODUCTION TO FRP
Functional Reactive Programming (FRP) is a programming
framework for constructing interactive applications in a declar-
ative manner. Since FRP is originally developed from FRAN
(Functional Reactive Animation) and FROB (Functional
Robotics) as an Embedded Domain Specific Language on
Haskell, it is hard to distinguish the core of FRP from the
features of Haskell language itself. Nevertheless, here we
present our description based on the preliminary FRP User’s
Manual[6], and all our discussions in this section are in (sim-
plified) Haskell syntax.

2.1 Behaviors
The key abstractions in FRP are signals. There are two
types of signal: Behavior and Event. Conceptually, a Behavior t

is a value of type t that varies over continuous time. The
simplest behaviors are constant behaviors, which always has
the same value over time, such as 1 :: Behavior Int, or
red :: Behavior Color. More complex and interesting ex-
amples including animations as Behavior Picture, or posi-
tion vectors of a visual tracker as Behavior (Int,Int).

Sometimes behaviors defined by pointwise application of an
ordinary function to existing behaviors. This kind of oper-
ation is called a “lift”, for example,

lift0 :: a -> Behavior a

lift1 :: (a -> b) -> (Behavior a -> Behavior b)

lift2 :: (a -> b -> c)

-> (Behavior a -> Behavior b -> Behavior c)

Since functions that take no argument always return the
same values, constB, which makes a constant behavior, is
same as lift0 (on lifting constants to behaviors). lift1

returns a function which applies the function argument of
lift1 to all values of a behavior to create a new behavior;
it works like map in functional languages.

Most arithmetic operators can be overloaded in Haskell so
that same “lifted” form can be used conveniently, for exam-
ple,

a, b, c :: Behavior Real

c = ( a + b ) / 2

Here “+” and “/” are both functions lifted to behaviors
level, and “2” is used as a constant behavior.

Sometimes value of one behavior at current time relies on
values of this and/or other behaviors at previous times. We
can form a “delayed” behavior of existing one to allow this.
delayB delays a behavior for one sampling step, given an
initial value.

delayB :: a -> Behavior a -> Behavior a

The delayB is intended for direct use by the user - unre-
stricted use can lead to behaviors whose values do converge
as sampling rates increase. However, this function is an es-
sential part of the FRP implementation.

2.2 Events
Conceptually, an Event t is a time-ordered sequence of event
occurrences, each carrying a value of type t. For example,
a left button press lbp :: Event () and a keyboard press
key :: Event Char.

constE :: a -> Event a

neverE :: Event a

constE lifts a constant to an event that is always happening
and neverE constructs an event that never happens. Lifted
functions can also apply on events.

whileE :: Behavior Bool -> Event ()

whenE :: Behavior Bool -> Event ()

whileByE :: (a -> Maybe b) -> Behavior a-> Event b

Events can be derived from behaviors and vice versa. whileE
turns boolean behaviors to events using the rule that the
event happens if and only if the value of the behavior is
true, and whileByE turns behaviors to events by specified
functions. whenE is same as whileE except that it discards
repeating events.

stepB :: a -> Event a -> Behavior a

Given an initial value, stepB holds the value of the most
recent event as the current value of the derived behavior:

snapshotE_ :: Event a -> Behavior b -> Event b

timeOfE :: Event a -> Event Time

snapshotE_ captures the value of a continuous behavior at
the time of an event occurrence, and timeOfE captures the
current time.

An FRP program is a set of mutually recursive behavior and
event definitions. The ordering of these definitions should
not change the behavior of the program in any way.

2.3 Switches
A rich set of operators is provided for users to compose new
behaviors and events from existing ones. Some of the opera-
tors describe the way they react. Event mapping operators,
==> and -=>, can be used to create an event of behaviors,
and the switchB and tillB operators switch active behav-
iors according to such event of behaviors.

(==>) :: Event a -> (a -> b) -> Event b

(-=>) :: Event a -> b -> Event b

switchB :: Behavior a -> Event (Behavior a)

-> Behavior a

tillB :: Behavior a -> Event (Behavior a)

-> Behavior a



switchB switches to the behavior carried by the event each
time it occurs; tillB switches on the first occurrence once
and for all.

