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Abstract

Video games are usually not programmed very declaratively. There
are a number of reasons for this, from low-level efficiency con-
cerns, via the nature of commonly employed programming lan-
guages, libraries, and frameworks, to the conceptual nature of
such games, with state and effects being omnipresent. However, by
structuring games in terms of time-varying values and transforma-
tions on such values, it is possible to design and implement video
games in a more declarative way. This tutorial shows how this can
be achieved through Functional Reactive Programming (FRP) by
implementing the high-level parts of a 2D game akin to the clas-
sical game Breakout. The tutorial uses the Haskell-embedded FRP
implementation Yampa and bindings to SDL (Simple DirectMedia
Layer) to obtain game play and visual standards typical of the 2D
genre; for example, as seen in many currently popular games for
smartphones and tablets.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (functional) programming; I.6.2 [Simulation
And Modeling]: Simulation Languages

Keywords Video Game Programming, Functional Reactive Pro-
gramming, Hybrid Modelling

1. Introduction

Programming of video games is not what first springs to mind when
successful applications of declarative programming are considered.
This is not too surprising. For starters, performance requirements
subject to resource constraints have often necessitated a low-level
approach to implementation. This is turn has influenced the choice
of implementation languages and the design of supporting libraries
and frameworks. One might also argue that the nature of video
games, being much about state and effects, simply does not lend
itself to a declarative approach.

However, by changing the perspective from focusing on the
state of a system at a particular point in time to how it evolves
over time, these conceptual objections are mitigated. In particular,
implicit state is replaced by explicit operations over the system
history, such as accumulation or integration.
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Figure 1. A version of the game Breakout

This tutorial demonstrates how to program a video game declar-
atively in this way using Functional Reactive Programming (FRP)
[4], a framework for reactive programming in a functional setting
originally developed for graphical animation, but that since has
been applied to a diverse set of domains such as graphical user
interfaces, robotics, and computer vision. As video games often
encompass both continuous-time and discrete-time aspects, FRP’s
support for hybrid systems is of particular interest.

2. The Tutorial

The objective of the tutorial is to implement the high-level aspects
(game logic) of a 2D game in the same vein as the classical game
Breakout: see figure 1. We use the Haskell-embedded FRP im-
plementation Yampa [6], along with bindings to SDL (Simple Di-
rectMedia Layer) to obtain game play and visual standards typical
of the 2D genre; for example, as seen in many currently popular
games for smartphones and tablets. However, by choosing a graph-
ical backend such as OpenGL, 3D games can be programmed in
much the same way [2].

Yampa is a powerful language for programming reactive sys-
tems, combining the conceptual simplicity of synchronous dataflow
approach [1] with the flexibility and abstraction power of higher-
order functional programming. A prominent feature of Yampa is
its very flexible support for programming hybrid systems, includ-
ing systems with evolving structure, such as games where game
entities appear and disappear during the course of play [3, 6].



Figure 2. A Yampa system is described in terms of interconnected
signal functions, possibly with variable structure.

(a) f ≫ g (b) f &&& g

Figure 3. Two arrow combinators

The central idea of Yampa is to describe systems in terms of
Signal Functions: pure functions on time-varying values or signals.
Only signal functions are first-class entities in Yampa: signals exist
only indirectly, through signal functions. A Yampa system consists
of a number of interconnected signal functions, operating on the
system input and producing the system output: see figure 2, which
also illustrates that the system structure can be variable. The signal
functions operate in parallel, sensing a common rate of time flow.
This is why Yampa is a synchronous language.

The type of a signal function mapping a signal of type α onto a
signal of type β is written SFαβ. Intuitively:

SFαβ ≈ Signalα→ Signal β

where

Signalα ≈ Time→ α

for some suitable type Time representing continuous time. If more
than one input or output signal are needed, tuples are used for α
or β since a signal of tuples is isomorphic to a tuple of signals.
If the output of a signal function at time t is determined solely
by the input at time t, the signal function is said to be stateless,
otherwise it is said to be stateful. A simple example of a stateful
signal function is integral:

integral :: SF Double Double

defined by

y(t) =

t∫

0

x(τ ) dτ

where x(t) is the input signal and y(t) is the output signal.
Signal functions are arrows [5], and Yampa systems are actu-

ally constructed by combining signal function using arrow com-
binators, such as the ones shown in figure 3. However, describing
large systems purely in a point-free style is cumbersome. A special
arrow notation [7], similar to the monadic do-notation, that effec-
tively allows signals to be named and the interconnection structure
described in terms of named signals is therefore commonly used.

As a concrete example of the arrow notation and how Yampa al-
lows a declarative formulation of basic game physics, consider the
following code from the Breakout game describing the behaviour
of the ball when moving freely. It states that the position of the ball
is obtained by integrating its velocity and adding this to the initial
position:

p ← (p0 +̂̂ ) <̂< integral −≺ v

(The operator +̂̂ denotes vector addition, and <̂< is composition
of a lifted pure function and a signal function.) This is not far
removed from the mathematical description:

p = p0 +

t∫

0

v dτ

In FRP, the domain of a signal can conceptually be either con-
tinuous or discrete. In the former case, the signal is defined at every
point in time. In the latter case, the signal is a partial function, only
defined at discrete points in time. Such a point of definition is called
an event. In Yampa, this distinction has been deliberately blurred to
make it easier to mix and match continuous-time and discrete-time
signals. The notion of discrete-time signals is captured by lifting
the range of continuous-time signals using an option type called
Event, similar to Haskell’s Maybe type.

There is a rich set of operations for working with events and
mediating between continuous-time and discrete-time signals.
One example is edge that generates an event when the Boolean
continuous-time input signal changes from false to true. The fol-
lowing code snippet illustrates how to define a discrete-time signal
over with an occurrence each time a level has been completed:

over ← edge −≺ ¬ (any isBlock (map objectKind

(showObjects s)))

Note again how this is a declarative definition over time: a level is
completed whenever the last object of type “block” disappears.

In the course of the tutorial, the complete core of the Breakout
game is developed step by step through succinct declarative defi-
nitions like those illustrated above. The needed features of Yampa
are introduced and explained along the way. In particular, the tuto-
rial covers switching for temporal composition of behaviours (like
making a ball bounce) and evolving system structure (like making
bricks disappear once hit), and feedback to allow current results to
influence future behaviour and separation of mutually interdepen-
dent subsystems.
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