A more complicated example follows:

color :: Behavior Color

color = red ‘tillB‘ (lbp -=> blue .|. rbp -=> green)

This reads as “initially behave as red, after the left button is
pressed change to blue, or after the right button is pressed
change to green”.

2.4 Tasks
Another way to express reactivity is using the concept of
Task. There is actually a family of different types of tasks.
Here we only focus on their common aspects. A task com-
bines a behavior and a terminating event, and can be com-
posed either sequentially or in parallel.

(>>) :: Task a b -> Task a c -> Task a c

(|||) :: Task a x -> Task b y

-> Task (a,b) (Either x y)

Tasks can be sequenced using >>, or put in parallel using
||. Sequenced tasks are executed in order: the second one
begins to be evaluated when the first one ends (that is its
terminating event occurs). Parallel tasks are executed si-
multaneously: they begins at the same time, and the end of
either of them also terminates the other.

mkTask :: Behavior b -> Event x -> Task b x

The mkTask function constructs a task from its behavior and
terminating event:

tillT_ :: Task b x -> Event x -> Task b x

tillT terminates a task by an extra event. The occurrence
of this event terminates the associated task if it is not al-
ready terminated.

2.5 The Streams Implementation of FRP in

Haskell
Practically, an implementation of FRP has to sample con-
tinuous behaviors. In other words, behaviors are presented
by infinite streams of values sampled at an infinite stream
of times [4]:

type Behavior a = Stream Time -> Stream a

Events are defined similarly, as infinite streams of value of
type Maybe, each indicates whether or not the event occurs
(Just x or Nothing) and the value it is carrying if it does,
sampled at an infinite stream of times:

data Maybe a = Nothing | Just a

type Event a = Stream Time -> Stream (Maybe a)

Then it is easy to define behavior and event operations on
the base of stream and functional operations, such as constB
is defined as a function for any input of stream of time, re-
turn the stream of repeating some same value. The com-
plexity of manipulating infinite streams is hidden by lazy
evaluation feature of Haskell, as the value of an element in a
stream will not be computed until it is needed immediately.

3. A USER’S VIEW OF FRP IN C++
In this section, we turn to a description of the basic soft-
ware structures and programming techniques we have used
to implement FRP/C++. In particular, the dataflow view
of FRP plays an important role in our understanding and
implementation of FRP in C++. We begin with that view of
the system, and then expand to explain how other elements
of the system have been implemented.

3.1 Behavior and Event
There are two basic data types in FRP in C++: Behavior<T>
and Event<T>, which mirror their Haskell counterparts. Behavior<T>
is the type to declare behavior of type T, and Event<T> is to
declare event of T. Constants and functions can be lifted to
behavior level by constB and constE or overloaded liftB

and liftE respectively. Common operators such as “+”, “-
”, “*” and “/” already have their lifted version overloaded
as well. Thus, for example, we can write

Behavior<double> a, b, c ;

c = ( a + b ) / 2.0 ;

Behaviors and events can be used (in definitions of other
signals) before their definition as long as their type have
been declared. This allows recursive definition and other
equation-like expression. Here is an example of Fibonacci
series, which is defined as each succeeding term is the sum
of the two immediately preceding. Here, FRP provides a
definitional style nearly identical to the mathematical nota-
tion.

xn = xn−1 + xn−2

Behavior<int> x ;

x = delayB(0)( x ) + delayB(0)( delayB(1)( x ) );

3.2 Switches and Tasks
Since C++ does not allow definition of new operators, some
of the infix combinators in FRP have to use slightly different
notation, and some others have to use literal macros which
translate to same functions. The same expression we have
showed in the last section turns out to be:

Behavior<Color> color, red, blue, green ;

Event<void> lpb, rbp ;

color = red TillB ( lpb ThenConstB blue

|| rpb ThenConstB green );



Task<T,Y> is the type of task composed by a behavior of
type T and a terminating event of type Y. Same as behaviors
and events, tasks can be defined recursively. Here is an
example of task:

Task<Color,void> display ;

display = mkTask(blue, lbp) >> mkTask(green, rbp)

>> display;

The above expression reads as “display blue until left button
is pressed, then display green until right button is pressed,
then repeat”.

3.3 Execution
To run a FRP program means to repeatedly sample a signal
or a task by member function run(). run() can take several
parameters, one of them is the time interval for sampling.
In practice, however, computation itself is the main time
concern so we just want to sample as fast as possible by
simply call run() with default parameters like this:

display.run() ;

4. THE C++ IMPLEMENTATION
In this section, we turn to a description of the basic soft-
ware structures and programming techniques we have used
to implement FRP/C++. In particular, the dataflow view
of FRP plays an important role in our understanding and
implementation of FRP in C++. We begin with that view of
the system, and then expand to explain how other elements
of the system have been implemented.

4.1 Dataflow View of FRP
One way to look at the FRP model is to view it in terms
of dataflow graphs. Each graph vertex, which represents a
behavior or event, provides a typed time-varying value; each
directed edge is a data dependency. As time advances, data
flows along the directed edges and is processed by some func-
tions at vertices. For example, at any specific time, a specific
use of a lifted (+) operator is a vertex whose value is the
sum of current values of the two vertices that are attached to
the vertex’s two incoming edges. In this sense, FRP shares
common merits with graph or dataflow languages, except
that it is non-visual.

There is one important difference in the FRP model. In
most dataflow languages, the graph structure is statically
defined. In FRP, Behaviors and Events, which represent
the graph structure, are first class entities and can thus be
carried around as data in a running dataflow graph. In
fact, switching in FRP is accomplished by a graph node
which replaces a subordinate graph, connected to ordinary
data inputs and outputs, by a new graph whenever such a
graph is received on a separate control input. Thus, in FRP,
the dataflow graph can have a dynamic structure which can
evolve, grow, and shrink over time in response to outside
stimuli.

Graph G: (V,E)

Set S ;

synchronize(sink) :

clear(S)

update(sink)

for all v in S do

update(v)

update(v) :

if v is delayB then

let (u,v) in E

if not updated(u) and not updating(u) then

if update(u) == fail then

add(S,u)

compute(v)

return success

else

for all u that (u,v) in E do

if not updated(u) and not updating(u) then

if update(u) == fail then

return fail

compute(v)

return success

Figure 1: The dataflow graph two-phase synchro-
nization algorithm

4.2 FRP/C++ Basic Engine
If we examine the dataflow view of FRP more closely, there
are two immediate implications for the underlying compu-
tational engine:

1. Only one value – the current value of a behavior –
needs to be held in each graph node.

2. Any recursively defined FRP signal must have at least
one delayB or its equivalent somewhere in the defini-
tion.

Based on the first observation, we implement the core be-
havior architecture using a generic, templated class. This
class stores one time-stamped1 value type as well as links
to all behaviors it depends on. In the terms of the dataflow
graph, this defines the vertex and all its incoming edges.

At each time step, the graph is updated by a two-phase syn-
chronization process (outlined in figure 4.2) that results in
updated data at the graph sink (output). The first phase
traverses the graph recursively from the sink. On visiting
each vertex, any vertex which has a directed edge pointing
to it (i.e. behaviors it depends on) is visited if it has not
been visited before and it is not being visited currently. A
node with no outgoing edges (a source) is updated and con-
trol returns to the calling parent. When all children return
successfully, then the local computation of the vertex (i.e.
the function of the behavior) is performed using the value
of its children to update the value it holds. If one of the

1The time-stamp uses an internal, global clock-tick instead
of the real time.



input vertices of a node is being visited concurrent with the
node itself (indicating a loop in the graph), the update fails
and no computation is done. No vertex is visited more than
once, thus no computation is repeated.

Based on the second observation, we expect that any prop-
erly formed graph will have a delay operator in any loop.
Thus, In the first phase we allow a “delay” vertex to update
its value from a pre-fetched buffer before trying to update
the vertex it depends on. If the vertex it depends on fails
according to the previous rules, it will be added to a list.
Everything in the list will be updated in the second phase
of recursive synchronization. This time the update will al-
ways success because all “delay” vertices have already been
updated in the first phase, and from our second observa-
tion above, the dependency link cannot loop back to itself
without going through a “delay” vertex, which stops the
updating propagation.

It would be interesting to compare the above algorithm
with the lazy stream implementation in Haskell. A single,
time-stamped storage location replaces the cons-cells of the
stream, and synchronization is done in an explicit process
instead of by letting all streams be consumed at the same
rate.

4.3 Construction of Graph
Many behaviors and events are pre-defined operations de-
fined from the generic templated classes. Examples include
timeB, which represents the time elapsed from the start of
the program in second, and Display::lpb(), which returns
the left button press event on given display. Other signals
are obtained from applying combinators to existing ones.
Combinators are either templated functions (e.g. integral)
or templated functional objects which can be generated by
functions (e.g. liftB) to simulate higher-order functions in
C++. In either case, the combinator creates a typed graph
vertex using the supplied signal arguments as its incoming
edges.

Recursive definition is common in FRP expression. For ex-
ample, a counter is defined as

a = delayB(0)(a) + 1 ;

Again, note that an explicit delay is required to make this
a valid graph.

Another issue in defining recursive behaviors is that the
same behavior a appears on both side of the equation. We
achieved this by employing the envelope-letter idiom: Behavior
is really the envelope class to declare variables for behaviors.
When it is assigned to, it is to contain the letter class created
by the right hand side of the assignment. Whether the en-
velope contains a valid letter yet or not, it has a well-define
interface that can be used in graph construction. In this
way, as long as an object of Behavior<T> has been declared,
it can be used before its definition (appearance on the left
side of an equation). Of course, everything must be defined
before the execution of that part of the graph.

Returning to the counter example. delayB(0) returns a

behavior combinator, which takes the empty envelope a and
generates a new behavior. “+” is another combinator which
takes the behavior just generated and the const behavior 1
and generates the resultant behavior of the right hand side.
This is assigned back to a through “=” as its letter. So the
resulting graph is indeed circular.

As a result of such design, another type, BehaviorRef<T> is
used for behaviors in FRP/C++ function signatures to avoid
the overhead of constructing an envelope. This is mostly
transparent to users as Behavior<T> and BehaviorRef<T>

can be automatically converted to each other.

4.4 Events and Switching
It is natural to define Event<T> as Behavior<Maybe<T> >,
except we have to define a efficient Maybe class in C++:

template<class T>

class Maybe {

T * value ;

char data[sizeof(T)] ;

public:

Maybe(/*Nothing*/) : value(0) {}

Maybe(/*Just*/ const T& x ) :

value(new((void*)data) T(x)) {}

~Maybe()

{ if(value) value->~T() ; }

};

where value is either data or 0. The memory for T is re-
served in data to avoid additional heap allocation. data is
just the raw memory so as not to impose a default construc-
tor requirement on the type T.

In the interest of efficiency, we specialize Maybe<void>:

template<>

class Maybe<void> {

bool value ;

};

Now we can derive Event<T> from Behavior<Maybe<T> >

and build switches upon it. The switching vertex itself is
quite trivial: it stores both a reference to a behavior of T,
which is its current behavior, and a reference of an event of
behavior of T, which it observes. When the switching vertex
being updated, it first tries to see whether the event had
occurred. If it is, the new behavior carried in the event is
taken out to replace the current behavior. Either case, the
value of its current behavior is used as the value of itself.

4.5 Tasks
Since a task is composed of a behavior and an event, many
task operations can be reduced to behavior and event oper-
ations. For example, putting two tasks in parallel will result
in a new task whose behavior is a pairing of the behaviors
of the two and whose event is a merging of the events of the
two. Sequential tasks are a little bit more complex: both
the resultant behavior and event are initially those of the
first task, and switched to those of the second task upon the



occurrence of the event of the first task. More sophisticated
sequencing involves a task and a function that takes the ter-
minating event of the first task to generate its successor.
This can be implemented in the similar way as in behavior
switching.

As with Behavior, Task is the envelope class for tasks to
allow recursive task definition.

4.6 Garbage Collection
Although garbage collection is not a functional feature by
itself, almost all functional languages have built-in garbage
collectors. On the other hand, C++ programs are respon-
sible to delete object that are no longer used. Due to the
nature of the language, it is a daunting task for a general
portable garbage collector for C++. Furthermore, not only
used memory should be freed, the destructors of collected
objects must be called to ensure that external devices have
been closed, etc. “Smart pointers”, pointer objects with
reference counting, can help collecting unreferenced objects
automatically, but they cannot deal with looped data struc-
tures , which is exactly what recursive FRP expressions
translate to.

Fortunately, we needed only to implement a garbage collec-
tor for FRP expressions themselves, and leave the users free
to choose memory management for their C++ style code.
Our garbage collector is based on the same basic “mark-
and-sweep” method as some existing generic garbage collec-
tor such as the Boehm-Demers-Weiser conservative garbage
collector[2] However, since we don’t have to scan through
objects for possible pointers, it is more efficient then most
generic collection schemes. The garbage collection algorithm
can be briefly described like this: the “mark” step begins
with “active” objects (objects in the stack or statically al-
located) and marks all objects they directly or indirectly
refer to; the “sweep” step frees everything else that is not
marked. It traverses the graph, but since synchronization
process traverses the graph anyway, so the cost is still pro-
portional.

5. FUNCTIONAL SUPPORT
We found it important to allow functional expressions to
fully take advantage of FRP. However, we have constructed
this facility mainly to facilitate FRP expression, no to create
a complete functional language within C++. Nevertheless,
our functional library has its own merit and can be used
independently.

5.1 Functoid
Functoid is a term for functional object in C++ [14]. Al-
though address of a C++ function can be taken, passed
around, and called to invoke the function, such native form
cannot be used to write a higher-order function because no
function can be created on the fly. On the other hand, a
C++ object can be manipulated more freely while overload-
ing of the () operator in C++ allows it to be used as if it
is a real function. This is how a Functoid works. Some of
often used manipulations, such argument binding (to create
closures) and function composition, are a part of functoid’s
functionality.

Another difficulty on applying the functional paradigm on
C++ is that there are too many forms of functions. Take
the simplest example:

// direct form

int inc1( int x ) { return x+1 ; }

// direct form too, but different signature

int inc2( const int& x } { return x+1 ; }

// indirect form

void inc3( int& r, int x ) { r = x+1 ; }

// implicit form

void inc4( int& x ) { x++ ; }

// class member form

struct A {

int inc5( int x ) { return x+1 ; }

};

The above list is far from complete, and the number of differ-
ent signatures goes exponentially with number of arguments.
Many FRP functions (e.g. Lift) require a functional argu-
ment so it is undesirable to overload every such function
on every possible functional signature. So in FRP/C++,
functoids are also used to unify many of those signatures.
liftF is used to ’lift’ a function to functoid. An example to
demonstrate this is:

// function composition

Fun1<int,int> add_two = liftF(inc1)(liftF(inc2)) ;

int x = add_two(3) ; // x == 5

where Fun1<A,B> is the type of functoid which takes a ar-
gument of type B and gives a result of type A.

5.2 Lambda Expressions
Another limitation of C++ is that all (non-member) func-
tions must be defined in global scope2. Although argument
binding can be used to create equivalent of local functions,
sometimes the code is is trivial and doesn’t really warrant
writing an out-of-context global function. In our functional
library, lambda is to create a functoid out of an expression:

LambdaVar<int>::X x ;

Fun<int,int> inc6 = lambda(x,x+1) ;

We call this a “typed” lambda expression because the type
of the lambda variable is fixed so that the result functoid
has a fixed (non-polymorphic) signature. Although it is
also possible to implement “un-typed” lambda expressions
in C++[11], we have opted not to do so because we see it not
worth the effect to emulate the type inference mechanism in
C++.

6. ROBOTIC CONTROL SYSTEM
Here an interactive vision guided robotic control system is
presented as an example of FRP/C++ applications. The

2Technically, non-member functions can be only defined in
namespace scope, including the global namespace scope.
However, this discrimination is irrelevant to our discussion
here.
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system consists of an ActivMedia Robotics Pioneer 2 robot,
a stereo camera, and an on-board computer which hosts our
software system. Figure 6 shows the hardware organization.

The Pioneer 2 is a two-wheel drive mobile robot. It com-
municates with the on-board computer over serial link. In
the commmand-driven mode we use, the robot simply ac-
cepts movement commands from the computer and provides
feedback about its status and position information through
dead-reckoning. The stereo camera communicates with the
on-board computer over IEEE 1394 firewire interface. A
stereo camera provides depth information and color images.
In our system, the depth information is used both in depth
disparity tracking and obstacle detection.

The on-board computer is responsible for high-level opera-
tion of the robot as well as vision processing. It communi-
cates with outside world over a wireless LAN, which allows
the robot to move about without any attached cables. The
robot usually operates semi-autonomously under the super-
vision of an operator at a console. The on-board computer
feeds live video to the console, where the operator can ask
the robot to carry out certain tasks, such as to track and fol-
low an object while avoiding obstacles, or moving to some
particular direction. Of course, if necessary, the operator
could take direct control and tele-operate the robot.

Figure 6 shows the software architecture of the on-board
system. At the lowest level, there are routines for commu-
nicating with the microcontroller. XVision2 [7] handles the
camera interfacing and all computationally demanding vi-
sion processing. It is also responsible for the console. Inter-
faces to these two subsystems are lifted into FRP/C++ and
the entire application itself is written in FRP/C++. Since
everything from top to bottom are is C++ or C, interoper-
ation is seamless.

6.1 Visual Tracking
A visual tracker can be described as the loop of a stepper and
a predictor. The predictor guesses the current state from the
previous state, and the stepper searches for the current state
in an image directed by the guess. In FRP/C++, we can
write:

Behavior<TargetState> target ;

Fun1<BehaviorRef<TargetState>,

BehaviorRef<TargetState> > predictor ;

// other assignments here

target = stepper( predictor( delayB(initGuess)

(target) ),

video );

where TargetState is the type for our tracker’s state, in our
case, a rectanglar blob contains the target in the image.

The location of the target is predicted by combining a simple
linear predictor with compensation for rotation of the robot
base:

BehaviorRef<TargetState>

linearPredictor( BehaviorRef<Orientation> r,

BehaviorRef<TargetState> x ) {

return x + K1*(x-delay1B(x))

- K2*(r-delay1B(r)) ;

}

The predictor appears in the tracker loop using the follow-
ing partially bound definition:

predictor = liftF(linearPredictor)(orientation) ;

All code above (except the linearPredictor function) is
then packaged into a (C++) function called trackTarget:

BehaviorRef<TargetState>

trackTarget( Stepper stepper, BehaviorRef<Image> video,

BehaviorRef<Orientation> orientation,

Position button ) {

TargetState initGuess = segment( video, button );

// ...

return target ;

}

The initial guess of the target state is obtained by segment-
ing the image region around the given button position.

6.2 Driving the Robot
The robot is driven by providing a behavior of vector of ve-
locities of its two wheels. Here we focus on the primary task
of the robot: to follow the tracked object while avoiding ob-
stacles. The former can be done directly in a C++ function
using current tracker state to compute requested velocity



vector. The latter needs two steps: first a set of “obstacle
lines”, the range map of visible obstacles, is computed from
stereo images, then an algorithm is executed over the obsta-
cle lines to find the nearest “gap” which fits in the robot.
The robot is steered toward that gap. These two velocity
vectors are blended by the following formula:

Vr = Vf ·min(1, k ∗ (d− ds)) + Vo

where Vr is the result velocity vector, Vf is the velocity
vector returned by the target follower and Vo is the one
returned by the obstacle avoider; d is the distance between
the robot and the nearest obstacle in its direct front, which
can also computed from the obstacle lines, and ds is a safety
distance.

Here is the code that implements the above:

BehaviorRef<RobotVel>

follower( BehaviorRef<Image> video,

BehaviorRef<TargetState> target )

{

Behavior<RobotVel> Vr, Vf, Vo ;

Behavior<ObstacleLines> obstacles ;

Behavior<float> d ;

obstacles = getObstacles(video) ;

Vf = follow( target );

Vo = avoid( obstacles );

d = frontDistance( obstacles );

Vr = Vf * (smaller(1.0f,d-dSafe)) + Vo ;

return Vr ;

}

6.3 Interactive Control
Now we have the basic functions; what remains is to put
them together to form an interactive system. The left mouse
button is used to select an object on the screen of the console
to let the robot follow it while avoiding obstacles; the right
mouse button is to manually set a direction for the robot
to turn to and move along; the space key stops the robot
immediately.

int main()

{

// declarations omitted for the interest of brevity

disp = display( video ) ;

robot = drive( vel ) ;

vel = switchB( stop, events );

events = followE || moveE || stopE ;

followE = display.lpb() ThenB

liftF(follower)(video)

(liftF(track)(stepper,video,

orientation));

moveE = display.rbp() ThenB move ;

stopE = filterE(lambda(c,c==’ ’))(display.key())

ThenConstB stop ;

orientation = getOrientation(robot) ;

(disp,robot).run() ;

}

Everything is quite straightforward except the expression
which defines followE. It works like this: the function follower

we defined before has its first argument bound, and track

has its all arguments other than the last bound, then they
are composed to a single function, which takes a Position

and gives a BehaviorRef<RobotVel>. Whenever display.lpb()
occurs, the position of mouse button is used to call that
composed function, and switch to the new behavior it gen-
erated.

7. RELATED WORK
Implementations of Functional Reactive Programming (FRP)
on Haskell have been pioneered by Elliott[4] and Hudak[10].
Our implementation in C++ share some of working mech-
anism with their work. Some FRP applications, such as
FVision [17] and [15], combine Haskell code of FRP and
C++ code of libraries through special wrapping.

Recently, Courtney[3] implemented (a sub-set of) FRP in
Java, focused on the relationship between the FRP event-
behavior model and the Java Beans event-property model.
However, the lack of a strictly typed polymorphic system
in Java becomes a limitation. Furthermore, that implemen-
tation of behaviors heavily depends on an event propaga-
tion (“push” mode), somehow different from existing Haskell
ones. The latter mainly make use of the lazy evaluation fea-
ture (“pull” mode). This makes significant differences when
recursive or mutually recursive behaviors being defined.

More Recently, there are some interesting development on
Real Time FRP (RT-FRP)[20] and Event-Driven FRP (E-
FRP)[21]. A subset of FRP can be identified to have bounded
resource consumption, and programs of a variant of it can
be compiled into efficient C code.

On the other hand, the idea of dataflow-based (graph) pro-
gramming has existed for a long time. Lucid[1], ECOS[8]
and Signal[12] are such languages. In our work, we explore
the connection between dataflow and functional program-
ming and build our implementation upon this connection.

C++ Programming in functional style, including higher-
order functions, is already well-known to the community[13]
[14] [11]. [14] has even demonstrated that it is possible pro-
vide a functional library for C++ to implement Haskell’s
prelude. However, our implementation is not directly based
on existing works: It is neither our purpose to re-invent
a functional programming language over C++, nor to in-
sert an additional functional layer between FRP and hosting
C++ environment.

8. CONCLUSION
The current implementation of FRP/C++ is being actively
used within our laboratory as a way of expressing programs
for visual tracking, robot control, and human-computer in-
terfaces. In our experience, the main advantage of the FRP
style of expression is the compactness and simplicity of the
resulting code. It is straightforward to prototype system



components, transform the code until it is correct, then
to integrate separate components into a working applica-
tion. The strongly typed nature of the specification min-
imizes coding errors while the lazy execution model maxi-
mizes computational efficiency. The embedding of FRP in
an imperative language also means that it is possible, within
a single program, to move between traditional imperative
execution and FRP style execution as appropriate.

The principal disadvantage of the C++ embedding of FRP
has to do with the somewhat “brittle” nature of the language
constructs used to create it. Small syntactic or type errors
in the code can be difficult to trace due to the extensive
use of templates and macros. Furthermore, using the FRP
mode of expression in C++ requires a detailed and extensive
knowledge of C++ itself.

There are a variety of obvious issues and extensions that
we are considering. Two obvious extensions are to create a
multi-threaded version of FRP/C++, and to create a mech-
anisms whereby the system can operate in “push” mode
(interrupt driven) rather than “pull” mode (polling). In the
case of the former, the main issue is providing a way for
different threads to communicate in a reasonable manner.
Previous work in FRP on message passing suggests that this
is a reasonable route to follow. Operating in a “push” mode
would have the advantage of tying the system more closely
to a fundamental clock. However, the danger is that the
system could become saturated with input and no longer
respond in a timely manner. Again, there are a variety of
obvious solutions to this problem that could be easily added
to the FRP/C++ model.

In summary, FRP/C++ appears to be a viable and rea-
sonable approach to using functional reactive programming
concepts without recourse to Haskell. Further work in devel-
oping larger systems will determine whether this approach
scales effectively, and also how best to combine the FRP
style of programming with more traditional programming
structures.
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